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About the Xpress suite

I Started by Dash Optimization (Bob Daniel, Robert
Ashford) in 1988

I Acquired by FICO (Fair Isaac) in 2008

Comes with

I A modeling language, Mosel
I A solver for most optimization problems
I API to create and solve your own optimization problems
I A modeler running on-site and on the FICO Analytic Cloud

Free academic licenses with the Academic Partnership
Program1

1http://subscribe.fico.com/Academic-Partner-Program
© 2015 Fair Isaac Corporation.
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About the Xpress suite (cont’d)

Latest version: 7.9, released earlier this year.

Solves:

I LP, QP, QCQP
I MILP, MIQP, MIQCQP, MISOCP
I NLP, MINLP (Nonconvex (MI)NLPs solved to local

optimality)
I CP

Development group based in Berlin, Birmingham, Budapest
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MILP comparison (courtesy of the SCIP web page)
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Today: Robust Optimization

We’ll put the solver to work for solving an interesting meta-class
of problems: optimization under uncertainty

Examples, exercises, and slides can be downloaded at

zib.de/berthold/rob-opt.zip

© 2015 Fair Isaac Corporation.
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Outline

I Robust Optimization at a glance
I The opponent’s viewpoint
I A ridiculously fast intro to Mosel
I Exercise session I

I Theory and pitfalls of RO
I Types of uncertainty sets
I Exercise session II
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The name of the game

I Robust optimization is a paradigm for modeling
optimization problems under uncertainty

i.e. One or more of the problem’s parameters are unknown
I We only have limited information on their value
I We assume these parameters vary in a well-defined

uncertainty set
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Robust optimization

I Real-life problems have uncertainty in their data
I Some might be missing or affected by inaccuracy,

measurement errors, etc.
I However, sometimes there’s a limit on the uncertainty
⇒ We have an uncertainty set

I There are a few ties with stochastic programming, but RO
is an entirely different approach.
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Example

min 2x1 + 3x2
s.t. ux1 + 2x2 ≥ 5

2x1 + x2 ≥ v
x1, x2 ≥ 0

Uncertain parameters: u and v . The only information we have
on them is u ∈ [1,2], v ∈ [5,6].

© 2015 Fair Isaac Corporation.



Main assumptions

I Once the uncertainty set is defined, the uncertain
parameters can take any value in it

⇒ RO does not use any probabilistic information on the
uncertainty set

©..̂ The problem is easier
©.._ Throwing away lots of useful info
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RO’s challenge

Find a solution that is feasible for all possible realizations
of the uncertain parameters.
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Example

min 2x1 + 3x2
s.t. u1x1 + u2x2 ≥ 6

x1, x2 ≥ 0

Uncertainty set: U = {(2,1), (1,2)}.
I (x1, x2) = (3,0) is infeasible because it violates the robust

constraint x1 + 2x2 ≥ 6

I (x1, x2) = (0,3) is infeasible because it violates the robust
constraint 2x1 + x2 ≥ 6

I (x1, x2) = (2,2) is feasible and optimal
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Example

min 2x1 + 3x2
s.t. x1 + 2x2 ≥ 6

2x1 + x2 ≥ 6
x1, x2 ≥ 0

The trick was simply to impose the constraint for all elements of
the uncertainty set.
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Not-yet-robust optimization

Forget uncertainty for a second. Your optimization problem has

I parameters: known before solving the problem.
I variables: unknown, but we find them by solving a problem

Variables express quantities we make decisions on.

I We have control over them, we decide their value
I We want to set them so as to minimize some objective

© 2015 Fair Isaac Corporation.



Robust optimization

In RO, an optimization problem has

I parameters: known before solving the problem.
I variables: unknown, decided by us
I uncertains: unknown, decided by somebody else

Unlike variables, we have no control over uncertainties.

I In fact, they may be known after we made our decision.
I Remember: we have to make our decisions so that they

are feasible for any uncertain realization
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The opponent’s viewpoint

Uncertains in RO are decisions made by an opponent.

I Think about your favorite supervillain (Voldemort, the
Joker, Skynet, Gargamel, Thanos, . . . )

I After we’re done optimizing, it’s their turn:
I They see our solution
I They know the uncertainty set
I They pick the uncertains that will do us maximum harm

i.e. Make any of our constraints violated

⇒ They are also solving an optimization problem: the
uncertains are their variables

I This is akin to a leader-follower game
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The opponent is quite real

I Nature
I Competitors
I Market
I Customers
I Suppliers
I All of the above, aka Murphy’s law

© 2015 Fair Isaac Corporation.



