GAMS

Stefan Vigerske stefan@gams.com

October 2nd, 2015, CO@Work, Berlin

Material to this lecture: http://co-at-work.zib.de/files/gams/

- CO@Work virtual machines: GAMS is installed (run gams)
- Download GAMS system: http://www.gams.com/download
- Evaluation license (valid until 7.1.2016): http://co-at-work.zib.de/files/gams/gamslice.txt (already installed on 32bit VM)

Material to this lecture: http://co-at-work.zib.de/files/gams/

- CO@Work virtual machines: GAMS is installed (run gams)
- Download GAMS system: http://www.gams.com/download
- Evaluation license (valid until 7.1.2016): http://co-at-work.zib.de/files/gams/gamslice.txt (already installed on 32bit VM)

Next 85 minutes:

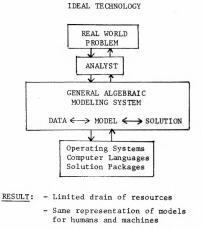
- A short overview on GAMS.
- GAMS syntax and programming. (gamsbasics.pdf)
- Equitable coach problem in GAMS.
- Exercise: Run and modify equitable coach problem.
- "Hiding GAMS": Calling GAMS from Python.
- Exercise: Cutting Stock by Column Generation in Python.

- **Roots**: World Bank, 1976
- Went commercial in 1987

Locations

- GAMS Development Corporation (Washington, D.C.)
- GAMS Software GmbH (Germany)

Washington


Braunschweig

Frechen (Cologne)

- ▶ \approx **16 employees** (7 development, 5 sales, ...)
- Product: The General Algebraic Modeling System

The Vision: World Bank Slide, 1976

 Model representation is also model documentation

Timeline: 1976 ... now

- 1976 GAMS idea is presented at ISMP, Budapest
- 1978 Phase I: GAMS supports linear programming. Supports Mainframes and Unix Workstations
- 1979 Phase II: GAMS supports nonlinear programming
- 1987 GAMS becomes a commercial product
- 1988 First PC System (16 bit)
- 1988 Alex Meeraus, the initiator of GAMS and founder of GAMS Development Corporation, is awarded INFORMS Computing Society Prize
- 1990 32 bit Dos Extender
- 1990 GAMS moves to Georgetown, Washington, D.C.
- 1991 Mixed Integer Non-Linear Programs capability (DICOPT)
- 1994 GAMS supports mixed complementarity problems
- 1995 MPSGE language is added for CGE modeling
- 1996 European branch opens in Germany
- 1998 32 bit native Windows
- 1998 Stochastic programming capability (OSL/SE, DECIS)
- 1999 Introduction of the GAMS Integrated development environment (IDE)
- 2000 GAMS World initiative started
- 2001 GAMS Data Exchange (GDX) is introduced
- 2002 GAMS is listed in OR/MS 50th Anniversary list of milestones
- 2003 Conic programming is added
- 2003 Global optimization in GAMS
- 2004 Support for Quadratic Constrained programs
- 2005 Support for 64 bit PC Operating systems
- 2006 GAMS supports parallel grid computing
- 2007 GAMS supports open-source solvers from COIN-OR
- 2008 Support for 32 and 64 bit Mac OS X
- 2009 GAMS supports extended mathematical programs (EMP)
- 2010 GAMS is awarded the company award of the German Society of Operations Research (GOR)
- 2012 The Winners of the 2012 INFORMS Impact Prize included Alexander Meeraus. The prize was awarded to the originators of the five most important algebraic modeling languages.

User Community

- more than 11500 licenses
- ► 50% academic users, 50% commercial

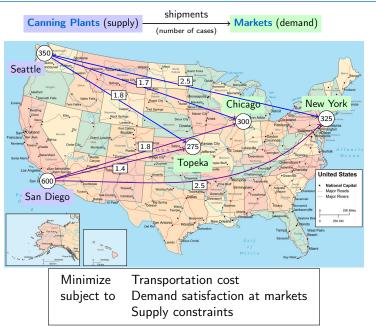
Application Areas:

- Agricultural Economics
- Chemical Engineering
- Econometrics
- Environmental Economics
- Finance

. . .

