mosek

Semidefinite Optimization Using MOSEK

CO@work, October 8th, 2015

Joachim Dahl

www.mosek.com

Section 1

Conic optimization

• Consider a standard linear problem (LP)

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b\\ & x \ge 0 \end{array}$$

with variables $x \in \mathbb{R}^n$ and data $(A, b, c) \in \mathbb{R}^{m \times n} \times \mathbb{R}^m \times \mathbb{R}^n$.

- The simplest class of interesting problems we can easily solve.
- An extremely mature technology.
- Used extensively in all areas of industry.
- To what extent can we generalize this model?

• Consider a standard linear problem (LP)

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b\\ & x \ge 0 \end{array}$$

with variables $x \in \mathbb{R}^n$ and data $(A, b, c) \in \mathbb{R}^{m \times n} \times \mathbb{R}^m \times \mathbb{R}^n$.

- The simplest class of interesting problems we can easily solve.
- An extremely mature technology.
- Used extensively in all areas of industry.
- To what extent can we generalize this model?

• Consider a standard linear problem (LP)

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b\\ & x \ge 0 \end{array}$$

with variables $x \in \mathbb{R}^n$ and data $(A, b, c) \in \mathbb{R}^{m \times n} \times \mathbb{R}^m \times \mathbb{R}^n$.

- The simplest class of interesting problems we can easily solve.
- An extremely mature technology.
- Used extensively in all areas of industry.
- To what extent can we generalize this model?

- Linear optimization over symmetric cones remains tractable.
- Same efficient interior-point methods as for LPs.
- Much more flexible than one might think!

Three symmetric cones:

- Linear cone $x \in \mathbb{R}^n_+$.
- Quadratic cones:

$$\begin{aligned} \mathcal{Q}^n &:= \{ x \in \mathbb{R}^n \ | \ x_1 \ge \sqrt{x_2^2 + \dots + x_n^2} \}, \\ \mathcal{Q}^n_r &:= \{ x \in \mathbb{R}^n \ | \ 2x_1 x_2 \ge x_3^2 + \dots + x_n^2, \ (x_1, x_2) \ge 0 \}. \end{aligned}$$

• Semidefinite cone:

$$\mathcal{S}^n_+ := \{ X \in \mathbb{R}^{n \times n} \mid X = X^T, \ z^T X z \ge 0, \forall z \in \mathbb{R}^n \}$$

- Linear optimization over symmetric cones remains tractable.
- Same efficient interior-point methods as for LPs.
- Much more flexible than one might think!

Three symmetric cones:

- Linear cone $x \in \mathbb{R}^n_+$.
- Quadratic cones:

$$\begin{aligned} \mathcal{Q}^{n} &:= \{ x \in \mathbb{R}^{n} \ \mid \ x_{1} \geq \sqrt{x_{2}^{2} + \dots + x_{n}^{2}} \}, \\ \mathcal{Q}^{n}_{r} &:= \{ x \in \mathbb{R}^{n} \ \mid \ 2x_{1}x_{2} \geq x_{3}^{2} + \dots + x_{n}^{2}, \ (x_{1}, x_{2}) \geq 0 \}. \end{aligned}$$

• Semidefinite cone:

$$\mathcal{S}^n_+ := \{ X \in \mathbb{R}^{n imes n} \ | \ X = X^T, \ z^T X z \ge 0, \forall z \in \mathbb{R}^n \}.$$

Linear cone problems optimization Canonic form

We can write a linear cone problem as

$$\begin{array}{ll} \text{minimize} & \langle c^{I}, x^{I} \rangle + \sum_{j=1}^{n_{q}} \langle c_{j}^{q}, x_{j}^{q} \rangle + \sum_{j=1}^{n_{s}} \langle C_{j}^{s}, X_{j}^{s} \rangle \\ \text{subject to} & \langle a_{i}^{I}, x^{I} \rangle + \sum_{j=1}^{n_{q}} \langle a_{i,j}^{q}, x_{j}^{q} \rangle + \sum_{j=1}^{n_{s}} \langle A_{i,j}^{s}, X_{j}^{s} \rangle = b_{i}, \ i = 1, \dots, m \\ & x^{I} \in \mathbb{R}_{+}^{n_{I}}, \ x_{j}^{q} \in \mathcal{Q}^{q_{j}}, \ X_{j}^{s} \in \mathcal{S}_{+}^{s_{j}} \end{array}$$

where

- $c^{I}, a_{i}^{I}, c_{j}^{q}, a_{i,j}^{q}$ are vectors,
- $C_j^s, A_{i,j}^s$ are symmetric matrices with inner-product

$$\langle V, W \rangle := \operatorname{tr}(V^T W) = \sum_{ij} V_{ij} W_{ij} = \operatorname{vec}(V)^T \operatorname{vec}(W),$$

Linear cone problems Matrix stuffing

If we define

$$A^{T} = \begin{pmatrix} a_{1}^{l} & \cdots & a_{m}^{l} \\ a_{1,1}^{q} & \cdots & a_{1,m}^{q} \\ \vdots & & \vdots \\ a_{1,n_{q}}^{q} & \cdots & a_{m,n_{q}}^{q} \\ \mathsf{vec}(A_{1,1}^{s}) & \cdots & \mathsf{vec}(A_{m,1}^{s}) \\ \vdots & & \vdots \\ \mathsf{vec}(A_{1,n_{s}}^{s}) & \cdots & \mathsf{vec}(A_{m,n_{s}}^{s}) \end{pmatrix}, c = \begin{pmatrix} c^{l} \\ c_{1}^{q} \\ \vdots \\ c_{n_{q}}^{q} \\ \mathsf{vec}(C_{1}^{s}) \\ \vdots \\ \mathsf{vec}(A_{1,n_{s}}^{s}) & \cdots & \mathsf{vec}(A_{m,n_{s}}^{s}) \end{pmatrix}$$

we get a lighter notation (SeDuMi format)

minimize
$$c^T x$$

subject to $Ax = b$
 $x \in \mathcal{K}$

where $\mathcal{K} = \mathbb{R}^{n_l} \times \mathcal{Q}^{q_1} \times \cdots \times \mathcal{Q}^{q_{n_q}} \times \mathcal{S}^{s_1}_+ \times \cdots \times \mathcal{S}^{s_{n_s}}_+$.

minimize
$$c^T x$$
maximize $b^T y$ subject to $Ax = b$ subject to $c - A^T y = s$ $x \in \mathcal{K}$ $s \in \mathcal{K}$.

• Weak duality.

$$c^T x - b^T y = (c - A^T y)^T x = s^T x \ge 0.$$

• Strong duality. If a strictly feasible point exists then

$$c^T x = b^T y.$$

For linear problems, we only need feasibility for strong duality.

minimize
$$c^T x$$
maximize $b^T y$ subject to $Ax = b$ subject to $c - A^T y = s$ $x \in \mathcal{K}$ $s \in \mathcal{K}$.

Weak duality.

$$c^T x - b^T y = (c - A^T y)^T x = s^T x \ge 0.$$

• Strong duality. If a strictly feasible point exists then

$$c^T x = b^T y.$$

For linear problems, we only need feasibility for strong duality.

minimize
$$c^T x$$
maximize $b^T y$ subject to $Ax = b$ subject to $c - A^T y = s$ $x \in \mathcal{K}$ $s \in \mathcal{K}$.

• Weak duality.

$$c^T x - b^T y = (c - A^T y)^T x = s^T x \ge 0.$$

• Strong duality. If a strictly feasible point exists then

$$c^T x = b^T y.$$

For linear problems, we only need feasibility for strong duality.

minimize
$$c^T x$$
maximize $b^T y$ subject to $Ax = b$ subject to $c - A^T y = s$ $x \in \mathcal{K}$ $s \in \mathcal{K}$.

• Weak duality.

$$c^T x - b^T y = (c - A^T y)^T x = s^T x \ge 0.$$

• Strong duality. If a strictly feasible point exists then

$$c^T x = b^T y.$$

• For linear problems, we only need feasibility for strong duality.

• Consider the problem

minimize
$$x_1$$

subject to $\begin{bmatrix} 0 & x_1 & 0 \\ x_1 & x_2 & 0 \\ 0 & 0 & 1+x_1 \end{bmatrix} \in \mathcal{S}^3_+,$

with feasible set $\{x_1 = 0, x_2 \ge 0\}$ and optimal value $p^* = 0$.

• The dual can be expressed as

$$\begin{array}{ccc} \text{maximize} & -z_2 \\ \text{subject to} & \begin{bmatrix} z_1 & (1-z_2)/2 & 0 \\ (1-z_2)/2 & 0 & 0 \\ 0 & 0 & z_2 \end{bmatrix} \in \mathcal{S}^3_+$$

with feasible set $\{z_1 \geq 0, z_2 = 1\}$ and optimal value $d^* = -1$

• Both problems are feasible, but not strictly feasible.

• Consider the problem

$$\begin{array}{ll} \text{minimize} & x_1 \\ \text{subject to} & \begin{bmatrix} 0 & x_1 & 0 \\ x_1 & x_2 & 0 \\ 0 & 0 & 1+x_1 \end{bmatrix} \in \mathcal{S}^3_+, \end{array}$$

with feasible set $\{x_1=0,x_2\geq 0\}$ and optimal value $p^{\star}=0.$

• The dual can be expressed as

$$\begin{array}{ll} \text{maximize} & -z_2 \\ \text{subject to} & \left[\begin{array}{ccc} z_1 & (1-z_2)/2 & 0 \\ (1-z_2)/2 & 0 & 0 \\ 0 & 0 & z_2 \end{array} \right] \in \mathcal{S}^3_+, \end{array}$$

with feasible set $\{z_1 \ge 0, z_2 = 1\}$ and optimal value $d^{\star} = -1$.

