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About the Xpress suite

» Started by Dash Optimization (Bob Daniel, Robert
Ashford) in 1988

» Acquired by FICO (Fair Isaac) in 2008

Comes with

v

A modeling language, Mosel

A solver for most optimization problems

API to create and solve your own optimization problems

A modeler running on-site and on the FICO Analytic Cloud

v

v

v

Free academic licenses with the Academic Partnership
Program’

1http: //subscribe.fico.com/Academic—-Partner-Program

FICO



http://subscribe.fico.com/Academic-Partner-Program

About the Xpress suite (cont’d)

Latest version: 7.9, released earlier this year.
Solves:

LP, QP, QCQP

MILP, MIQP, MIQCQP, MISOCP

NLP, MINLP (Nonconvex (MI)NLPs solved to local
optimality)

CP

v

v

v

>
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About the Xpress suite (cont’d)

Latest version: 7.9, released earlier this year.

Solves:

» LP, QP, QCQP

» MILP, MIQP, MIQCQP, MISOCP

» NLP, MINLP (Nonconvex (MI)NLPs solved to local
optimality)

» CP

Development group based in Berlin, Birmingham, Budapest
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MILP comparison (courtesy of the SCIP web page)

Il CBC2.9.4

[l SCIP 3.2.0 — SoPlex 2.2.0
[l SCIP 3.2.0 - CPLEX 12.6.2
Il Gurobi 6.0.0

] CPLEX 12.6.2

[l Xpress 7.9.0

data: Hans Mittelmann
graphics: ZIB

2400 |nen-commercial | commercial ..
3.00x

1800
1200
600 I
0 0.18x_0.16x_0.15x
solved 48 70 72 84 86 86
(of 87 instances)

time in seconds

© 2015 Fair Isaac Corporation FICQ




Today: Robust Optimization

We'll put the solver to work for solving an interesting meta-class
of problems: optimization under uncertainty

Examples, exercises, and slides can be downloaded at

zib.de/berthold/rob-opt.zip
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zib.de/berthold/rob-opt.zip

Outline
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Robust Optimization at a glance
The opponent’s viewpoint

A ridiculously fast intro to Mosel
Exercise session |
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Outline

v

Robust Optimization at a glance
The opponent’s viewpoint

A ridiculously fast intro to Mosel
Exercise session |

Theory and pitfalls of RO

Types of uncertainty sets

v

v

v
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Exercise session |l

>
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The name of the game

» Robust optimization is a paradigm for modeling
optimization problems under uncertainty

i.e. One or more of the problem’s parameters are unknown
» We only have limited information on their value

» We assume these parameters vary in a well-defined
uncertainty set

FICO




Robust optimization

» Real-life problems have uncertainty in their data

» Some might be missing or affected by inaccuracy,
measurement errors, etc.

» However, sometimes there’s a limit on the uncertainty
= We have an uncertainty set
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Robust optimization

» Real-life problems have uncertainty in their data

» Some might be missing or affected by inaccuracy,
measurement errors, etc.

» However, sometimes there’s a limit on the uncertainty
= We have an uncertainty set

» There are a few ties with stochastic programming, but RO
is an entirely different approach.
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min  2xy + 3xo

st uxy+2x >5
2X1 + Xo >V
X1, Xo > 0

Uncertain parameters: u and v. The only information we have
onthemisu e [1,2], v € [5,6].
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Main assumptions

» Once the uncertainty set is defined, the uncertain
parameters can take any value in it

= RO does not use any probabilistic information on the
uncertainty set
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» Once the uncertainty set is defined, the uncertain
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uncertainty set

© The problem is easier
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Main assumptions

» Once the uncertainty set is defined, the uncertain
parameters can take any value in it

= RO does not use any probabilistic information on the
uncertainty set

© The problem is easier
@ Throwing away lots of useful info
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RO’s challenge

Find a solution that is feasible for all possible realizations
of the uncertain parameters.