- International Trade
- Macro Economics
- Management Science/OR

- Applied General Equilibrium
- Economic Development
- Energy
- Engineering
- Forestry
- Logistics
- Military
- Mathematics


Declarative Language:

- Similar to mathematical notation
- Few basic language elements: sets, parameters, variables, equations, models
- Model is executable (algebraic) description of the problem

Imperative Elements:

- ► Control flow statements: loops, for, if, ...
- build algorithms within GAMS
- exchange data with other systems

Transport Example (GAMS Model Library: TRNSPORT)

GAMS

- *i* canning plants
- j markets
- *a_i* capacity of plants
- *b_i* demand at markets
- $c_{i,j}$ transportation cost per case
- $x_{i,j}$ cases to ship from *i* to *j*

min
$$\sum_{i,j} c_{i,j} x_{i,j}$$

s.t.
$$\sum_{j} x_{i,j} \leq a_i \qquad \forall$$

$$\sum_{i}^{j} x_{i,j} \ge b_j \qquad \forall j$$

 $x_{i,j} \ge 0 \qquad \forall i,j$

```
Sets
i "canning plants",
j "markets";
```

Parameters

```
a(i) "capacity of plant i in cases",
b(j) "demand at market j in cases",
c(i,j) "transport cost in 1000$ per case";
```

Variables

```
x(i,j) "shipment quantities in cases",
z "total transportation costs in 1000$"
```

```
Positive Variable x;
```

Equations

```
cost "define objective function",
supply(i) "observe supply limit at plant i",
demand(j) "satisfy demand at market j";
```

```
cost .. z =e= sum((i,j), c(i,j)*x(i,j));
supply(i) .. sum(j, x(i,j)) =l= a(i);
demand(j) .. sum(i, x(i,j)) =g= b(j);
```

```
Model transport / all / ;
```

GAMS

GAMS is not a Solver!

GAMS: Model building and interaction with solvers and environment.

Solver: Solve an instance (instantiation of a model with data) using mathematical optimization.

- Major commercial and academic solvers integrated: 31 solvers, half of them actively developed/updated
- Average number of commercial solvers per license:
 - Academic clients: 2.9
 - Commercial clients: 2.2
- Switch between solvers with one statement: option solver = scip; (since GAMS 24.5)

Solvers \leftrightarrow	Ρ	rob	lem	type	es (G	AMS	24.5)				GA	MS
	LP	MIP	NLP	MCP	MPEC	CNS	DNLP	MINLP	QCP	MIQCP	Stoch. Global	
ALPHAECP								x		х		
ANTIGONE 1.1			х			х	х	х	х	х	х	
BARON 15.8	х	x	x			x	х	х	x	х	х	
BDMLP	х	×										
BONMIN 1.8								х		х		
CBC 2.9	х	×										
CONOPT 3	х		х			х	х		х			
COUENNE 0.5			х			х	х	х	х	х	х	
CPLEX 12.6	х	х							х	х		
DECIS	х										х	
DICOPT								х		х		
GUROBI 6.0	х	х							х	х		
IPOPT 3.12	х		х			х	х		х			
KNITRO 9.1	х		х			х	х	х	х	х		
LGO	х		x				х		х		(x)	
LINDO 9.0	х	×	x				х	х	х	х	х х	
LOCALSOLVER 5.5	х	х	х			х	х	х	х	х		
MILES				х								
MINOS	х		x			×	х		х			
MOSEK 7	х	х	х				х		х	х		
MSNLP			х				х		х		(x)	
NLPEC				х	х							
OQNLP			x				х	х	х	х	(x)	
PATH				х		х						
SBB								х		х		
SCIP 3.2		х	х			х	х	х	х	х	х	
SNOPT	х		х			х	х		х			
SOPLEX 2.2	х											
SULUM 4.3	х	×										
XA	х	×										
XPRESS 28.01	x	x	1						х	х		

_ . . -. .

Stefan Vigerske - GAMS - Material: http://co-at-work.zib.de/files/gams/

Supported Platforms:

v

32bit

				ailability - :				Tools/Platform availability - 24.5							
	x86 32bit	x86 64bit	x86 64bit	x86 64bit	x86 64bit	Sparc 64bit	IBM Power 64bit		x86 32bit	x86 64bit	x86 64bit	x86 64bit	x86 64bit	Sparc 64bit	IBM Power 64b
	MS Windows	MS Windows	Linux		SOLARIS	SOLARIS	AIX		MS Windows	MS Windows	Linux	MacOS X	SOLARIS	SOLARIS	AIX
LPHAECP	~	~	~	~	~	~	~	ASK	~	32bit					
WTIGONE 1.1	~	~	~	~				BIB2GMS	~	~	~	~	~	~	~
MARON 15.8	~	~	~	~				CHK4UPD	~	~	~	~	~	~	~
IOMLP	~	~	~	~	~	~	1	CHOLESKY	~	~	~	~	~	~	~
INMIN 1.8	~	~	~	~	~			CSDP	~	~	~	~	~		
BC 2.9	~	~	~	~	~			CSV2GDX	~	~	~	~	~	~	~
ONOPT 3	~	~	~	~	~	~	~	EIGENVALUE	~	~	~	~	~	~	~
OUENINE 0.5	~	~	~	~	~			EIGENVECTOR	~	~	~	~	~	~	~
PLEX 12.6	~	~	~	~	~	~	~	ENDECRYPT	~	~	~	~	~	~	~
DECIS	~	~	4			~		GAMSIDE	~	32bit					
ICOPT	~	~	~	~	~	~	1	GAMS POSIX Utilities1	~	~	~	~	~	~	~
ILOMIQO 2.3	~	~	4	~				GDX2ACCESS	~	32bit					
UROBI 6.0	~	~	~	~			1	GDX2HAR	~	32bit					
IUSS	~	~	~	~	~	~	1	GDX2SQLITE	~	~	~	~	~	~	~
OPT 3.12	~	~	~	~	~			GDX2VEDA	~	~	~	~	~	~	~
ESTREL	~	~	~	~	~	~	1	GDX2XLS	~	32bit					
MTR0 9.1	~	~	~	~				GDXCOPY	~	~	~	~	~	~	~
60	~	~	~	~	~	~		GDXDIFF	~	~	~	1	~	~	~
INDO 9.0	~	~	~	~				GDXDUMP	~	~	~	1	~	~	~
INDOGLOBAL 9.0	~	~	~	~				GDXMERGE	~	~	~	~	~	~	~
OCALSOLVER 5.5	~	~	~	~				GDXMRW	~	~	~	1			
ILES	~	~	~	~	~	~	~	GDXRANK	~	~	~	1	~	~	~
INOS	~	~	~	~	~	~	~	GDXRENAME	~	~	~	1	~	~	~
IOSEK 7	~	~	~	~				GDXRRW	~	~	~	~	src only	src only	src only
ISNLP	~	~	~	~		~		GDXTROLL	~	~	~	1	~	-	-
LPEC	~	~	~	~	~	~	~	GDXVIEWER	~	32bit					
IQNEP	~	32bit						GDXXRW	~	32bit					
ATH	~	~	~	~	~	~	~	GMSUNZIP	~	~	~	~	~	~	~
88	~	~	~	~	~	~	1	HAR2GDX	~	32bit					
CIP 3.2	4	~	~	~	~			IDECMDS	~	32bit					
NOPT	~	~	~	~	~	~	1	INVERT	~	~	~	~	~	~	~
OPLEX 2.2	~	~	~	~	~			MCFILTER	~	~	~	~	~	~	~
UUUM 4.3	~	~	~					MDB2GMS	~	32bit					
A	~	~	~					MODEL2TEX	~	5200	~	~	~	~	~
PRESS 28.01	~	~	~	~	~	~	1	MPS2GMS		~	~	~	~	~	~
PINC 3 2 20.0 1								MPS2GMS MSAPPA/AIL	2	32bit			,		•
								SCENRED		32010	~	~	~	~	~
								SCENRED2		-	÷		-		
										32bit					

Online: http://www.gams.com/help (with search) Offline: <GAMS system directory>/docs/index.html (no search, use grep!)

- ► GAMS A User's Guide: Tutorial, Basics, Advanced Topics
- McCarl (Expanded) GAMS User Guide
- Solver Manuals
- Tools Manuals
- APIs: Tutorials and Reference Manuals
- Release Notes

Tutorial Videos: http://www.youtube.com/user/GAMSLessons Support wiki: http://support.gams.com/doku.php Discussion group: http://www.gamsworld.org/

Model Libraries

GAMS

Online: http://www.gams.com/modlibs

Offline: gamslib, apilib, datalib, emplib, testlib tools

► GAMS Model Library

- representing interesting and sometimes classic problems
- illustrating GAMS modeling capabilities

Model Libraries

GAMS

Online: http://www.gams.com/modlibs

Offline: gamslib, apilib, datalib, emplib, testlib tools

► GAMS Model Library

- representing interesting and sometimes classic problems
- illustrating GAMS modeling capabilities
- GAMS API Library
 - scripts to compile and execute GAMS API examples
- GAMS Data Utilities Library
 - demonstrate utilities to interface GAMS with other applications
- ► GAMS EMP Library
 - illustrate and test capabilities of extended mathematical programming facility

Contributed Libraries:

- FINLIB financial optimization models (by Consiglio, Nielsen and Zenios)
- NOALIB nonlinear optimization applications models (by Neculai Andrei)
- GAMS Testlib Library
 - testing and quality control

Recall Tuesday morning ...

The Equitable Coach Problem

What is important?

- How many players are in the team? How many on the field?
- What is the formation that the team will play? 2-3-1, 2-2-2 or 3-1-2?
- How many interchanges do you want to perform?
- What are the positional preferences of the players?
- Are you equitable for only a single game or across the two matches?
- Complicated: Does winning the first match impact your decision about being equitable for the second?