• Both problems are feasible, but not strictly feasible.

• Consider the problem

$$\begin{array}{ll} \text{minimize} & x_1 \\ \text{subject to} & \begin{bmatrix} 0 & x_1 & 0 \\ x_1 & x_2 & 0 \\ 0 & 0 & 1+x_1 \end{bmatrix} \in \mathcal{S}^3_+, \end{array}$$

with feasible set $\{x_1=0,x_2\geq 0\}$ and optimal value $p^{\star}=0.$

• The dual can be expressed as

$$\begin{array}{lll} \text{maximize} & -z_2 \\ \text{subject to} & \left[\begin{array}{ccc} z_1 & (1-z_2)/2 & 0 \\ (1-z_2)/2 & 0 & 0 \\ 0 & 0 & z_2 \end{array} \right] \in \mathcal{S}^3_+, \end{array}$$

with feasible set $\{z_1 \ge 0, z_2 = 1\}$ and optimal value $d^{\star} = -1$.

• Both problems are feasible, but not strictly feasible.

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b\\ & x \in \mathcal{K} \end{array}$$

 $\begin{array}{ll} \text{maximize} & b^T y\\ \text{subject to} & c - A^T y = s\\ & s \in \mathcal{K}. \end{array}$

Farka's lemma

Given A and b, exactly one of the two statements are true:

- **1** There exists an $x \in \mathcal{K}$ such that Ax = b.
- **2** There exists a y such that $-A^T y \in \mathcal{K}$ and $b^T y > 0$.
 - The certificate y is an unbounded direction for the dual.
 - If 2) then for t large enough we have

$$c-tA^T y\in \mathcal{K}.$$

while $tb^T y \to \infty$ as $t \to \infty$.

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b\\ & x \in \mathcal{K} \end{array}$$

maximize $b^T y$ subject to $c - A^T y = s$ $s \in \mathcal{K}$.

Farka's lemma

Given A and b, exactly one of the two statements are true:

- **1** There exists an $x \in \mathcal{K}$ such that Ax = b.
- **2** There exists a y such that $-A^T y \in \mathcal{K}$ and $b^T y > 0$.
 - The certificate y is an unbounded direction for the dual.
 - If 2) then for t large enough we have

$$c-tA^T y \in \mathcal{K}.$$

while $tb^T y \to \infty$ as $t \to \infty$.

maximize $b^T y$ subject to $c - A^T y = s$ $s \in \mathcal{K}$.

Farka's lemma (dual variant)

Given A and b, exactly one of the two statements are true:

- **1** There exists a *y* such that $c A^T y \in \mathcal{K}$.
- **2** There exists an $x \in \mathcal{K}$ such that Ax = 0 and $c^T x < 0$.

Either the problem is dual feasible, or x is an unbounded direction for the primal problem.

Consider

$$\begin{array}{ll} \text{minimize} & -x_1 - x_2 \\ \text{subject to} & x_1 = -1 \\ & x_1, \, x_2 \geq 0 \end{array}$$

with a dual problem

$$\begin{array}{ll} \text{maximize} & -y \\ \text{subject to} & \begin{bmatrix} 1 \\ 0 \end{bmatrix} y \leq \begin{bmatrix} -1 \\ -1 \end{bmatrix} \end{array}$$

- Both problems are trivially infeasible.
- y = -1 is a certificate of primal infeasibility.
- x = (0, 1) is a certificate of dual infeasibility.

The homogenous model beautifully encapsulates all cases:

$$\begin{bmatrix} s \\ 0 \\ \kappa \end{bmatrix} + \begin{bmatrix} 0 & A^T & -c \\ A & 0 & -b \\ c^T & -b^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \tau \end{bmatrix} = 0, \quad x, s \in \mathcal{K}, \ \tau, \kappa \ge 0.$$

• If
$$\tau > 0$$
, $\kappa = 0$ then $\frac{1}{\tau}(x, y, s)$ is optimal,
 $Ax = b\tau, \quad c\tau - A^T y = s, \quad c^T x - b^T y = x^T s = 0.$

• If $\tau = 0$, $\kappa > 0$ then the problem is infeasible,

$$Ax = 0, \quad -A^T y = s, \quad c^T x - b^T y < 0.$$

The homogenous model beautifully encapsulates all cases:

$$\begin{bmatrix} s \\ 0 \\ \kappa \end{bmatrix} + \begin{bmatrix} 0 & A^T & -c \\ A & 0 & -b \\ c^T & -b^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \tau \end{bmatrix} = 0, \quad x, s \in \mathcal{K}, \ \tau, \kappa \ge 0.$$

• If
$$\tau > 0$$
, $\kappa = 0$ then $\frac{1}{\tau}(x, y, s)$ is optimal,
 $Ax = b\tau$, $c\tau - A^T y = s$, $c^T x - b^T y = x^T s = 0$.

• If $\tau = 0$, $\kappa > 0$ then the problem is infeasible,

$$Ax = 0$$
, $-A^T y = s$, $c^T x - b^T y < 0$.

The homogenous model beautifully encapsulates all cases:

$$\begin{bmatrix} s \\ 0 \\ \kappa \end{bmatrix} + \begin{bmatrix} 0 & A^T & -c \\ A & 0 & -b \\ c^T & -b^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \tau \end{bmatrix} = 0, \quad x, s \in \mathcal{K}, \ \tau, \kappa \ge 0.$$

• If
$$\tau > 0$$
, $\kappa = 0$ then $\frac{1}{\tau}(x, y, s)$ is optimal,
 $Ax = b\tau$, $c\tau - A^T y = s$, $c^T x - b^T y = x^T s = 0$.

• If $\tau = 0$, $\kappa > 0$ then the problem is infeasible,

$$Ax = 0$$
, $-A^T y = s$, $c^T x - b^T y < 0$.

The homogenous model beautifully encapsulates all cases:

$$\begin{bmatrix} s \\ 0 \\ \kappa \end{bmatrix} + \begin{bmatrix} 0 & A^T & -c \\ A & 0 & -b \\ c^T & -b^T & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ \tau \end{bmatrix} = 0, \quad x, s \in \mathcal{K}, \ \tau, \kappa \ge 0.$$

• If
$$\tau > 0$$
, $\kappa = 0$ then $\frac{1}{\tau}(x, y, s)$ is optimal,
 $Ax = b\tau$, $c\tau - A^T y = s$, $c^T x - b^T y = x^T s = 0$.

• If $\tau = 0$, $\kappa > 0$ then the problem is infeasible,

$$Ax = 0$$
, $-A^T y = s$, $c^T x - b^T y < 0$.

Section 2

Conic quadratic modeling

Conic modeling Simple modeling tricks for quadratic cones

$$\begin{aligned} \mathcal{Q}^{n} &:= \{ x \in \mathbb{R}^{n} \mid x_{1} \geq \sqrt{x_{2}^{2} + \dots + x_{n}^{2}} \}, \\ \mathcal{Q}^{n}_{r} &:= \{ x \in \mathbb{R}^{n} \mid 2x_{1}x_{2} \geq x_{3}^{2} + \dots + x_{n}^{2}, \ (x_{1}, x_{2}) \geq 0 \}. \end{aligned}$$

Absolute values:

$$|x| \leq t \qquad \Longleftrightarrow \qquad (t,x) \in \mathcal{Q}^2.$$

- Euclidean norms $||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$: $||x||_2 \le t \iff (t, x) \in \mathcal{Q}^{n+1}.$
- Squared Euclidean norms:

$$\|x\|_2^2 \leq t \quad \Longleftrightarrow \quad (1/2, t, x) \in \mathcal{Q}_r^{n+2}$$

Conic modeling Simple modeling tricks for quadratic cones

$$\begin{aligned} \mathcal{Q}^{n} &:= \{ x \in \mathbb{R}^{n} \mid x_{1} \geq \sqrt{x_{2}^{2} + \dots + x_{n}^{2}} \}, \\ \mathcal{Q}^{n}_{r} &:= \{ x \in \mathbb{R}^{n} \mid 2x_{1}x_{2} \geq x_{3}^{2} + \dots + x_{n}^{2}, \ (x_{1}, x_{2}) \geq 0 \}. \end{aligned}$$

Absolute values:

$$|x| \leq t \qquad \Longleftrightarrow \qquad (t,x) \in \mathcal{Q}^2.$$

- Euclidean norms $||x||_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$: $||x||_2 \le t \iff (t, x) \in Q^{n+1}.$
- Squared Euclidean norms:

Conic modeling Simple modeling tricks for quadratic cones

$$\begin{aligned} \mathcal{Q}^{n} &:= \{ x \in \mathbb{R}^{n} \mid x_{1} \geq \sqrt{x_{2}^{2} + \dots + x_{n}^{2}} \}, \\ \mathcal{Q}^{n}_{r} &:= \{ x \in \mathbb{R}^{n} \mid 2x_{1}x_{2} \geq x_{3}^{2} + \dots + x_{n}^{2}, \ (x_{1}, x_{2}) \geq 0 \}. \end{aligned}$$

Absolute values:

$$|x| \leq t \qquad \Longleftrightarrow \qquad (t,x) \in \mathcal{Q}^2.$$

- Euclidean norms $\|x\|_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$: $\|x\|_2 \le t \iff (t, x) \in \mathcal{Q}^{n+1}.$
- Squared Euclidean norms:

$$\|x\|_2^2 \leq t \quad \Longleftrightarrow \quad (1/2,t,x) \in \mathcal{Q}_r^{n+2}.$$

Conic modeling Equivalence of quadratic cones

We call Q_r the rotated quadratic cone. Let

$$T_n := \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 0 & 0 & I_{n-2} \end{bmatrix}$$

$$x \in \mathcal{Q}^n \iff (T_n x) \in \mathcal{Q}_r^n$$

- T_n corresponds to an orthogonal transformation.
- Many sets are naturally characterized using rotated cones.
- Computational advantages by explicitly handling rotated cones.