FICO




min  2xy + 3xo
st Uixy+ UoXo > 6
X1,% >0

Uncertainty set: U = {(2,1),(1,2)}.

» (x1,Xx2) = (3, 0) is infeasible because it violates the robust
constraint x; +2x, > 6
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min  2xy + 3xo
st Uixy + Uoxo > 6
X1,% >0

Uncertainty set: U = {(2,1),(1,2)}.
» (x1,Xx2) = (3, 0) is infeasible because it violates the robust
constraint x; +2x, > 6

» (x1,Xx2) = (0, 3) is infeasible because it violates the robust
constraint 2x; + x2 > 6
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min  2xy + 3xo
st Uixy + Uoxo > 6
X1,% >0

Uncertainty set: U = {(2,1),(1,2)}.
» (x1,Xx2) = (3, 0) is infeasible because it violates the robust
constraint x; +2x, > 6

» (x1,Xx2) = (0, 3) is infeasible because it violates the robust
constraint 2x; + x2 > 6

> (x1,X2) = (2,2) is feasible and optimal
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min  2xy + 3x»

st. Xxg+2x >6
2Xy + X2 > 6
X1, Xo > 0

The trick was simply to impose the constraint for all elements of
the uncertainty set.
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Not-yet-robust optimization

Forget uncertainty for a second. Your optimization problem has

» parameters: known before solving the problem.
» variables: unknown, but we find them by solving a problem

Variables express quantities we make decisions on.

» We have control over them, we decide their value
» We want to set them so as to minimize some objective
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Robust optimization

In RO, an optimization problem has

» parameters: known before solving the problem.
» variables: unknown, decided by us
» uncertains: unknown, decided by somebody else
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Robust optimization

In RO, an optimization problem has

» parameters: known before solving the problem.
» variables: unknown, decided by us
» uncertains: unknown, decided by somebody else

Unlike variables, we have no control over uncertainties.

» In fact, they may be known after we made our decision.

» Remember: we have to make our decisions so that they
are feasible for any uncertain realization
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The opponent’s viewpoint

Uncertains in RO are decisions made by an opponent.
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The opponent’s viewpoint

Uncertains in RO are decisions made by an opponent.

» Think about your favorite supervillain (Voldemort, the
Joker, Skynet, Gargamel, Thanos, ...)
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The opponent’s viewpoint

Uncertains in RO are decisions made by an opponent.

» Think about your favorite supervillain (Voldemort, the
Joker, Skynet, Gargamel, Thanos, ...)
» After we'’re done optimizing, it’s their turn:

» They see our solution

» They know the uncertainty set

» They pick the uncertains that will do us maximum harm
i.e. Make any of our constraints violated

= They are also solving an optimization problem: the
uncertains are their variables

» This is akin to a leader-follower game
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The opponent is quite real

Nature

Competitors

Market

Customers

Suppliers

All of the above, aka Murphy’s law

v

v

v

v

v

>
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min  2xy + 3xo
st uixy+ Usxo > 6
X1,X2 >0

Uncertainty set: U = {(2,1),(1,2)}.
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min  2xy + 3xo
St UiXy+ UoXo > 6
X1,X2 >0

Uncertainty set: U = {(2,1),(1,2)}.
If we picked (xq, x2) = (1.1,2.5) as a solution, the opponent
would search (uy, u») € U such that

1.1u1 +2.5u, < 6

So (uq, u2) = (2, 1) would be the opponent’s solution, and ours
would be proven infeasible.
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min  2xy + 3x»
st UiXq+ UoXo > 6
X1,% >0

Uncertainty set:
U= {(uy, ) ERi SUp+ Up > 3, U1 + 2uUp > 4.

Suppose we pick again (xq, x2) = (1.1,2.5) as a solution.
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Example (cont’d)

The opponent would then solve

min  1.1u; +2.5u
st. U+ uwu>3
ug +2up > 4

A simple LP that gives (uq, u2) = (4,0), with an objective of
4.4 <6.