Bart, Mahee, Witzig - Modeling	11 / 1

The Equitable Coach Problem: disaggregated model
We now consider the version of the ECP where we allocate players to positions at particular times. c_{rest} [binary] is if folger r plays in position i in play period t_i c_i^+ [continuous] is the number of periods player r plays above the average; c_i^- [continuous] is the number of periods player r plays below the average. R is the set of polyers; T is the set of positions; T is the total number of game minutes.
Bart, Maher, Witzg - Modeling BI / 102

Problem definition

OBJECTIVE: For a single game identify the equitable number of playing minutes for each player given that there is only one goal keeper and players have positional preferences.

- 7 players on the field, 12 players in a team
- 20 minutes games ⇒ 140 player minutes
- ▶ 4 different position types, Goal Keeper, Defence, Midfield and Striker.

Solution is not as easy. Need a more sophisticated mathematical model.

	- Model	

The Equitable Coach Problem: disagg	regated model	211
$ECPd$: min $\sum (\epsilon_r^+ + \epsilon_r^-)$		
$\sum_{r=1}^{r} x_{r,i,t} = 1$	$\forall \ t \in T, i \in N,$	(8)
$\sum_{i=1}^{r} x_{r,i,t} \le 1$	$\forall \ t \in T, r \in R,$	(9)
$\sum_{t,i}^{i} x_{r,i,t} - \sum_{t,i,r'} \frac{x_{r',i,t}}{ R } = \epsilon_{r}^{+} - \epsilon_{r}^{-}$	$\forall \ r \in R,$	(10)
$x_{r,i,t} \in [0, 1]$	$\forall r \in R, \ i \in N, \ t \in$	<i>T</i> ,
$\epsilon_r^+, \epsilon_r^- \in \mathbb{R}_{\geq 0}.$		
Burt, Maher, Witzig - Modelling		89 / 102

Recall: Equitable Coach Problem (ECP)

- ▶ 7 players on the field, 12 players in a team
- ▶ 20 minutes games \Rightarrow 140 player minutes
- ▶ 4 different position types, Goal Keeper, Defence, Midfield and Striker.

OBJECTIVE: For a single game identify the **positions of players at particular times** given that players have positional preferences and such that **playing times are as equitable as possible**.

Recall: Equitable Coach Problem (ECP)

- ▶ 7 players on the field, 12 players in a team
- ▶ 20 minutes games \Rightarrow 140 player minutes
- ▶ 4 different position types, Goal Keeper, Defence, Midfield and Striker.

OBJECTIVE: For a single game identify the **positions of players at particular times** given that players have positional preferences and such that **playing times are as equitable as possible**.

m

- $x_{r,i,t}$ is 1 if player *r* plays in position *i* in play period *t*;
- $\epsilon_r^{+/-}$ is the number of periods player r plays above/below the average;
 - R is the set of players;
 - *R_i* is the set of players than can play on position *i*;
 - *P* is the set of positions;
 - \mathcal{T} is the total number of game minutes.

$$\begin{split} & \lim \sum_{r} \left(\epsilon_{r}^{+} + \epsilon_{r}^{-} \right) \\ & \sum_{r \in R_{i}} x_{r,i,t} = 1 \qquad \forall \ t \in T, i \in P, \\ & \sum_{i:r \in R_{i}} x_{r,i,t} \leq 1 \qquad \forall \ t \in T, r \in R, \\ & \sum_{t,i:r \in R_{i}} x_{r,i,t} - \sum_{t,i,r' \in R_{i}} \frac{x_{r',i,t}}{|R|} = \epsilon_{r}^{+} - \epsilon_{r}^{-} \quad \forall r \in R, \\ & x_{r,i,t} \in [0,1] \qquad \forall r \in R, \ i \in N, \ t \in T, \\ & \epsilon_{r}^{+}, \epsilon_{r}^{-} \in \mathbb{R}_{\geq 0}. \end{split}$$

ECPd.zpl (simplified version)

```
param gametime
                 := 20;
param nsubperiods := 6;
# formation
param nkeeper
                 := 1:
param ndefender
                 := 2;
param nmidfielder := 3;
param nstriker
                  := 1;
# set number of positions
param npositions
                  := nkeeper + ndefender + nmidfielder + nstriker;
# sets of players, positions, and minutes per game
set Player
                 := {
 "Josh". "Simon", "Jordy", "Chris", "Andy", "Richie",
 "Tritto", "Guv", "Neil", "Justin", "Steve", "Corv"
}:
set Classes := { "K", "D", "M", "S" };
set Positions := { 1 .. npositions };
set Periods := { 1 .. nsubperiods };
var x[Player * Positions * Periods] binary;
var eplus[Player] real;
var eminus [Player] real;
# the model:
# 1.) objective function
# 2.) ensure that each position is used at each point in time
# 3.) ensure that each player plays on at most one position per time
# 4.) calculate the minutes over/below the average
minimize cost: sum <r> in Player : gametime/nsubperiods * (eplus[r] + eminus[r]);
subto c1: forall <i> in Positions :
             forall <t> in Periods : sum <r> in Player with pos[r,GetClass(i)] == 1: x[r,i,t] == 1;
subto c2: forall <r> in Player :
             forall <t> in Periods : sum <i> in Positions with pos[r,GetClass(i)] == 1: x[r,i,t] <= 1;
```