We call Q_r the rotated quadratic cone. Let

$$T_n := \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 0 & 0 & I_{n-2} \end{bmatrix}$$

$$x \in \mathcal{Q}^n \iff (T_n x) \in \mathcal{Q}_r^n$$

- T_n corresponds to an orthogonal transformation.
- Many sets are naturally characterized using rotated cones.
- Computational advantages by explicitly handling rotated cones.

We call Q_r the rotated quadratic cone. Let

$$T_n := \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 0 & 0 & I_{n-2} \end{bmatrix}$$

$$x \in \mathcal{Q}^n \iff (T_n x) \in \mathcal{Q}_r^n.$$

- T_n corresponds to an orthogonal transformation.
- Many sets are naturally characterized using rotated cones.
- Computational advantages by explicitly handling rotated cones.

We call Q_r the rotated quadratic cone. Let

$$T_n := \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0\\ 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 0 & 0 & I_{n-2} \end{bmatrix}$$

$$x \in \mathcal{Q}^n \iff (T_n x) \in \mathcal{Q}_r^n$$

- T_n corresponds to an orthogonal transformation.
- Many sets are naturally characterized using rotated cones.
- Computational advantages by explicitly handling rotated cones.

Other simple quadratic represetable sets

• Hyperbolic sets
$$\left\{ (t, x) \mid t \ge \frac{1}{x}, x > 0 \right\}$$
:
 $(x, t, \sqrt{2}) \in \mathcal{Q}_r^3 \quad \Leftrightarrow \quad 2xt \ge 2, x, t \ge 0 \quad \Leftrightarrow \quad t \ge \frac{1}{x}, x > 0.$

• Square roots $\{(t,x) \mid t \leq \sqrt{x}, x \geq 0\}$:

$$(\frac{1}{2}, x, t) \in \mathcal{Q}_r^3 \quad \Leftrightarrow \quad x \ge t^2, \, x \ge 0 \quad \Leftrightarrow \quad \sqrt{x} \ge t, \, x \ge 0.$$

• Simple rational $\left\{(t,x) \mid t \geq \frac{1}{x^2}, x > 0\right\}$:

$$(t, rac{1}{2}, s), (x, s, \sqrt{2}) \in \mathcal{Q}_r^3$$

 $\Leftrightarrow \quad t \ge s^2, \, 2xs \ge 2, \, s, t, x \ge 0$
 $\Leftrightarrow \quad t \ge rac{1}{x^2}, \, x > 0.$

Other simple quadratic represetable sets

• Hyperbolic sets
$$\left\{ (t,x) \mid t \ge \frac{1}{x}, x > 0 \right\}$$
:
 $(x,t,\sqrt{2}) \in \mathcal{Q}_r^3 \quad \Leftrightarrow \quad 2xt \ge 2, x, t \ge 0 \quad \Leftrightarrow \quad t \ge \frac{1}{x}, x > 0.$

• Square roots $\{(t,x) \mid t \leq \sqrt{x}, x \geq 0\}$:

$$(rac{1}{2},x,t)\in\mathcal{Q}_r^3 \quad \Leftrightarrow \quad x\geq t^2,\,x\geq 0 \quad \Leftrightarrow \quad \sqrt{x}\geq t,\,x\geq 0.$$

• Simple rational $\left\{(t,x) \mid t \geq \frac{1}{x^2}, x > 0\right\}$:

$$(t, rac{1}{2}, s), (x, s, \sqrt{2}) \in \mathcal{Q}_r^3$$

 $\Leftrightarrow \quad t \ge s^2, \, 2xs \ge 2, \, s, t, x \ge 0$
 $\Leftrightarrow \quad t \ge rac{1}{x^2}, \, x > 0.$

Other simple quadratic represetable sets

• Hyperbolic sets
$$\left\{ (t,x) \mid t \ge \frac{1}{x}, x > 0 \right\}$$
:
 $(x,t,\sqrt{2}) \in \mathcal{Q}_r^3 \quad \Leftrightarrow \quad 2xt \ge 2, x, t \ge 0 \quad \Leftrightarrow \quad t \ge \frac{1}{x}, x > 0.$

• Square roots $\{(t,x) \mid t \leq \sqrt{x}, x \geq 0\}$:

$$(rac{1}{2},x,t)\in\mathcal{Q}_r^3 \quad \Leftrightarrow \quad x\geq t^2,\,x\geq 0 \quad \Leftrightarrow \quad \sqrt{x}\geq t,\,x\geq 0.$$

• Simple rational $\left\{(t,x) \mid t \geq \frac{1}{x^2}, x > 0\right\}$:

$$(t,rac{1}{2},s),(x,s,\sqrt{2})\in\mathcal{Q}_r^3\ \Leftrightarrow\ t\geq s^2,\, 2xs\geq 2,\,s,t,x\geq 0\ \Leftrightarrow\ t\geq rac{1}{x^2},\,x>0.$$

We can characterize a convex quadratic inequality

$$\frac{1}{2}x^TQx - c^Tx - r \le 0$$

equivalently as

$$\frac{1}{2}x^{\mathsf{T}}F^{\mathsf{T}}Fx \leq c^{\mathsf{T}}x + r,$$

where $Q = F^T F \succeq 0$, $F \in \mathbb{R}^{k \times n}$, resulting in

$$(1, c^T x + r, Fx) \in \mathcal{Q}_r^{2+k}$$

So we can write convex QPs/QCQPs as quadratic cone problems.

A second-order cone is occasionally specified as

$$\|Ax+b\|_2 \le c^T x + d$$

where $A \in \mathbb{R}^{m \times n}$ and $c \in \mathbb{R}^n$. This is quivalent to

$$(Ax + b, c^T x + d) \in \mathcal{Q}^{m+1},$$

corresponding to our dual form (conic membership of an affine expression).

Ellipsoid centered at r:

$$\mathcal{E} = \{x \in \mathbb{R}^n \mid y = P(x - r), \|y\|_2 \le 1\}.$$

Suppose $P \succ 0$. We then have an alternatively characterization

$$\mathcal{E} = \{ x \in \mathbb{R}^n \mid x = P^{-1}y + r, \|y\|_2 \le 1 \}.$$

Useful for robustifying linear models, e.g.,

minimize $\sup_{c \in \mathcal{E}} c^T x$ minimize $r^T x + t$ subject to Ax = b subject to Ax = b $x \ge 0$ $(t, P^{-1}x) \in \mathcal{Q}^{n+1}$

Exercise: Derive the robust quadratic cone problem.

Ellipsoid centered at r:

$$\mathcal{E} = \{x \in \mathbb{R}^n \mid y = P(x - r), \|y\|_2 \le 1\}.$$

Suppose $P \succ 0$. We then have an alternatively characterization

$$\mathcal{E} = \{ x \in \mathbb{R}^n \mid x = P^{-1}y + r, \ \|y\|_2 \le 1 \}.$$

Useful for robustifying linear models, e.g.,

 $\begin{array}{lll} \text{minimize} & \sup_{c \in \mathcal{E}} c^T x & \text{minimize} & r^T x + t \\ \text{subject to} & Ax = b & \text{subject to} & Ax = b \\ & x \ge 0 & & (t, P^{-1}x) \in \mathcal{Q}^{n+1} \\ & x \ge 0 \end{array}$

Exercise: Derive the robust quadratic cone problem.

The minimum-risk problem is a standard quadratic problem

minimize
$$x^T \Sigma x$$

subject to $e^T x = 1$
 $\mu^T x \ge \rho$
 $x \ge 0.$

where

- x is the allocation of n assets,
- μ is the vector of average return for the assets,
- $\Sigma \succeq 0$ is the covariance of the assets,
- we have a budget constraint $e^T x = 1$,
- we require a minimum return of investment of ρ .

Often we also have semi-continuous threshold constraints,

$$x_i \in 0 \cup [l_i, u_i]$$

which gives a much harder MI-QP

minimize
$$x^T \Sigma x$$

subject to $e^T x = 1$
 $\mu^T x \ge \rho$
 $l_i y_i \le x_i \le u_i y_i, i = 1, \dots, n$
 $y \in \{0, 1\}^n$.

minimize
$$x^T (\Sigma - \mathbf{Diag}(d)) x + d^T \phi$$

subject to $x_i^2 \le y_i \phi_i$
 $e^T x = 1$
 $\mu^T x \ge \rho$
 $l_i y_i \le x_i \le u_i y_i, i = 1, ..., n$
 $\phi \ge 0$
 $y \in \{0, 1\}^n$.