Example

min 2x1 + 3x2
s.t. u1x1 + u2x2 ≥ 6

x1, x2 ≥ 0

Uncertainty set: U = {(2,1), (1,2)}.

If we picked (x1, x2) = (1.1,2.5) as a solution, the opponent
would search (u1,u2) ∈ U such that

1.1u1 + 2.5u2 < 6

So (u1,u2) = (2,1) would be the opponent’s solution, and ours
would be proven infeasible.
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Example

min 2x1 + 3x2
s.t. u1x1 + u2x2 ≥ 6

x1, x2 ≥ 0

Uncertainty set:

U = {(u1,u2) ∈ R2
+ : u1 + u2 ≥ 3,u1 + 2u2 ≥ 4}.

Suppose we pick again (x1, x2) = (1.1,2.5) as a solution.
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Example (cont’d)

The opponent would then solve

min 1.1u1 + 2.5u2
s.t. u1 + u2 ≥ 3

u1 + 2u2 ≥ 4

A simple LP that gives (u1,u2) = (4,0), with an objective of
4.4 < 6.

I The opponent managed to break our constraint,
i.e. Our solution is not robust

© 2015 Fair Isaac Corporation.



Solving RO problems

In order to solve a RO problem, we must
I Assume that the opponent will try to invalidate solution

I Anticipate the opponent’s move
⇒ Create a robust counterpart of our optimization problem

The RC is just another optimization problem (if one exists). It
just embeds the opponent’s optimization problem.
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Example

min 2x1 + 3x2
s.t. ux1 + 2x2 ≥ 5

2x1 + x2 ≥ v
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Questions?

If you haven’t any, here are two:

I What if there are uncertains in the objective?

I What if two or more constraints are affected by uncertains?

We’ll answer these later.
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A quick intro to Xpress-Mosel

Mosel is a modeling language for optimization problems.

I It can do a lot of other things
I But we’ll deal with optimization only

Typical

model "hello world"
declarations
y, x: mpvar ! This is a comment

end-declarations
y + 2*x <= 10
y + x <= 5
maximize(2*x + 3*y)
writeln("x: ", getsol(x), "; Obj: ", getobjval)
end-model
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Declaration section

This is where all variables, parameters, sets, and uncertains
are declared

model "my model"
uses "mmxprs", "mmrobust"
declarations
x, y: mpvar ! variables
a: array (1..4) of real ! vector of parameters
b: real ! single parameters
R: range ! set i..j, def’d later
u: uncertain ! uncertain parameter

end-declarations
[...]
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Constraints

Not too far from how they are formulated in other languages...

model "my model"
declarations
P: range
a: array(P) of real
b: real
x: array(P) of mpvar
[...]

end-declarations
c1 := sum (i in range) a(i) * x(i) <= b
[...]

The “c1 :=” is not necessary
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Objective

maximize (sum (i in P) a(i)* x(i))
writeln ("Obj: ", getobjval)
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Miscellaneous

Loops:

forall (i in P) do
writeln ("x_", i, ": ", getsol (x(i)))

end-do

forall (i in P: i <= 2) do
writeln ("x_", i, ": ", getsol (x(i)))

end-do

Long comments:

(!
Write whatever you want here.
I’ll just ignore it

!)
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Variable types and bounds

To be done outside of the declaration section

forall (i in P) do
x(i) is_binary

end-do
y is_integer
z >= 4
z <= z_upper ! z_upper is a parameter

© 2015 Fair Isaac Corporation.



Reading data from files

initializations from ’datafile.txt’
a n

end-initializations

The file datafile.txt must have a specific format

© 2015 Fair Isaac Corporation.



Modules

We have to tell Mosel the modules we want to use. We’ll use
two:

model "my model"
uses "mmxprs", "mmrobust"
[...]
end-model

© 2015 Fair Isaac Corporation.



Example: knapsack

max c>x
s.t. a>x ≤ b

x ∈ {0,1}n

Writing the model is easy. We’ll have to set up a data file with n,
a and b.

© 2015 Fair Isaac Corporation.