\$title Equitable Coach Problem

```
* timing parameters
* param gametime := 20;
scalar gametime / 20 /;
* param nsubperiods := 6;
$set nsubperiods 6
* formation 1-2-3-1
* param nkeeper := 1;
* param ndefender := 2;
* param nmidfielder := 3;
* param nstriker := 1;
scalar nkeeper / 1 /:
scalar ndefender / 2 /:
scalar nmidfielder / 3 /:
scalar nstriker / 1 /:
```

```
* set number of positions
* param npositions := nkeeper + ndefender + nmidfielder + nstriker;
$set npositions 7
```

```
GAMS
```

```
* sets of players, positions, and minutes per game
*set Plaver
                    := {
* "Josh", "Simon", "Jordy", "Chris", "Andy", "Richie",
* "Tritto", "Guv", "Neil", "Justin", "Steve", "Corv"
* };
set r "Player" /
 "Josh", "Simon", "Jordy", "Chris", "Andy", "Richie",
 "Tritto", "Guy", "Neil", "Justin", "Steve", "Cory"
1;
*set Classes := { "K", "D", "M", "S" };
*set Positions := { 1 .. npositions };
*set Periods := { 1 .. nsubperiods };
set c "Position classes" / K, D, M, S /;
set p "Positions" / 1 * %npositions% /;
set t "Periods" / 1 * %nsubperiods% /;
```

GAM

* entry (i,j) is 1 <=> player i can play on position j \$ontext param pos[Player * Classes] := | "K", "D", "M", "S" | |"Josh" | 0, 0, 1, 1 | |"Simon" | 0, 0, 0, 1 | |"Steve" | 0, 1, 0, 0 | |"Cory" | 1, 0, 0, 0 |; \$offtext Table pos(r,c) KDMS Josh 11 Simon 1 Jordy Chris 11 Andy 1 Richie 11 Tritto 1 Guv Neil 1 Justin 1 Steve 1 Cory 1 ;


```
$ontext
defstrg GetClass(i) := if i <= nkeeper then "K"
                            else
                               if i <= nkeeper + ndefender then "D"
                               else
                                  if i <= nkeeper + ndefender + nmidfielder
                                  else
                                      "5"
                                  end
                               end
                            end;
$offtext
set pos2class(p,c);
loop(p,
  if( p.val <= nkeeper,</pre>
    pos2class(p,'K') = ves;
  else if( p.val <= nkeeper + ndefender,</pre>
    pos2class(p,'D') = yes;
  else if ( p.val <= nkeeper + ndefender + nmidfielder,
    pos2class(p,'M') = yes;
  else
    pos2class(p,'S') = ves;
  )))
);
```



```
set canplay(r,p) "whether player r can play in position p";
* r can play at p if pos(r,c) is 1 for the position class that p belongs t
canplay(r,p) = (sum(c$pos2class(p,c), pos(r,c)) = 1);
```

```
display pos, pos2class, canplay;
```

```
* variable definition
*var x[Player * Positions * Periods] binary;
*var eplus[Player] real;
*var eminus[Player] real;
Binary Variable x(r,p,t);
Positive Variables eplus(r), eminus(r);
```

```
* the model:
* 1.) objective function
* 2.) ensure that each position is used at each point in time
* 3.) ensure that each player plays on at most one position per time
* 4.) calculate the minutes over/below the average
Variable inquity;
Equations obj, cl, c2, c3;
```

* minimize cost: sum <r> in Player : gametime/nsubperiods * (eplus(r)+emir obj.. inquity =E= sum(r, gametime/%nsubperiods% * (eplus(r) + eminus(r)));

GAM

```
*subto c1: forall <i> in Positions : forall <t> in Periods :
* sum <r> in Player with pos[r,GetClass(i)] == 1: x[r,i,t] == 1;
c1(p,t).. sum(r$canplay(r,p), x(r,p,t)) =E= 1;
```

```
*subto c2: forall <r> in Player : forall <t> in Periods :
* sum <i> in Positions with pos[r,GetClass(i)] == 1: x[r,i,t] <= 1;
c2(r,t).. sum(canplay(r,p), x(r,p,t)) =L= 1;</pre>
```

* declare model ECPd, consisting of all equations seen so far Model ECPd / all /;

```
* solve ECPd (minimizing inquity) as MIP to optimality (gap tolerance 0)
option optcr = 0;
Solve ECPd minimizing inquity using MIP;
Stefan Vigerake - GAMS - Material: http://co-at-work.zib.de/files/gams/ 23 / 33
```

TASK: Extend the equitable coach problem model by restricting the number of position changes for all players to 3.