- $\phi_i = x_i^2/y_i$ at optimality (perspective function).
- Same feasible set.
- Continuous relaxation with $0 \le y \le e$ is tighter.
- We discuss how to choose *d* later (using SDO).

minimize
$$x^T (\Sigma - \mathbf{Diag}(d)) x + d^T \phi$$

subject to $x_i^2 \le y_i \phi_i$
 $e^T x = 1$
 $\mu^T x \ge \rho$
 $l_i y_i \le x_i \le u_i y_i, i = 1, ..., n$
 $\phi \ge 0$
 $y \in \{0, 1\}^n$.

- $\phi_i = x_i^2/y_i$ at optimality (perspective function).
- Same feasible set.
- Continuous relaxation with $0 \le y \le e$ is tighter.
- We discuss how to choose *d* later (using SDO).

minimize
$$x^T (\Sigma - \mathbf{Diag}(d)) x + d^T \phi$$

subject to $x_i^2 \le y_i \phi_i$
 $e^T x = 1$
 $\mu^T x \ge \rho$
 $l_i y_i \le x_i \le u_i y_i, i = 1, ..., n$
 $\phi \ge 0$
 $y \in \{0, 1\}^n$.

- $\phi_i = x_i^2/y_i$ at optimality (perspective function).
- Same feasible set.
- Continuous relaxation with $0 \le y \le e$ is tighter.
- We discuss how to choose *d* later (using SDO).

minimize
$$x^T (\Sigma - \mathbf{Diag}(d)) x + d^T \phi$$

subject to $x_i^2 \le y_i \phi_i$
 $e^T x = 1$
 $\mu^T x \ge \rho$
 $l_i y_i \le x_i \le u_i y_i, i = 1, ..., n$
 $\phi \ge 0$
 $y \in \{0, 1\}^n$.

- $\phi_i = x_i^2/y_i$ at optimality (perspective function).
- Same feasible set.
- Continuous relaxation with $0 \le y \le e$ is tighter.
- We discuss how to choose *d* later (using SDO).

minimize
$$x^T (\Sigma - \mathbf{Diag}(d)) x + d^T \phi$$

subject to $x_i^2 \le y_i \phi_i$
 $e^T x = 1$
 $\mu^T x \ge \rho$
 $l_i y_i \le x_i \le u_i y_i, i = 1, ..., n$
 $\phi \ge 0$
 $y \in \{0, 1\}^n$.

- $\phi_i = x_i^2/y_i$ at optimality (perspective function).
- Same feasible set.
- Continuous relaxation with $0 \le y \le e$ is tighter.
- We discuss how to choose *d* later (using SDO).

Markowitz portfolio optimization A conic formulation

Let
$$V^T V = \Sigma - \mathbf{Diag}(d)$$
, and observe that

$$l_i y_i \le x_i \le u_i y_i$$

$$\Leftrightarrow \quad (u_i y_i - x_i)(l_i y_i - x_i) \le 0$$

$$\Leftrightarrow \quad x_i^2 - (u_i + l_i) x_i y_i + u_i l_i y_i^2 \le 0.$$

We then get a conic MIP:

minimize
$$\alpha + d^T \phi$$

subject to $((1/2), \alpha, Vx) \in \mathcal{Q}_r^{n+2}$
 $((1/2)\phi_i, y_i, x_i) \in \mathcal{Q}_r^3, i = 1, \dots, n$
 $e^T x = 1$
 $\mu^T x \ge \rho$
 $\phi_i - (u_i + l_i)x_i + u_i l_i y_i \le 0, i = 1, \dots, n$
 $y \in \{0, 1\}^n$.

Markowitz portfolio optimization A conic formulation

Let
$$V^T V = \Sigma - \mathbf{Diag}(d)$$
, and observe that

$$l_i y_i \le x_i \le u_i y_i$$

$$\Leftrightarrow \quad (u_i y_i - x_i)(l_i y_i - x_i) \le 0$$

$$\Leftrightarrow \quad x_i^2 - (u_i + l_i) x_i y_i + u_i l_i y_i^2 \le 0.$$

We then get a conic MIP:

minimize
$$\alpha + d^T \phi$$

subject to $((1/2), \alpha, Vx) \in \mathcal{Q}_r^{n+2}$
 $((1/2)\phi_i, y_i, x_i) \in \mathcal{Q}_r^3, i = 1, \dots, n$
 $e^T x = 1$
 $\mu^T x \ge \rho$
 $\phi_i - (u_i + l_i)x_i + u_i l_i y_i \le 0, i = 1, \dots, n$
 $y \in \{0, 1\}^n$.

```
def perspective(V. d. mu. r. l. u):
  with Model('Perspective') as M:
    a = M.variable('a', 1,
                                    Domain.greaterThan(0.0))
    x = M.variable('x', len(mu), Domain.greaterThan(0.0))
    phi = M.variable('phi', len(mu), Domain, greaterThan(0.0))
       = M.variable('y', len(mu), Domain.binary())
    v
    # (0.5*phi_i, y_i, x_i) \in Qr
    M.constraint(Expr.hstack(Expr.mul(0.5, phi), v, x), Domain.inRotatedQCone())
    \# sum(x) == 1
    M.constraint(Expr.sum(x), Domain.equalsTo(1.0))
    \# mu' * x >= r
    M.constraint(Expr.dot(mu.x), Domain.greaterThan(r))
    # phi - (L+U)*x + L*U*v <= 0
    M.constraint(Expr.add(Expr.sub(phi, Expr.mulElm(1+u,x)), Expr.mulElm(1*u,y)), Domain.lessThan(0.0))
    # (0.5, a, V*x) \in Qr
    M.constraint(Expr.vstack(0.5, a, Expr.mul(V, x)), Domain.inRotatedQCone())
    # minimize a + d'*phi
    M. objective('obj', ObjectiveSense.Minimize, Expr.add(a, Expr.dot(d, phi)))
    M.setLogHandler(svs.stdout)
    M.solve()
    return x.level()
```

Solving the standard minimum variance formulation

Data from Frangioni and Gentile (*n* = 200): http://www.di.unipi.it/optimize/Data/MV.html

BRANCHES RELAXS ACT_NDS			DEPTH	BEST_INT_OBJ	BEST_RELAX_OBJ	REL_GAP(%)	TIME
0	1	0	0	NA	4.5946919096e+01	NA	1.7
Cut gen	eration s	tarted.					
0	2	0	0	NA	4.5946919512e+01	NA	1.8
Cut generation terminated.			Time = (0.20			
0	3	1	0	NA	4.5946919512e+01	NA	2.2
0	3	1	0	NA	4.5946919512e+01	NA	2.5
0	3	1	0	2.4617106593e+02	4.5946919512e+01	81.34	2.7
0	3	1	0	2.4617106593e+02	4.5946919512e+01	81.34	2.9
1	4	2	0	2.4617106593e+02	4.5946919512e+01	81.34	3.0
3	6	4	1	2.4617106593e+02	4.7251665363e+01	80.81	3.1
7	10	8	2	2.4617106593e+02	4.9007463791e+01	80.09	3.2
15	18	16	3	2.4617106593e+02	5.0468332901e+01	79.50	3.3
31	34	32	4	2.4617106593e+02	5.2337435796e+01	78.74	3.5
452235	452313	240764	79	2.2214876543e+02	1.3985833801e+02	37.04	3589.8
452754	452832	240979	92	2.2214876543e+02	1.3985833801e+02	37.04	3593.4
453275	453353	241202	106	2.2214876543e+02	1.3989876667e+02	37.02	3596.9

Timeout after 1 hour.

Data from Frangioni and Gentile (n = 200): http://www.di.unipi.it/optimize/Data/MV.html

BRANCHES RELAXS ACT_NDS			DEPTH	BEST_INT_OBJ	BEST_RELAX_OBJ	REL_GAP(%)	TIME		
0	1	0	0	NA	2.0508019535e+02	NA	2.3		
Cut	generation	started.							
0	2	0	0	NA	2.0508019535e+02	NA	2.5		
Cut generation terminated.			Time = 0.36						
0	3	1	0	2.2042170197e+02	2.0508019535e+02	6.96	6.6		
0	3	1	0	2.2042170197e+02	2.0508019535e+02	6.96	7.1		
0	3	1	0	2.2042170197e+02	2.0508019535e+02	6.96	7.3		
0	3	1	0	2.2042170197e+02	2.0508019535e+02	6.96	7.6		
1	4	2	0	2.2042170197e+02	2.0508019535e+02	6.96	7.8		
3	6	4	1	2.2042170197e+02	2.0517416168e+02	6.92	8.0		
7	10	8	2	2.2042170197e+02	2.0529861536e+02	6.86	8.2		
15	18	16	3	2.2042170197e+02	2.0530565821e+02	6.86	9.0		
31	34	32	4	2.2042170197e+02	2.0531091010e+02	6.86	10.5		
51	54	52	5	2.2042170197e+02	2.0538010066e+02	6.82	12.5		
91	94	92	6	2.2042170197e+02	2.0539391269e+02	6.82	16.1		
171	174	168	9	2.2042170197e+02	2.0555122515e+02	6.75	23.4		
331	334	292	14	2.2042170197e+02	2.0624274122e+02	6.43	38.1		
611	613	362	21	2.2042170197e+02	2.0624274122e+02	6.43	65.5		
966	968	477	30	2.2042170197e+02	2.0624274122e+02	6.43	98.7		
1410	0 1413	591	42	2.2042170197e+02	2.0639253138e+02	6.36	136.7		
1862	2 1861	711	54	2.0672595157e+02	2.0660993751e+02	0.06	173.7		
2561	1 1868	14	24	2.0672595157e+02	2.0672595157e+02	0.00e+00	175.0		

Section 3

Semidefinite modeling

Positive semidefinite matrices

Some well-known facts

A symmetric matrix $X \in \mathbb{R}^{n \times n}$ is positive semidefinite iff:

$$z^T X z \ge 0, \ \forall z \in \mathbb{R}^n.$$

- **2** All the eigenvalues of X are nonnegative.
- **3** X has a Grammian representation, $X = V^T V$.