Example: knapsack (cont’d)

model "knapsack"
uses "mmxprs"
declarations
P: range
c: array(P) of real
a: array(P) of real
b: real
x: array(P) of mpvar

end-declarations
initializations from ’knapsack.dat’
c a b

end-initializations
forall (i in P) x(i) is_binary
sum (i in P) a(i) * x(i) <= b
maximize (sum (i in P) c(i) * x(i))
end-model

© 2015 Fair Isaac Corporation.



The knapsack.dat file

n: 6
c: [(1) 34 (2) 37 (3) 41 (4) 49 (5) 52 (6) 55]
a: [(1) 56 (2) 38 (3) 32 (4) 24 (5) 22 (6) 20]
b: 100
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Example: robust knapsack

max c>x
s.t. (a + u)>x ≤ b

x ∈ {0,1}n

Uncertainty set:

U = {u ∈ Rn
+ : d>u ≤ f},

where d ∈ Qn
+ and f > 0 is a scalar.
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Example: robust knapsack (cont’d)

model "knapsack"
declarations
[...]
x: array(P) of mpvar
d: array(P) of real ! data for unc. set
f: real
u: array(P) of uncertain ! unc parameters

end-declarations
initializations from ’knapsack_robust.dat’
c a b d f

end-initializations
forall (i in P) x(i) is_binary
sum (i in P) (a(i) + u(i)) * x(i) <= b
sum (i in P) d(i) * u(i) <= f
forall (i in P) u(i) >= 0
[...]
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The knapsack robust.dat file

n: 6
c: [(1) 34 (2) 37 (3) 41 (4) 49 (5) 52 (6) 55]
a: [(1) 56 (2) 38 (3) 32 (4) 24 (5) 22 (6) 20]
d: [(1) 11 (2) 12 (3) 8 (4) 13 (5) 11 (6) 13]
f: 1
b: 100

© 2015 Fair Isaac Corporation.



Unanswered questions in RO

I What if there are uncertains in the objective?
I What if two or more constraints are affected by uncertains?

Remember: we are looking for a solution that is feasible
regardless of the uncertain parameters.
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What if there are uncertains in the objective?

Suppose the uncertain parameters are only in the objective.

I Feasibility of any solution is independent of the uncertains
I In principle, optimality would depend on the uncertains
⇒ We would have to deal with robust optimality, an entirely

different issue
I We’ll use a trick to reduce this to a feasibility problem.

Example: knapsack

max (c + u)>x
s.t. a>x ≤ b

x ∈ {0,1}n

Uncertainty set: U = {u ∈ Rn
+ : d>u ≤ f}.
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Reformulate

max z
s.t. z − (c + u)>x ≤ 0

a>x ≤ b
x ∈ {0,1}n

Now we have a robust problem in the classical sense.
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Example: robust shortest path

Find the shortest route from A to B on the city’s road network.

I It takes ce minutes to drive on road e
I Unless there’s construction work, and then it’s ce + de

I We don’t know where the construction work is
I But we know it is on at most k roads
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Each link e has (ce,de). k = 2 construction zones.

A

B

(3,2)

(3,4)

(3,1)

(5,3)

(6,3)

(3,7)

(4,4)

(3,1)

(5,5)

(3,1)

How long to get from A to B?p
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Each link e has (ce,de). k = 2 construction zones.

A

B

(3,2)

(3,4)

(3,1)

(5,3)

(6,3)

(3,7)

(4,4)

(3,1)

(5,5)

(3,1)

How long to get from A to B?pIn practice, 20 min.
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Each link e has (ce,de). k = 2 construction zones.

A

B

(3,2)

(3,4)

(3,1)

(5,3)

(6,3)

(3,7)

(4,4)

(3,1)

(5,5)

(3,1)

How long to get from A to B?pNominal 12 min. (worse than 9)
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Each link e has (ce,de). k = 2 construction zones.

A

B

(3,2)

(3,4)

(3,1)

(5,3)

(6,3)

(3,7)

(4,4)

(3,1)

(5,5)

(3,1)

How long to get from A to B?pRobust 15 min. (better than 20)
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What if 2+ constraints are affected by uncertains?

Remember: the opponent simply wants to give us a hard time.

His/her method:

1. Observe our solution
2. Find point of uncertainty set so that our solution violates at

least one of our constraint
3. So the opponent can focus on one constraint at a time
⇒ Quite a conservative approach: equivalent to one

opponent per constraint!
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Finally, some theory

So far, we’ve seen:

I What RO does to a problem
I How to solve some ROs
I How to implement them using Mosel

But how do we solve a general RO?
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Robust optimization: a general-enough case

min c>x
s.t. Ax = b∑n

i=1 αiuixi ≤ β
x ≥ 0.