- Get http://co-at-work.zib.de/files/gams/ECP_exercise.gms
- Open the file in your favorite text editor and read the more detailed instructions at the beginning.
- Run the model: gams ECP_exercise.gms errmsg=1
- In case of compilation or execution errors, e.g.,

GAM

GDX – GAMS Data Exchange:

- Binary data format for fast exchange of data with GAMS
- Stores sets, parameters, values of variables/equations with domain information, but no symbolic information (e.g., equation algebra)
- Consistency: no duplicates or contradictions
- Platform independent
- Can be compressed

GDX – GAMS Data Exchange:

- Binary data format for fast exchange of data with GAMS
- Stores sets, parameters, values of variables/equations with domain information, but no symbolic information (e.g., equation algebra)
- Consistency: no duplicates or contradictions
- Platform independent
- Can be compressed
- Read and write in GAMS:
 - on command line: parameter gdx=<filename>
 - during compilation: \$gdxin, \$gdxout, \$load, \$unload, ...
 - during execution: execute_load, execute_unload, ...
- **Tools and APIs** to read and write from other environments:
 - gdxdump, csv2gdx, gdxviewer (win only), ...
 - Matlab, MS Access, MS Excel, ODBC/SQL, R, SQLite
 - Iow-level APIs for C, C++, C#, Delphi, Fortran, Java, Python, VBA, VB.NET
 - high-level APIs for C#, Java, and Python

GAN

High-level APIs (C#, Java, Python) to embed GAMS

Creating input:

- Read GAMS model from file or string (APIs have no modeling capability!)
- Create input data (wrapper around GDX API)

Callout to GAMS:

- ▶ Set GAMS options (e.g., solver to use, gap limit, ...)
- Start GAMS run and store results in GDX file

Processing results:

Read and process result data (wrapper around GDX API)

High-level APIs (C#, Java, Python) to embed GAMS

Creating input:

- Read GAMS model from file or string (APIs have no modeling capability!)
- Create input data (wrapper around GDX API)

Callout to GAMS:

- ▶ Set GAMS options (e.g., solver to use, gap limit, ...)
- Start GAMS run and store results in GDX file

Processing results:

Read and process result data (wrapper around GDX API)

Main Classes:

- GAMSWorkspace: Environment
- ► GAMSJob: Storing and running a model
- GAMSDatabase: In-memory representation of data ("GDX in-memory")
- GAMSOptions: Manipulation of GAMS options
- GAMSModelInstance: Hot-start solve for a sequence of closely related problems (changes in numerical values of matrix, objective, sides, bounds only)

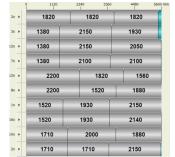
Example (Python)

<GAMS system directory>/apifiles/Python/transport1.py:

```
from gams import *
import sys
if len(svs.argv) > 1:
    ws = GamsWorkspace(system directory = sys.argy[1])
else:
    ws = GamsWorkspace()
ws.gamslib("trnsport") # get 'trnsport' from GAMS model library
t1 = ws.add job from file("trnsport.gms")
opt = ws.add_options()
opt.all_model_types = "soplex"
t1.run(opt)
for rec in t1.out db["x"]:
    print("x(" + rec.key(0) + ", " + rec.key(1) + "): " + \
           "level=" + str(rec.level) + " marginal=" + str(rec.marginal))
x(seattle.new-vork): level=50.0 marginal=0.0
x(seattle.chicago): level=300.0 marginal=0.0
x(seattle,topeka): level=0.0 marginal=0.036000000000000004
x(san-diego,new-york): level=275.0 marginal=0.0
x(san-diego,chicago): level=0.0 marginal=0.009000000000000000
```

```
x(san-diego,topeka): level=275.0 marginal=0.0
Stefan Vigerske - GAMS - Material: http://co-at-work.zib.de/files/gams/
```

Cutting Stock by Column Generation


Problem:

- Cut out some paper products of different sizes from large raw paper rolls, in order to meet a customer's order.
- > The objective is to minimize the required number of the paper rolls.