» The opponent managed to break our constraint,
i.e. Our solution is not robust

FICO




Solving RO problems

In order to solve a RO problem, we must
» Assume that the opponent will try to invalidate solution
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In order to solve a RO problem, we must
» Assume that the opponent will try to invalidate solution
» Anticipate the opponent’s move
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Solving RO problems

In order to solve a RO problem, we must
» Assume that the opponent will try to invalidate solution
» Anticipate the opponent’s move
= Create a robust counterpart of our optimization problem

The RC is just another optimization problem (if one exists). It
just embeds the opponent’s optimization problem.
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min  2xq + 3xo

st uxy+2x >5
2X1 + Xo >V
X1, X0 > 0

Uncertainty set: u € [1,2], v € [5, 6].

FICO




min  2xq + 3xo

st uxy+2x >5
2X1 + Xo >V
X1, X0 > 0

Uncertainty set: u € [1,2], v € [5, 6].

The RC is trivial: the constraints will be hardest if u = 1 and
v =6, sothe RC is

min  2xy + 3xo

st. Xxy+2x >5
2X1 + X2 > 6
X1, Xo > 0
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Questions?

If you haven’t any, here are two:

» What if there are uncertains in the objective?
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Questions?

If you haven’t any, here are two:

» What if there are uncertains in the objective?
» What if two or more constraints are affected by uncertains?

We’'ll answer these later.
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A quick intro to Xpress-Mosel

Mosel is a modeling language for optimization problems.

» It can do a lot of other things
» But we'll deal with optimization only

Typical

model "hello world"
declarations
y, X: mpvar ! This is a comment
end-declarations
y + 2%xx <= 10
y + x <=5
maximize (2xx + 3xy)
writeln("x: ", getsol(x), "; Obj: ", getobjval)
end-model

FICO




Declaration section

This is where all variables, parameters, sets, and uncertains

are declared

model "my model"
uses "mmxprs", "mmrobust"
declarations
X, y: mpvar
a: array (1..4) of real
b: real

R: range
u: uncertain
end-declarations

[...]

variables

vector of parameters
single parameters

set i..3j, def’d later
uncertain parameter

FICO




Constraints

Not too far from how they are formulated in other languages...

model "my model"
declarations
P: range
a: array(P) of real
b: real
x: array(P) of mpvar
[...]
end-declarations
cl := sum (i in range) a(i) * x(i) <= Db

[...]

The “c1 :="is not necessary
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Objective

maximize (sum (i in P) a(i)+* x(i))
writeln ("Obj: ", getobjval)

FICO




Miscellaneous

Loops:

forall (i in P) do
writeln ("x_", i, ": ", getsol (x(1)))
end-do

forall (i in P: 1 <= 2) do
writeln ("x
end-do

Long comments:

(!
Write whatever you want here.
I’11 just ignore it

)

FICO




Variable types and bounds

To be done outside of the declaration section

forall (i in P) do
x (i) is_binary

end-do

y 1s_integer

z >= 4

z <= z_upper ! z_upper is a parameter
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Reading data from files

initializations from ’'datafile.txt’
an
end-initializations

The file datafile.txt must have a specific format
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Modules

We have to tell Mosel the modules we want to use. We'll use
two:

model "my model"
uses "mmxprs", "mmrobust"

[...]

end-model

FICO




Example: knapsack

max c'x
st. a'x<bhb
x €{0,1}"

Writing the model is easy. We'll have to set up a data file with n,
aand b.
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Example: knapsack (cont'd)

model "knapsack"
uses "mmxprs"
declarations
P: range
c: array(P) of real
a: array(P) of real
b: real
x: array (P) of mpvar
end-declarations
initializations from ’knapsack.dat’
cab
end—-initializations
forall (i in P) x(i) is_binary
sum (1 in P) a(i) » x(i) <= Db
maximize (sum (i in P) c(i) =~ x(1i))
end-model

FICO




The knapsack.dat file

n:
c:
a:
b:

FICO




Example: robust knapsack

max c¢'x
st. (a+u)’x<b
x €{0,1}"

Uncertainty set:
U={ueR] . d'u<f}

where d € Q] and f > 0 is a scalar.
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Example: robust knapsack (cont’d)

model "knapsack"
declarations

[...]

x: array (P) of mpvar

d: array(P) of real ! data for unc. set
f: real
u: array(P) of uncertain ! unc parameters

end-declarations

initializations from ’knapsack_robust.dat’
cabdit

end-initializations

forall (i in P) x(i) is_binary

sum (1 in P) (a(i) + u(i)) » x(1i) <=Db

sum (i1 in P) d(i) =+ u(i) <= £

forall (i in P) u(i) >= 0

[...]
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The knapsack_robust .dat file

O Hh Qo 8 Q3
e T O

[

'_l

[

N
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oo
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'_l

w
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'_l

'_l
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'_l
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Unanswered questions in RO

» What if there are uncertains in the objective?
» What if two or more constraints are affected by uncertains?

Remember: we are looking for a solution that is feasible
regardless of the uncertain parameters.
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What if there are uncertains in the objective?

Suppose the uncertain parameters are only in the objective.
» Feasibility of any solution is independent of the uncertains
» In principle, optimality would depend on the uncertains

= We would have to deal with robust optimality, an entirely
different issue
» We’'ll use a trick to reduce this to a feasibility problem.

Example: knapsack

max (c+u)'x
st. a'x<b
x € {0,1}"
Uncertainty set: U= {u € R :d'u < f}.
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Reformulate

max z
st. z—(c+u)'x<0
a'x<b
x €{0,1}"

Now we have a robust problem in the classical sense.
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Example: robust shortest path

Find the shortest route from A to B on the city’s road network.

» |t takes c. minutes to drive on road e

» Unless there’s construction work, and then it's c. + dg
» We don’t know where the construction work is

» But we know it is on at most k roads

FICO




Each link e has (ce, dg). & = 2 construction zones.

How long to get from A to B?
FICO
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Each link e has (ce, dg). & = 2 construction zones.
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What if 2+ constraints are affected by uncertains?

Remember: the opponent simply wants to give us a hard time.
His/her method:

1. Observe our solution

2. Find point of uncertainty set so that our solution violates at
least one of our constraint

3. So the opponent can focus on one constraint at a time

= Quite a conservative approach: equivalent to one
opponent per constraint!
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Finally, some theory

So far, we've seen:

» What RO does to a problem
» How to solve some ROs
» How to implement them using Mosel

But how do we solve a general RO?
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Robust optimization: a general-enough case

min ¢'x

st. Ax=0b
S aiux < B8
x> 0.

Uncertainty set: U = {u € R’ : Pu < q}.
U is a polyhedron defined by a system of linear inequalities.
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What would an opponent do?

The opponent would look at the single uncertain constraint:
n
Z Oé,'U,'X,'* < ﬁ)
i=1

and think: “x;’s are known. How do | make this violated?”
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What would an opponent do?

The opponent would look at the single uncertain constraint:
n
Z Oé,'U,'X,'* < 67
i=1

and think: “x;’s are known. How do | make this violated?”
The opponent has a PhD in Optimization, so the answer is:

“I'll maximize "7, a;x*u;! Mwahahahahahahaha!”
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What would an opponent do?

The opponent would look at the single uncertain constraint:
n
Z Oé,'U,'X,'* < 67
i=1

and think: “x;’s are known. How do | make this violated?”
The opponent has a PhD in Optimization, so the answer is:
“I'll maximize "7, a;x*u;! Mwahahahahahahaha!”

The reason: maximizing the left-hand side gives the highest
chance to make the constraint violated.

If the solution found is such that >"7_, ajx;u; > [3, the opponent
wins.

FICO




What would an opponent do?

If the constraint were of the opposite sign,

n
> ajuix > B,
i=1

the plan (equally evil) would be
“I'l minimize >°7_; a;u;x;! Mwahahahahahahaha!”
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What would an opponent do?