Exercise: Show 1) \Leftrightarrow 2) \Leftrightarrow 3) given an eigen-decomposition $X = \sum_{i=1} \lambda_i q_i q_i^T$.

Schur's lemma is another useful result. A symmetric matrix

$$A = \left(\begin{array}{cc} B & C^T \\ C & D \end{array}\right)$$

is positive definite iff

$$B - C^T D^{-1} C \succ 0, \quad C \succ 0, \quad D \succ 0.$$

Positive semidefinite matrices

Some well-known facts

A symmetric matrix $X \in \mathbb{R}^{n \times n}$ is positive semidefinite iff:

$$z^T X z \ge 0, \ \forall z \in \mathbb{R}^n.$$

- **2** All the eigenvalues of X are nonnegative.
- **3** X has a Grammian representation, $X = V^T V$.

Exercise: Show 1) \Leftrightarrow 2) \Leftrightarrow 3) given an eigen-decomposition $X = \sum_{i=1} \lambda_i q_i q_i^T$.

Schur's lemma is another useful result. A symmetric matrix

$$A = \left(\begin{array}{cc} B & C^T \\ C & D \end{array}\right)$$

is positive definite iff

$$B - C^T D^{-1} C \succ 0, \quad C \succ 0, \quad D \succ 0.$$

Positive semidefinite matrices Linear and quadratic cones

- The linear cone $x \ge 0$ corresponds to $x \in \mathcal{S}^1_+$.
- Two-dimensional matrices,

$$X = \begin{bmatrix} x_1 & x_3 \\ x_3 & x_2 \end{bmatrix} \in \mathcal{S}^2_+ \quad \Longleftrightarrow \quad x_1 x_2 \ge x_3^2, \ x_1, x_2 \ge 0,$$

or
$$(x_1, x_2, x_3/\sqrt{2}) \in \mathcal{Q}_r^3$$
.

• Quadratic cones,

$$(t,x) \in \mathcal{Q}^{n+1} \iff \begin{bmatrix} t & x^T \\ x & tl \end{bmatrix} \in \mathcal{S}^{n+1}_+.$$

- The linear cone $x \ge 0$ corresponds to $x \in \mathcal{S}^1_+$.
- Two-dimensional matrices,

$$X=\left[egin{array}{cc} x_1 & x_3\ x_3 & x_2 \end{array}
ight]\in \mathcal{S}^2_+ \quad \Longleftrightarrow \quad x_1x_2\geq x_3^2,\ x_1,x_2\geq 0,$$

or
$$(x_1, x_2, x_3/\sqrt{2}) \in \mathcal{Q}_r^3$$
.

• Quadratic cones,

$$(t,x) \in \mathcal{Q}^{n+1} \iff \begin{bmatrix} t & x' \\ x & tI \end{bmatrix} \in \mathcal{S}^{n+1}_+$$

- The linear cone $x \ge 0$ corresponds to $x \in \mathcal{S}^1_+$.
- Two-dimensional matrices,

$$X=\left[egin{array}{cc} x_1 & x_3\ x_3 & x_2 \end{array}
ight]\in \mathcal{S}^2_+ \quad \Longleftrightarrow \quad x_1x_2\geq x_3^2,\ x_1,x_2\geq 0,$$

or
$$(x_1, x_2, x_3/\sqrt{2}) \in \mathcal{Q}_r^3$$
.

• Quadratic cones,

$$(t,x)\in\mathcal{Q}^{n+1}\quad\Longleftrightarrow\quad\left[egin{array}{cc}t&x^{T}\x&tI\end{array}
ight]\in\mathcal{S}^{n+1}_+.$$

A geometric example The pillow spectrahedron

The convex set

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 \mid \begin{pmatrix} 1 \times y \\ x \ 1 \ z \\ y \ z \ 1 \end{pmatrix} \in \mathcal{S}^3_+
ight\},$$

Exercise: Characterize the restriction $S|_{z=0}$.

$$F(x) = F_0 + x_1F_1 + \cdots + x_mF_m, \quad F_i \in \mathcal{S}_m.$$

• Minimize largest eigenvalue $\lambda_1(F(x))$:

minimize γ subject to $\gamma I \succeq F(x)$,

• Maximize smallest eigenvalue $\lambda_n(F(x))$: maximize γ

subject to $F(x) \succeq \gamma I$,

• Minimize eigenvalue spread $\lambda_1(F(x)) - \lambda_n(F(x))$:

minimize $\gamma - \lambda$ subject to $\gamma I \succeq F(x) \succeq \lambda I$,

$$F(x) = F_0 + x_1F_1 + \cdots + x_mF_m, \quad F_i \in \mathcal{S}_m.$$

• Minimize largest eigenvalue $\lambda_1(F(x))$:

minimize γ subject to $\gamma I \succeq F(x)$,

• Maximize smallest eigenvalue $\lambda_n(F(x))$:

 $\begin{array}{ll} \text{maximize} & \gamma \\ \text{subject to} & F(x) \succeq \gamma I, \end{array}$

• Minimize eigenvalue spread $\lambda_1(F(x)) - \lambda_n(F(x))$:

minimize $\gamma - \lambda$ subject to $\gamma I \succeq F(x) \succeq \lambda I$,

$$F(x) = F_0 + x_1F_1 + \cdots + x_mF_m, \quad F_i \in \mathcal{S}_m.$$

• Minimize largest eigenvalue $\lambda_1(F(x))$:

minimize γ subject to $\gamma I \succeq F(x)$,

Maximize smallest eigenvalue λ_n(F(x)):

 $\begin{array}{ll} \text{maximize} & \gamma \\ \text{subject to} & F(x) \succeq \gamma I, \end{array}$

• Minimize eigenvalue spread $\lambda_1(F(x)) - \lambda_n(F(x))$:

 $\begin{array}{ll} \text{minimize} & \gamma-\lambda\\ \text{subject to} & \gamma I \succeq F(x) \succeq \lambda I, \end{array}$

$$F(x) = F_0 + x_1F_1 + \cdots + x_mF_m, \quad F_i \in \mathbb{R}^{n \times p}.$$

• Frobenius norm: $||F(x)||_F := \sqrt{\langle F(x), F(x) \rangle}$, $||F(x)||_F \le t \quad \Leftrightarrow \quad (t, \operatorname{vec}(F(x))) \in \mathcal{Q}^{np+1}$,

• Induced ℓ_2 norm: $\|F(x)\|_2 := \max_k \sigma_k(F(x))$,

minimize
$$t$$

subject to $\begin{bmatrix} tI & F(x)^T \\ F(x) & tI \end{bmatrix} \succeq 0,$

corresponds to the largest eigenvalue for $F(x) \in S^n_+$.

$$F(x) = F_0 + x_1F_1 + \cdots + x_mF_m, \quad F_i \in \mathbb{R}^{n \times p}.$$

• Frobenius norm:
$$||F(x)||_F := \sqrt{\langle F(x), F(x) \rangle}$$
,
 $||F(x)||_F \le t \quad \Leftrightarrow \quad (t, \operatorname{vec}(F(x))) \in \mathcal{Q}^{np+1}$,

• Induced ℓ_2 norm: $\|F(x)\|_2 := \max_k \sigma_k(F(x))$,

minimize
$$t$$

subject to $\begin{bmatrix} tI & F(x)^T \\ F(x) & tI \end{bmatrix} \succeq 0,$

corresponds to the largest eigenvalue for $F(x) \in S_+^n$.

We consider a binary problem

minimize
$$x^T Q x + c^T x$$

subject to $x_i \in \{0, 1\}, \quad i = 1, ..., n.$

where $Q \in S^n$ can be indefinite.

• Rewrite binary constraints $x_i \in \{0, 1\}$:

$$x_i^2 = x_i \quad \Longleftrightarrow \quad X = xx^T, \quad \operatorname{diag}(X) = x.$$

Still non-convex, since rank(X) = 1.

• Semidefinite relaxation:

$$X \succeq xx^T$$
, diag $(X) = x$.

We consider a binary problem

minimize
$$x^T Q x + c^T x$$

subject to $x_i \in \{0, 1\}, \quad i = 1, ..., n.$

where $Q \in S^n$ can be indefinite.

• Rewrite binary constraints $x_i \in \{0, 1\}$:

$$x_i^2 = x_i \quad \Longleftrightarrow \quad X = xx^T, \quad \operatorname{diag}(X) = x.$$

Still non-convex, since rank(X) = 1.

• Semidefinite relaxation:

$$X \succeq xx^T$$
, diag $(X) = x$

We consider a binary problem

minimize
$$x^T Q x + c^T x$$

subject to $x_i \in \{0, 1\}, \quad i = 1, ..., n.$

where $Q \in S^n$ can be indefinite.

• Rewrite binary constraints $x_i \in \{0, 1\}$:

$$x_i^2 = x_i \quad \Longleftrightarrow \quad X = xx^T, \quad \operatorname{diag}(X) = x.$$

Still non-convex, since rank(X) = 1.