Example:

- Raw paper roll width: 5600mm
- Customer's Order:

Width	Rolls	Width	Rolls
1380	22	2000	10
1520	25	2050	12
1560	12	2100	14
1710	14	2140	16
1820	18	2150	18
1880	18	2200	20
1930	20		

Source: Wikipedia

[Gilmore, Gomory, 1961, 1963]

Cutting Stock Problem Formulation			GAMS
Width of raw paper roll: W	W	= 5600	
Customer order:	Ord	ler: Width	Rolls
Set / of widths.	1	Wi	di
▶ Widths $w_i \in \mathbb{N}$, $i \in I$.	1 2	1380 1520	22 25
▶ Required number of rolls for each width $d_i \in \mathbb{N}$, $i \in I$.	3	1560	12
• Required number of rolls for each which $u_i \in \mathbb{N}$, $i \in \mathbb{N}$.	4	1710	14
	5	1820	18
	6	1880	18
	7	1930	20
	8	2000	10
	9 10	2050	12
		2100	14
	11 12	2140 2150	16 18
	12	2150	20
	20 +	1820 1820 1880 2150 380 2150 380 2100	2000 4400 Main Main 1820 1930 2050 2100

1880

2150

2140

2200

2200 1520

1520

1710

161 +

1820 1560

1520 1930

1930

2000 1880

Cutting Stock Problem Formulation	GAI	MS
Width of raw paper roll: W	W = 5600	
Customer order:	Order: Width Rolls	
Set / of widths.	$I w_i d_i \\ 1 1380 22$	
• Widths $w_i \in \mathbb{N}, i \in I$.	2 1520 25	
▶ Required number of rolls for each width $d_i \in \mathbb{N}$, $i \in I$.	3 1560 12	
	4 1710 14 5 1820 18	
Set of valid patterns P:	6 1880 18	
▶ $a_{p,i} \in \mathbb{N}$, $p \in P$, $i \in I$: Number of width <i>i</i> in pattern <i>p</i>	7 1930 20	
• e.g., $a_{p,\cdot} = (1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0) \Leftrightarrow 1 \times 1380, 2 \times 2100$	8 2000 10 9 2050 12	
▶ pattern only valid if $\sum_{i \in I} a_{p,i} w_i \leq W$.	10 2100 14	
$\sum_{i \in I} u_{p,i} w_i \leq w$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	13 2200 20	
	Solution: 1420 1420 1420 1430 2160 2500 1430 2160 2500 1430 2100 2500 2200 1500 1480	60

2150

2000 1880

1520 1930

1520 1930

1710

Cutting Stock Problem Formulation			GAMS
Width of raw paper roll: W	W	= 5600	
	Ord		
Customer order:		Width	Rolls
Set I of widths.	1	W;	d _i
• Widths $w_i \in \mathbb{N}, i \in I$.	1 2	1380 1520	22 25
Demund number of wells for each width $d \in \mathbb{N}$ is $c l$	3	1560	12
▶ Required number of rolls for each width $d_i \in \mathbb{N}$, $i \in I$.		1710	14
Cate of wall departments D	5	1820	18
Set of valid patterns P:	6	1880	18
▶ $a_{p,i} \in \mathbb{N}$, $p \in P$, $i \in I$: Number of width <i>i</i> in pattern <i>p</i>	7	1930	20
	8	2000	10
• e.g., $a_{p,\cdot} = (1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0) \Leftrightarrow 1 \times 1380, 2 \times 2100$	9 10	2050 2100	12 14
▶ pattern only valid if $\sum_{i \in I} a_{p,i} w_i \leq W$.	10	2100	14 16
	12	2140	18
Model:	13	2200	20
▶ Variable $x_p \in \mathbb{N}$: how often to use pattern <i>p</i>		ution:	20
▶ Satisfy demand: $\sum_{p \in P} a_{p,i} x_p \ge d_i$ for all $i \in I$		1820 1820 1820 1820 1380 2150 1380 2150	1820 4440 Mac Mar 1820 1930 2050
• Minimize number of patterns: min $\sum_{p \in P} x_p$	121 + 10 +	1380 2100 2200 1 2200 15 1520 1930 1520 1830	2100 820 1560 20 1880 2150 2140