If the constraint were of the opposite sign,

n
> ajuix > B,
i=1

the plan (equally evil) would be
“I'l minimize >°7_; a;u;x;! Mwahahahahahahaha!”
Equality constraints are simply split into < and > constraints

FICO




The robust counterpart

min ¢'x
st. Ax=5b
n
MaXyey Y jicq qiliX; < B
x> 0.

FICO




The opponent’s optimization problem

max 27:1 aiXjU;
st. Pu<gq
u>0.

Here, x;’'s are given. The variables (i.e. the decision that are
controlled by the opponent) are the u;’s
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Duality, our savior

If the opponent has this problem:
max Yo7y XU

st. Pu<gqg
u>0.
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Duality, our savior

If the opponent has this problem:
max Yo7y XU
st. Pu<gq
u>0.

The dual is (for dual variables y)

min q'y
st. Ply>aix;, Vi=1,2,...,n
y>0.
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Duality, our savior

If the opponent has this problem:
max Yo7y XU
st. Pu<gq
u>0.

The dual is (for dual variables y)

min q'y
st. Ply>aix;, Vi=1,2,...,n
y>0.

However, strong duality dictates:

If an optimal solution (u, y) exists, then > 7, a;x;u; =q'y
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The robust counterpart?

From a difficult (nonlinear) problem

min ¢'x
st. Ax=b
n
maXycu 2121 oiuixi < 8
x> 0.

2Soyster, Ben Lev, Toof, “Conservative linear programming with mixed
o=semuftipte objectives.” Omega 5.2 (1977): 193-205. FICO




The robust counterpart?

From a difficult (nonlinear) problem

min ¢'x
st. Ax=b
n
maXycu 2121 oiuixi < 8
x> 0.

we get a much nicer problem (an LP!):

min ¢'x

st. Ax=0»>b
q'y<s
Pl-:l—.yZOé,'X,' Vi:1,2,...,n
x,y > 0.

2Soyster, Ben Lev, Toof, “Conservative linear programming with mixed
o=semuftipte objectives.” Omega 5.2 (1977): 193-205.
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Non-polyhedral uncertainty sets

In the general case, we have seen that a polyhedral uncertainty
set can be dealt with easily.

» If the original problem is a LP, the RC is an LP as well
» If the original problem is a MILP, the RC is a MILP

So polyhedral uncertainty doesn’t add to the complexity of the
problem
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Ellipsoidal uncertainty

Suppose the uncertainty set has been estimated as an ellipsoid
defined by mean/covariance data:

U={ueR":(u-o)"Qu-1u)<e}

Hence 4 is the mean value of u and Q is the covariance matrix
of u.
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Ellipsoidal uncertainty — a conic RC

It is easy to show (we won’t) that the resulting robust
counterpart becomes

» a SOCP if the initial problem was a LP
» a MISOCP if the initial problem was a MILP
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Ellipsoidal uncertainty in Mosel

model "quadknapsack"
declarations

P: range

c: array(P) of real

a: array(P) of real

b: real

x: array(P) of mpvar

u: array(P) of uncertain ! unc parameters
end-declarations
initializations from ’knapsack_robust_eps.dat’

c a b eps
end-initializations
forall (i in P) x(i) is_binary
sum (1 in P) (a(i) + u(i)) *» x(1i) <=Db
sum (1 in P) u(i) "2 <= eps
[...]

rtn FICO




Scenario uncertainty

Suppose there is a database of K historical values of the vector

u of uncertain parameters: U = {u', u?,--- , uX}.
» Problem: be robust against all previous occurrences of the
vector u

» Solution: specify u as a (discrete) set of occurrences

So the robust counterpart is

min ¢'x

st. Ax=0b
Shiaiufx, <p Vk=1,2,....K
x> 0.
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Example: knapsack with historical values

declarations:

[...]

hist_data: array (1..4, set of uncertain) of real

[...]

end-declarations

hist_data (1,u(l)) := 12
hist_data (1,u(2)) := 14
hist_data (1,u(3)) := 20

[...]
hist_data (4,u(3))

10

scenario (hist_data)

FICO
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Thank You

Pietro Belotti
pietrobelotti@fico.com

©2015 Fair Isaac Corporation.
This presentation is provided for the recipient only and cannot be reproduced or shared without Fair Isaac Corporation’s express consent.