• Semidefinite relaxation:

$$X \succeq xx^T$$
, diag $(X) = x$.

minimize $\langle Q, X \rangle + c^T x$ subject to **diag**(X) = x $X = xx^T$.

Semidefinite relaxation:

minimize $\langle Q, X \rangle + c^T x$ subject to $\operatorname{diag}(X) = x$ $\begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \succeq 0.$

- Relaxation is exact if $X = xx^T$.
- Otherwise can be strengthened, e.g., by adding $X_{ij} \ge 0$.
- Typical relaxations for combinatorial optimization.

minimize
$$\langle Q, X \rangle + c^T x$$

subject to $\operatorname{diag}(X) = x$
 $X = xx^T$.

Semidefinite relaxation:

minimize
$$\langle Q, X \rangle + c^T x$$

subject to $\operatorname{diag}(X) = x$
 $\begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \succeq 0.$

- Relaxation is exact if $X = xx^T$.
- Otherwise can be strengthened, e.g., by adding $X_{ij} \ge 0$.
- Typical relaxations for combinatorial optimization.

minimize
$$\langle Q, X \rangle + c^T x$$

subject to $\operatorname{diag}(X) = x$
 $X = xx^T$.

Semidefinite relaxation:

minimize $\langle Q, X \rangle + c^T x$ subject to $\operatorname{diag}(X) = x$ $\begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \succeq 0.$

- Relaxation is exact if $X = xx^T$.
- Otherwise can be strengthened, e.g., by adding $X_{ij} \ge 0$
- Typical relaxations for combinatorial optimization.

minimize
$$\langle Q, X \rangle + c^T x$$

subject to $\operatorname{diag}(X) = x$
 $X = xx^T$.

Semidefinite relaxation:

minimize
$$\langle Q, X \rangle + c^T x$$

subject to $\operatorname{diag}(X) = x$
 $\begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \succeq 0.$

- Relaxation is exact if $X = xx^T$.
- Otherwise can be strengthened, e.g., by adding $X_{ij} \ge 0$.
- Typical relaxations for combinatorial optimization.

minimize
$$\langle Q, X \rangle + c^T x$$

subject to $\operatorname{diag}(X) = x$
 $X = xx^T$.

Semidefinite relaxation:

minimize
$$\langle Q, X \rangle + c^T x$$

subject to $\operatorname{diag}(X) = x$
 $\begin{pmatrix} X & x \\ x^T & 1 \end{pmatrix} \succeq 0.$

- Relaxation is exact if $X = xx^T$.
- Otherwise can be strengthened, e.g., by adding $X_{ij} \ge 0$.
- Typical relaxations for combinatorial optimization.

Same approach used for boolean constraints $x_i \in \{-1, +1\}$.

Lifting of boolean constraints

Rewrite boolean constraints $x_i \in \{-1, 1\}$:

$$x_i^2 = 1 \quad \Longleftrightarrow \quad X = xx^T, \quad \operatorname{diag}(X) = e.$$

Semidefinite relaxation of boolean constraints

 $X \succeq xx^T$, diag(X) = e.

Consider

$$S = \{X \in S^n_+ \mid X_{ii} = 1, i = 1, \dots, n\}.$$

For a symmetric $A \in \mathbb{R}^{n \times n}$, the *nearest correlation matrix* is

$$X^{\star} = \arg\min_{X \in \mathcal{S}} \|A - X\|_{\mathcal{F}},$$

which corresponds to a mixed SOCP/SDP,

minimize
$$t$$

subject to $\|\mathbf{vec}(A - X)\|_2 \le t$
 $\mathbf{diag}(X) = e$
 $X \succ 0.$

MOSEK is limited by the many constraints to, say n < 200

Consider

$$S = \{X \in S^n_+ \mid X_{ii} = 1, i = 1, ..., n\}.$$

For a symmetric $A \in \mathbb{R}^{n \times n}$, the *nearest correlation matrix* is

$$X^{\star} = \arg\min_{X\in\mathcal{S}} \|A - X\|_{F},$$

which corresponds to a mixed SOCP/SDP,

minimize
$$t$$

subject to $\|\mathbf{vec}(A - X)\|_2 \le t$
 $\mathbf{diag}(X) = e$
 $X \succeq 0.$

MOSEK is limited by the many constraints to, say n < 200.

```
def svec(e):
    N = e.getShape().dim(0)
    rows = [i for i in range(N) for j in range(i,N)]
    cols = [j for i in range(N) for j in range(i,N)]
    vals = [ 2.0**0.5 if i!=j else 1.0 for i in range(N) for j in range(i,N)]
    return Expr.flatten(Expr.mulElm(e, Matrix.sparse(N,N,rows,cols,vals)))
def nearest corr(A):
    n = A.shape[0]
    with Model("NearestCorrelation") as M:
     X = M.variable("X", Domain.inPSDCone(n))
      t = M.variable("t", 1, Domain.unbounded())
      # (t, svec (A-X)) \in Q
     v = svec(Expr.sub(A,X))
     M.constraint("C1", Expr.vstack(t, v), Domain.inOCone())
      # diaq(X) = e
     M.constraint("C2".X.diag(), Domain.equalsTo(1.0))
     M.objective(ObjectiveSense.Minimize, t)
     M.setLogHandler(svs.stdout)
     M.solve()
      return X.level()
```


n = 200, A is a tridiagonal matrix with all ones.

Opti	imizer	-	solved p	roblem	:	the	primal						
Opti	imizer	-	Constrain	nts	:	203	00						
Opti	imizer	-	Cones		:	1							
Opti	imizer	-	Scalar va	ariables	:	201	01		coni	5	:	20101	
Opti	imizer	-	Semi-def:	inite var:	iables:	1		:	scala	arized	:	20100	
Fact	tor	-	setup tin	ne	:	106	.40		dense	e det. time	:	0.00	
Fact	tor	-	ML order	time	:	45.	87	(GP or	rder time	:	0.00	
Fact	tor	-	nonzeros	before fa	actor :	2.0	6e+08	:	aftei	r factor	:	2.06e	+08
Fact	tor	-	dense di	m.	:	1		:	flops	5	:	2.79e	+12
ITE	PFEAS		DFEAS	GFEAS	PRSTAT	JS	POBJ		I	OOBJ	MU		TIME
0	7.1e-01	L	1.0e+00	1.5e+00	0.00e+	00	2.00000	0000e+0	0 (0.000000000e+00	1.0)e+00	106.50
1	5.9e-01		8.3e-01	1.4e+00	1.01e+	00	1.24822	5100e+0	1 :	1.082553841e+01	8.3	3e-01	152.32
2	1.1e-01	L	1.6e-01	3.9e-01	2.55e+	00	1.80650	3701e+0	1 :	1.902214271e+01	1.6	Se-01	196.79
3	1.9e-02	2	2.7e-02	1.8e-01	1.09e+	00	8.64300	7378e+0	0 8	3.758766674e+00	2.7	7e-02	239.92
4	3.5e-03	3	5.0e-03	7.9e-02	1.00e+	00	7.50553	3503e+0	0 7	7.524428291e+00	5.0)e-03	283.61
5	5.3e-04	Ł	7.5e-04	3.3e-02	1.01e+	00	7.06398	6706e+0	0 7	7.066275044e+00	7.5	5e-04	324.20
6	6.5e-05	5	9.1e-05	1.2e-02	1.00e+	00	6.99592	7741e+0	06	5.996169972e+00	9.1	le-05	364.65
7	8.4e-06	5	1.2e-05	4.4e-03	1.00e+	00	6.99006	4508e+0	0 6	5.990092742e+00	1.2	2e-05	405.33
8	5.8e-07	7	8.2e-07	1.2e-03	1.00e+	00	6.98935	4053e+0	06	3.989355650e+00	8.2	2e-07	444.98
9	8.4e-08	3	1.2e-07	4.6e-04	1.00e+	00	6.98930	1381e+0	0 6	5.989301596e+00	1.2	2e-07	485.93
10	1.5e-08	3	2.1e-08	2.0e-04	1.00e+	00	6.98929	3061e+0	06	5.989293088e+00	2.1	le-08	525.41

Earlier we required a diagonal decomposition of a covariance, e.g.,

$$\begin{array}{ll} \text{maximize} & e^T d\\ \text{subject to} & Q - \textbf{Diag}(d) \succeq 0\\ & d \ge 0. \end{array}$$

with a dual problem

$$\begin{array}{ll} \text{minimize} & \langle Q, X \rangle \\ \text{subject to} & \textbf{diag}(X) \geq e \\ & X \succeq 0. \end{array}$$

The dual problem is a more efficient characterization for MOSEK.


```
def MaxSum(Q):
  with Model('MaxSum') as M:
    n = len(Q)
    X = M.variable('X', Domain.inPSDCone(n))
    for j in range(n):
        M.constraint(X.index(j,j), Domain.greaterThan(1.0))
    M.objective('obj', ObjectiveSense.Minimize, Expr.dot(Q, X))
    M.setLogHandler(sys.stdout)
    M.solve()
    Z = X.dual()
    return [ Q[i][i] - Z[i*(n+1)] for i in range(n) ]
```


Data from Frangioni and Gentile (n = 200): http://www.di.unipi.it/optimize/Data/MV.html