1710 2000 1880

» · 1710

Cutting Stock Problem Formulation			GAMS
Width of raw paper roll: W	W	= 5600	
	Orc		
Customer order:		Width	
Set / of widths.	1	Wi	d _i
Midthe w C N ich	1 2	1380 1520	22
▶ Widths $w_i \in \mathbb{N}, i \in I$.	2	1520 1560	25 12
▶ Required number of rolls for each width $d_i \in \mathbb{N}$, $i \in I$.	3 4	1710	12
	5	1820	14
Set of valid patterns P:	6	1880	18
▶ $a_{p,i} \in \mathbb{N}$, $p \in P$, $i \in I$: Number of width <i>i</i> in pattern <i>p</i>	7	1930	20
$P a_{p,i} \in \mathbb{N}, p \in P, i \in I$. Number of width <i>i</i> in pattern <i>p</i>	8	2000	10
• e.g., $a_{p,\cdot} = (1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0) \Leftrightarrow 1 \times 1380, 2 \times 2100$	9	2050	12
▶ pattern only valid if $\sum_{i \in I} a_{p,i} w_i \leq W$.	10	2100	14
$ \sum_{i \in I} a_{p,i} w_i \leq w$	11	2140	16
Model:	12	2150	18
	13	2200	20
▶ Variable $x_p \in \mathbb{N}$: how often to use pattern p	Sol	ution:	3360 4483 5600 mm
▶ Satisfy demand: $\sum_{p \in P} a_{p,i} x_p \ge d_i$ for all $i \in I$	21 .	1820 1820 1380 2150	1820
		1380 2150	2050
► Minimize number of patterns: min ∑ _{p∈P} x _p	121 +	2200 2100 11	2100 820 1560
	84 A	2200 152 1520 1930	2150
Observation : Only a few of all valid patterns will be used in a		1520 1930	2140
solution \Rightarrow generate set of active patterns dynamically	21 +	1710 2000 1710 1710	1880

Restricted Master and Pricing Problems

Let $\mathcal{P} \subseteq P$ be the set of generated pattern. Restricted Master Problem:

$$\min \sum_{\substack{p \in \mathcal{P} \\ p \in \mathcal{P}}} x_p$$
s.t.
$$\sum_{\substack{p \in \mathcal{P} \\ x_p \in \mathbb{R}_+}} a_{p,i} x_p \ge d_i \qquad \forall i \in I$$
(RMP)
$$\forall p \in \mathcal{P}$$

Let μ be the dual variable associated with the inequality constraint in (RMP).

Pricing Problem:

$$\min 1 - \sum_{i \in I} \mu_i y_i$$
s.t.
$$\sum_{i \in I} w_i y_i \leq W$$

$$y_i \in \mathbb{N}_+$$

$$\forall i \in I$$

$$(PP)$$

If (PP) has a solution y^* with value < 0, an improving pattern has been found \Rightarrow add to \mathcal{P} with $a_{p,i} = y_i^*$.

Stefan Vigerske - GAMS - Material: http://co-at-work.zib.de/files/gams/

Restricted Master Problem in GAMS

$$\min\left\{\sum_{p\in\mathcal{P}} x_p : \sum_{p\in\mathcal{P}} a_{p,i} x_p \ge d_i \ \forall i \in I, \quad x_p \in \mathbb{R}_+\right\}$$

```
Set i "widths" / w1*w4 /;
Parameter r "raw width" / 100 /
         w(i) "width" / w1 45, w2 36, w3 31, w4 14 /
         d(i) "demand" / w1 97, w2 610, w3 395, w4 211 /;
Set p
          "possible patterns" / 1*1000 /
    pp(p) "dynamic subset of p";
Parameter
    api(p,i) "number of width i in pattern p";
Variable xp(p) "how often to use pattern p"
        z "objective variable"
Integer Variable xp;
xp.up(p) = sum(i, d(i));
Equations numpat "number of patterns used"
        demand(i) "meet demand":
numpat.. z =e= sum(pp, xp(pp));
demand(i).. sum(pp, api(pp,i)*xp(pp)) =g= d(i);
Model master / numpat, demand /;
Solve master min z using RMIP;
```


(RMP)

Pricing Problem in GAMS

(PP)

```
\min\left\{1-\sum_{i\in I}\mu_i y_i : \sum_{i\in I}w_i y_i \leq W, \quad y_i \in \mathbb{N}_+\right\}
    i "widths" / w1*w4 /;
Set
Parameter r "raw width" / 100 /
          w(i) "width" / w1 45, w2 36, w3 31, w4 14 /:
Variable z "objective variable"
          y(i) "new pattern";
Integer variable y;
y.up(i) = ceil(r/w(i));
Equations defobj "pricing problem objective"
          knapsack "knapsack constraint";
defobj.. z = e = 1 - sum(i, demdual(i)*y(i));
knapsack.. sum(i, w(i)*v(i)) =l= r;
Model pricing / defobj, knapsack /;
Solve pricing min z using MIP:
```

Task: Get the Python file cutstock.py and add the Column-Generation loop:

- 1. Solve (RMP) as LP.
- 2. Update μ in (PP) and solve (PP).
- 3. If optimal value of (PP) is > 0, then construct new pattern for (RMP) from solution of (PP) and go to 1.

Final master objective value should be 452.25.

GAMS

Task: Get the Python file cutstock.py and add the Column-Generation loop:

- 1. Solve (RMP) as LP.
- 2. Update μ in (PP) and solve (PP).
- 3. If optimal value of (PP) is > 0, then construct new pattern for (RMP) from solution of (PP) and go to 1.

Final master objective value should be 452.25.

Solution File: cutstock_sol.py