Real-world cases: Liquid gas production®

Production planning at a liquid oxygen/nitrogen plant:

» Given customer demands at the beginning of the month
» Plan production for each day of the month

» Store extra daily production in inventory (big tanks)

» Maximum production P, tank capacity C

SLatifoglu, C., Belotti, P., Snyder, L.V. (2013). Models for production

planning under power interruptions. Naval Research Logistics 60(5):41 3-431FICO




Production planning under energy uncertainty

Production very energy-intensive = expensive electric bill

Interruptible Load Contract (ILC): power company can
suspend supply in periods of high demand (summer)

At most k interruptions each month (8 hours each)
Cheaper (per kWh) than with uninterrupted contract

v

v

v
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Production planning under energy uncertainty

Production very energy-intensive = expensive electric bill

Interruptible Load Contract (ILC): power company can
suspend supply in periods of high demand (summer)

At most k interruptions each month (8 hours each)
Cheaper (per kWh) than with uninterrupted contract

v

v

v

v

The power supplier won't tell us when the interruptions will be.

» Treat interruptions as uncertains

= Plan production so that even with the worst-case k
interruptions we satisfy customer demand
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Original model

declarations
produce: array (PERIODS, GASES) of mpvar
inventory: array (PERIODS, GASES) of mpvar

end-declarations

forall(t in PERIODS, g in GASES) do
inventory (0,g) + sum(tp in PERIODS | tp <= t)

(produce (tp,g) - DEMAND (tp,qg)) >= 0
inventory (t,g) <= INV_CAP (g)
produce (t,g) <= PROD_CAP (g)

end-do

minimize (sum (t in PERIODS, g in GASES)
(PROD_COST * produce(t,g) + INV_COST * inventory(t,qg)))

FICO




Robust model

declarations
produce: array (PERIODS, GASES) of mpvar
inventory: array (PERIODS, GASES) of mpvar
interrupt: array (PERIODS) of uncertain

end-declarations

forall(t in PERIODS, g in GASES) do
inventory (0,g) + sum(tp in PERIODS | tp <= t)
((l-interrupt (tp) ) *produce (tp, g) -DEMAND (tp, g) ) >=0
inventory (t,g) <= INV_CAP (g)
produce (t,g) <= PROD_CAP (g)
end-do

sum(t in PERIODS) interrupt (t) <= MAX_NINTERR

minimize (sum (t in PERIODS, g in GASES)
(PROD_COST * produce(t,g) + INV_COST * inventory(t,qg)))

FICO




Modeling advantage

Modeling this is much easier with the mmrobust module.

The alternative: add the dual constraints to the model.

» Error prone

» Only suited to a user with good knowledge of optimization,
duality, and robust optimization
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Original problem

min >t Cgmdprodtg + chVinvyy

s.t. invog+ > (prod, , —dem;g) >0 VteT
ngrodt’gng Vte T,7eT
0 <invyg < Gy VteT,7eT

FICO




Robust problem

. d invs
min > .7 ch” prod,, + ¢g"Vinvy
st. invog+ > 4(prod, ; — demsg)

> et + ket >0 Vte T
,ui—i—at > prodﬂg Vie T, 7 <t
,u£+0t20 vte T, 7 >t
pt >0,0t>0 VieT,7reT
0 §prodt,g < Py vte T,7€T
0 <invyg < Gy Vte T,reT
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Exercise session Il (25-30 minutes)

Complete exercise4.mos.
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Exercise session | (25-30 minutes)

Complete exercise1.mos, exercise2.mos, and exercise3.mos.
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