ITE	PFEAS	DFEAS	GFEAS	PRSTATUS	POBJ	DOBJ	MU	TIME
0	1.1e+00	5.0e+02	7.4e+04	0.00e+00	4.747960000e+06	0.00000000e+00	1.0e+00	0.04
1	8.2e-02	3.6e+01	1.5e+03	-9.90e-01	4.462882203e+06	1.893344218e+04	7.3e-02	0.10
2	1.5e-03	6.4e-01	8.5e+00	-8.62e-01	1.152969863e+06	2.416895289e+05	1.3e-03	0.15
3	2.8e-04	1.2e-01	3.4e+00	6.17e-01	6.315008783e+05	4.235153740e+05	2.5e-04	0.20
4	5.3e-05	2.3e-02	1.5e+00	9.13e-01	6.043876014e+05	5.640115401e+05	4.7e-05	0.25
5	2.5e-05	1.1e-02	1.1e+00	9.83e-01	5.936737697e+05	5.740909250e+05	2.3e-05	0.30
6	1.9e-05	8.5e-03	1.0e+00	9.92e-01	5.891086789e+05	5.742513338e+05	1.7e-05	0.36
7	4.8e-06	2.1e-03	6.0e-01	9.94e-01	5.809345989e+05	5.772023792e+05	4.3e-06	0.41
8	9.3e-07	4.1e-04	2.9e-01	9.98e-01	5.787392737e+05	5.780155040e+05	8.3e-07	0.46
9	1.9e-07	8.3e-05	1.3e-01	1.00e+00	5.782823943e+05	5.781360063e+05	1.7e-07	0.51
10	4.0e-08	1.8e-05	6.3e-02	1.00e+00	5.781868331e+05	5.781559827e+05	3.5e-08	0.56
11	7.7e-09	3.4e-06	2.8e-02	1.00e+00	5.781658349e+05	5.781598509e+05	6.8e-09	0.61
12	1.4e-09	6.4e-07	1.3e-02	1.00e+00	5.781616976e+05	5.781605773e+05	1.3e-09	0.66
13	1.5e-10	6.5e-08	4.1e-03	1.00e+00	5.781608410e+05	5.781607258e+05	1.3e-10	0.71
14	1.4e-11	6.3e-09	1.3e-03	1.00e+00	5.781607522e+05	5.781607411e+05	1.3e-11	0.76

Solved in less than a second using MOSEK.

The dual of the perspective relaxation can be expressed as

$$\begin{array}{ll} \text{maximize} & \nu + \gamma r - \lambda^T e - \alpha \\ \text{subject to} & \begin{pmatrix} Q - \text{Diag}(d) & y \\ y^T & \alpha \end{pmatrix} \succeq 0 \\ & y = (1/2)(2z + \nu e + \gamma \mu + (U + L)\beta) \\ & ((1/2)(d_i + \beta_i), \lambda_i + u_i l_i \beta_i, z_i) \in \mathcal{Q}_r \\ & \gamma \geq 0, \lambda \geq 0, \beta \geq 0. \end{array}$$

• Quadratic constraint written as semidefinite constraint.

- The problem is linear in *d*.
- Maximizing over *d* > 0 gives the tightest perspective relaxation.

Zheng, Sun & Li: www.optimization-online.org/DB_HTML/2010/11/2797.html

The dual of the perspective relaxation can be expressed as

$$\begin{array}{ll} \text{maximize} & \nu + \gamma r - \lambda^T e - \alpha \\ \text{subject to} & \begin{pmatrix} Q - \text{Diag}(d) & y \\ y^T & \alpha \end{pmatrix} \succeq 0 \\ & y = (1/2)(2z + \nu e + \gamma \mu + (U + L)\beta) \\ & ((1/2)(d_i + \beta_i), \lambda_i + u_i l_i \beta_i, z_i) \in \mathcal{Q}_r \\ & \gamma \ge 0, \lambda \ge 0, \beta \ge 0. \end{array}$$

- Quadratic constraint written as semidefinite constraint.
- The problem is linear in *d*.
- Maximizing over *d* > 0 gives the tightest perspective relaxation.

Zheng, Sun & Li: www.optimization-online.org/DB_HTML/2010/11/2797.html

The dual of the perspective relaxation can be expressed as

maximize
$$\nu + \gamma r - \lambda^T e - \alpha$$

subject to $\begin{pmatrix} Q - \mathbf{Diag}(d) & y \\ y^T & \alpha \end{pmatrix} \succeq 0$
 $y = (1/2)(2z + \nu e + \gamma \mu + (U + L)\beta)$
 $((1/2)(d_i + \beta_i), \lambda_i + u_i l_i \beta_i, z_i) \in \mathcal{Q}_r$
 $\gamma \ge 0, \lambda \ge 0, \beta \ge 0.$

- Quadratic constraint written as semidefinite constraint.
- The problem is linear in d.
- Maximizing over d > 0 gives the tightest perspective relaxation.

Zheng, Sun & Li: www.optimization-online.org/DB_HTML/2010/11/2797.html

Optimizing over d > 0 and dualizing gives us:

$$\begin{array}{ll} \text{minimize} & \langle Q, X \rangle \\ \text{subject to} & e^T x = 1 \\ & \mu^T x \geq r \\ & ((1/2)\phi_i, y_i, x_i) \in \mathcal{Q}_r \\ & \phi_i - (u_i + l_i)x_i + u_i l_i y_i \leq 0 \\ & \mathbf{diag}(X) \geq \phi \\ & X \succeq x x^T \\ & y \leq e, \end{array}$$

which should be compared to the perspective reformulation with fixed d,

minimize
$$x^T (Q - \text{Diag}(d))x + d^T \phi$$

subject to $e^T x = 1$
 $\mu^T x \ge r$
 $((1/2)\phi_i, y_i, x_i) \in Q_r$
 $\phi_i - (u_i + l_i)x_i + u_i l_i y_i \le 0$
 $y \le e.$

Computing the tightest perspective relaxation


```
def perspective_tight(Q, mu, r, l, u):
 with Model('MaxSum') as M:
     n = len(mu)
      a = M.variable('a', 1, Domain.greaterThan(0,0))
     x = M.variable('x', n, Domain.greaterThan(0.0))
     phi = M.variable('phi', n, Domain.greaterThan(0.0))
      y = M.variable('y', n, Domain.inRange(0.0, 1.0))
     X = M.variable(X), Domain.inPSDCone(n+1))
      # (0.5*phi i. y i. x i) \in Qr. sum(x) == 1. mu'*x >= r. phi - (L+U)*x + L*U*y <= 0
     M.constraint(Expr.hstack(Expr.mul(0.5, phi), y, x), Domain.inRotatedQCone())
      M.constraint(Expr.sum(x), Domain.equalsTo(1.0))
      M. constraint(Expr.dot(mu,x), Domain.greaterThan(r))
      M.constraint(Expr.add(Expr.sub(phi, Expr.mulElm(1+u,x)), Expr.mulElm(1*u,y)), Domain.lessThan(0.0))
      # Diaq(X) \ge phi
      for i in range(n):
         M.constraint(Expr.sub(X.index(j,j), phi.index(j)), Domain.greaterThan(0,0))
      # [X x: x', 1] >= 0
     M.constraint(Expr.sub(X.slice([0,n],[n,n+1]), x), Domain.equalsTo(0.0))
      M.constraint(X.index(n,n), Domain.equalsTo(1.0))
      # minimize dot(Q.X)
      M.objective('obj', ObjectiveSense.Minimize, Expr.dot(Q, X.slice([0,0],[n,n])))
      M.setLogHandler(sys.stdout)
     M.solve()
     xo, Z = x.level(), X.dual()
      return (xo, [Q[i][i] - Z[i*(n+2)] for i in range(n) ])
```

Sum-of-squares relaxations

• *f*: multivariate polynomial of degree 2*d*.

•
$$v_d = (1, x_1, x_2, \dots, x_n, x_1^2, x_1x_2, \dots, x_n^2, \dots, x_n^d).$$

Vector of monomials of degree d or less.

Sum-of-squares representation

f is a sum-of-squares (SOS) iff

$$f(x_1,\ldots,x_n)=v_d^T Q v_d, \quad Q \succeq 0.$$

If $Q = LL^T$ then

$$f(x_1,\ldots,x_n)=v_d^T L L^T v_d=\sum_{i=1}^m (l_i^T v_d)^2.$$

Is obviously **sufficient** for $f(x_1, \ldots, x_n) \ge 0$.

Sum-of-squares relaxations

• f: multivariate polynomial of degree 2d.

•
$$v_d = (1, x_1, x_2, \dots, x_n, x_1^2, x_1x_2, \dots, x_n^2, \dots, x_n^d).$$

Vector of monomials of degree d or less.

Sum-of-squares representation

f is a sum-of-squares (SOS) iff

$$f(x_1,\ldots,x_n)=v_d^T Q v_d, \quad Q \succeq 0.$$

If $Q = LL^T$ then

$$f(x_1,\ldots,x_n)=v_d^T L L^T v_d=\sum_{i=1}^m (l_i^T v_d)^2.$$

Is obviously sufficient for $f(x_1, \ldots, x_n) \ge 0$.

A simple example

Consider

$$f(x,z) = 2x^4 + 2x^3z - x^2z^2 + 5z^4,$$

homogeneous of degree 4, so we only need

$$v = \begin{pmatrix} x^2 & xz & z^2 \end{pmatrix}$$

Comparing cofficients of f(x, z) and $v^T Q v = \langle Q, v v^T \rangle$,

$$\langle Q, vv^{T} \rangle = \langle \begin{pmatrix} q_{00} & q_{01} & q_{02} \\ q_{10} & q_{11} & q_{12} \\ q_{20} & q_{21} & q_{22} \end{pmatrix}, \begin{pmatrix} x^{4} & x^{3}z & x^{2}z^{2} \\ x^{3}z & x^{2}z^{2} & xz^{3} \\ x^{2}z^{2} & xz^{3} & z^{4} \end{pmatrix}$$

we see that f(x, z) is SOS iff $Q \succeq 0$ and

 $q_{00} = 2$, $2q_{10} = 2$, $2q_{20} + q_{11} = -1$, $2q_{21} = 0$, $q_{22} = 5$.

A simple example

Consider

$$f(x,z) = 2x^4 + 2x^3z - x^2z^2 + 5z^4,$$

homogeneous of degree 4, so we only need

$$v = \begin{pmatrix} x^2 & xz & z^2 \end{pmatrix}$$

Comparing cofficients of f(x, z) and $v^T Q v = \langle Q, vv^T \rangle$,

$$\langle Q, vv^{\mathsf{T}} \rangle = \langle \begin{pmatrix} q_{00} & q_{01} & q_{02} \\ q_{10} & q_{11} & q_{12} \\ q_{20} & q_{21} & q_{22} \end{pmatrix}, \begin{pmatrix} x^4 & x^3z & x^2z^2 \\ x^3z & x^2z^2 & xz^3 \\ x^2z^2 & xz^3 & z^4 \end{pmatrix} \rangle$$

we see that f(x, z) is SOS iff $Q \succeq 0$ and

$$q_{00} = 2$$
, $2q_{10} = 2$, $2q_{20} + q_{11} = -1$, $2q_{21} = 0$, $q_{22} = 5$.

Applications in polynomial optimization

$$f(x,z) = 4x^2 - \frac{21}{10}x^4 + \frac{1}{3}x^6 + xz - 4z^2 + 4z^4$$

Global lower bound

Replace non-tractable problem,

minimize f(x, z)

by a tractable lower bound

maximize tsubject to f(x, z) - t is SOS.

Relaxation finds the global optimum t = -1.031.

Essentially due to Shor, 1987.

$$w^{T} = \begin{pmatrix} 1 & x & z & x^{2} & xz & z^{2} & x^{3} & x^{2}z & xz^{2} & z^{3} \\ x & x^{2} & xz & x^{3} & x^{2}z & xz^{2} & x^{3} & x^{2}z & xz^{2} & z^{3} \\ x & x^{2} & xz & x^{3} & x^{2}z & xz^{2} & x^{4} & x^{3}z & x^{2}z^{2} & xz^{3} \\ z & xz & z^{2} & x^{2}z & xz^{2} & z^{3} & x^{3}z & x^{2}z^{2} & xz^{3} \\ x^{2} & x^{3} & x^{2}z & x^{4} & x^{3}z & x^{2}z^{2} & xz^{3} & z^{4} \\ z^{2} & x^{2} & x^{2} & x^{3}z & x^{2}z^{2} & xz^{3} & x^{4}z & x^{3}z^{2} & xz^{2}z^{3} \\ z^{2} & xz^{2} & xz^{2} & x^{3}z & x^{2}z^{2} & xz^{3} & x^{4}z & x^{3}z^{2} & xz^{2}z^{3} & xz^{4} \\ z^{2} & xz^{2} & xz^{2} & x^{3}z & x^{5} & x^{4}z & x^{3}z^{2} & x^{2}z^{3} & xz^{4} & y^{5} \\ x^{3} & x^{4} & x^{3}z & x^{5} & x^{4}z & x^{3}z^{2} & x^{6} & x^{5}z & x^{4}z^{2} & x^{3}z^{3} \\ x^{2}z & x^{3}z & x^{2}z^{2} & x^{3}z & x^{3}z^{2} & x^{2}z^{3} & xz^{4} & x^{4}z^{2} & x^{3}z^{3} & x^{2}z^{4} & xz^{5} \\ x^{2} & x^{2}z^{2} & xz^{3} & x^{3}z^{2} & x^{2}z^{3} & xz^{4} & x^{4}z^{2} & x^{3}z^{3} & x^{2}z^{4} & xz^{5} \\ z^{3} & xz^{3} & z^{4} & x^{2}z^{3} & xz^{4} & z^{5} & x^{3}z^{3} & x^{2}z^{4} & xz^{5} & z^{6} \end{pmatrix}$$

By comparing cofficients of $v^T Q v$ and f(x, z) - t:

$$q_{00} = -t, \quad (2q_{30} + q_{11}) = 4, \quad (2q_{72} + q_{44}) = -\frac{21}{10}, \quad q_{77} = \frac{1}{3}$$
$$2(q_{51} + q_{32}) = 1, \quad (2q_{61} + q_{33}) = -4, \quad (2q_{10,3} + q_{66}) = 4$$
$$2q_{10} = 0, \quad 2q_{20} = 0, \quad 2(q_{71} + q_{42}) = 0, \quad \dots$$

A standard SDP with a 10 \times 10 variable and 28 constraints.

Nonnegative polynomials

• Univariate polynomial of degree 2*n*:

$$f(x) = c_0 + c_1 x + \cdots + c_{2n} x^{2n}.$$

• Nonnegativity is equivalent to SOS, i.e.,

$$f(x) \ge 0 \qquad \Longleftrightarrow \qquad f(x) = v^T Q v, \quad Q \succeq 0$$

with $v = (1, x, ..., x^n)$.

• Simple extensions for nonnegativity on a subinterval $I \subset \mathbb{R}$.

Nonnegative polynomials

• Univariate polynomial of degree 2n:

$$f(x) = c_0 + c_1 x + \cdots + c_{2n} x^{2n}.$$

• Nonnegativity is equivalent to SOS, i.e.,

$$f(x) \ge 0 \qquad \Longleftrightarrow \qquad f(x) = v^T Q v, \quad Q \succeq 0$$

with $v = (1, x, ..., x^n)$.

Simple extensions for nonnegativity on a subinterval *I* ⊂ ℝ.

Nonnegative polynomials

• Univariate polynomial of degree 2n:

$$f(x) = c_0 + c_1 x + \cdots + c_{2n} x^{2n}$$
.

• Nonnegativity is equivalent to SOS, i.e.,

$$f(x) \ge 0 \qquad \Longleftrightarrow \qquad f(x) = v^T Q v, \quad Q \succeq 0$$

with $v = (1, x, ..., x^n)$.

• Simple extensions for nonnegativity on a subinterval $I \subset \mathbb{R}$.

Fit a polynomial of degree *n* to a set of points (x_j, y_j) ,

$$f(x_j) = y_j, \quad j = 1, \ldots, m,$$

i.e., linear equality constraints in c,

$$\begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_m & x_m^2 & \dots & x_m^m \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

Semidefinite shape constraints:

- Nonnegativity $f(x) \ge 0$.
- Monotonicity $f'(x) \ge 0$.
- Convexity $f''(x) \ge 0$.

Fit a polynomial of degree *n* to a set of points (x_j, y_j) ,

$$f(x_j) = y_j, \quad j = 1, \ldots, m,$$

i.e., linear equality constraints in c,

$$\begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_m & x_m^2 & \dots & x_m^m \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

Semidefinite shape constraints:

- Nonnegativity $f(x) \ge 0$.
- Monotonicity $f'(x) \ge 0$.
- Convexity $f''(x) \ge 0$.

Minimize largest derivative,

minimize $\max_{\substack{x \in [-1,1] \\ \text{subject to}}} \frac{|f'(x)|}{f(-1) = 1}$ f(0) = 0f(1) = 1

or equivalently

 $\begin{array}{ll} \text{minimize} & z\\ \text{subject to} & -z \leq f'(x) \leq z\\ & f(-1) = 1\\ & f(0) = 0\\ & f(1) = 1. \end{array}$

Minimize largest derivative,

minimize $\max_{x \in [-1,1]} |f'(x)|$ subject to f(-1) = 1f(0) = 0f(1) = 1

or equivalently

 $\begin{array}{ll} \text{minimize} & z \\ \text{subject to} & -z \leq f'(x) \leq z \\ & f(-1) = 1 \\ & f(0) = 0 \\ & f(1) = 1. \end{array}$

Minimize largest derivative,

minimize $\max_{x \in [-1,1]} |f'(x)|$ subject to f(-1) = 1f(0) = 0f(1) = 1

or equivalently

 $\begin{array}{ll} \text{minimize} & z \\ \text{subject to} & -z \leq f'(x) \leq z \\ & f(-1) = 1 \\ & f(0) = 0 \\ & f(1) = 1. \end{array}$

Minimize largest derivative,

minimize $\max_{x \in [-1,1]} |f'(x)|$ subject to f(-1) = 1f(0) = 0f(1) = 1

or equivalently

minimize z subject to $-z \le f'(x) \le z$ f(-1) = 1f(0) = 0f(1) = 1.

More generally, we can form relaxations for polynomial problems

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & g_i(x) \geq 0, \quad i = 1, \dots, m \\ & x \in \mathbb{R}^n \end{array}$$

with real polynomials $f, g_i : \mathbb{R}^n \mapsto \mathbb{R}$.

Modeling packages for Matlab:

- GloptiPoly, standard moment relaxations.
- SparsePoP, sparse moment relaxations.
- **SOSTools**, general sum-of-squares problems.
- Yalmip, general sums-of-squares and polynomial optimization.

Rudimentary Julia package by MOSEK: https://github.com/MOSEK/Polyopt.jl

mosek

Thank you!

Joachim Dahl

www.mosek.com