Uncertainty set: U = {u ∈ Rn
+ : Pu ≤ q}.

U is a polyhedron defined by a system of linear inequalities.
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What would an opponent do?

The opponent would look at the single uncertain constraint:

n∑
i=1

αiuix?i ≤ β,

and think: “x?i ’s are known. How do I make this violated?”

The opponent has a PhD in Optimization, so the answer is:

“I’ll maximize
∑n

i=1 αix?i ui ! Mwahahahahahahaha!”

The reason: maximizing the left-hand side gives the highest
chance to make the constraint violated.

If the solution found is such that
∑n

i=1 αix?i ui > β, the opponent
wins.
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What would an opponent do?

If the constraint were of the opposite sign,

n∑
i=1

αiuixi ≥ β,

the plan (equally evil) would be
“I’ll minimize

∑n
i=1 αiuixi ! Mwahahahahahahaha!”

Equality constraints are simply split into ≤ and ≥ constraints
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The robust counterpart

min c>x
s.t. Ax = b

maxu∈U
∑n

i=1 αiuixi ≤ β
x ≥ 0.
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The opponent’s optimization problem

max
∑n

i=1 αixiui
s.t. Pu ≤ q

u ≥ 0.

Here, xi ’s are given. The variables (i.e. the decision that are
controlled by the opponent) are the ui ’s
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Duality, our savior

If the opponent has this problem:

max
∑n

i=1 αixiui
s.t. Pu ≤ q

u ≥ 0.

The dual is (for dual variables y)

min q>y
s.t. P>i,·y ≥ αixi ∀i = 1,2, . . . ,n

y ≥ 0.

However, strong duality dictates:

If an optimal solution (u,y) exists, then
∑n

i=1 αixiui = q>y
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The robust counterpart2

From a difficult (nonlinear) problem

min c>x
s.t. Ax = b

maxu∈U
∑n

i=1 αiuixi ≤ β
x ≥ 0.

we get a much nicer problem (an LP!):

min c>x
s.t. Ax = b

q>y ≤ β
P>i,·y ≥ αixi ∀i = 1,2, . . . ,n
x ,y ≥ 0.

2Soyster, Ben Lev, Toof, “Conservative linear programming with mixed
multiple objectives.” Omega 5.2 (1977): 193-205.© 2015 Fair Isaac Corporation.
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multiple objectives.” Omega 5.2 (1977): 193-205.© 2015 Fair Isaac Corporation.



Non-polyhedral uncertainty sets

In the general case, we have seen that a polyhedral uncertainty
set can be dealt with easily.

I If the original problem is a LP, the RC is an LP as well
I If the original problem is a MILP, the RC is a MILP

So polyhedral uncertainty doesn’t add to the complexity of the
problem
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Ellipsoidal uncertainty

Suppose the uncertainty set has been estimated as an ellipsoid
defined by mean/covariance data:

U = {u ∈ Rn : (u − ū)>Q(u − ū) ≤ ε}

Hence ū is the mean value of u and Q is the covariance matrix
of u.
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Ellipsoidal uncertainty→ a conic RC

It is easy to show (we won’t) that the resulting robust
counterpart becomes

I a SOCP if the initial problem was a LP
I a MISOCP if the initial problem was a MILP
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Ellipsoidal uncertainty in Mosel

model "quadknapsack"
declarations
P: range
c: array(P) of real
a: array(P) of real
b: real
x: array(P) of mpvar
u: array(P) of uncertain ! unc parameters

end-declarations
initializations from ’knapsack_robust_eps.dat’
c a b eps

end-initializations
forall (i in P) x(i) is_binary
sum (i in P) (a(i) + u(i)) * x(i) <= b
sum (i in P) u(i)ˆ2 <= eps
[...]
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Scenario uncertainty

Suppose there is a database of K historical values of the vector
u of uncertain parameters: U = {u1,u2, · · · ,uK}.

I Problem: be robust against all previous occurrences of the
vector u

I Solution: specify u as a (discrete) set of occurrences

So the robust counterpart is

min c>x
s.t. Ax = b∑n

i=1 αiuk
i xi ≤ β ∀k = 1,2, . . . ,K

x ≥ 0.
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Example: knapsack with historical values

declarations:
[...]
hist_data: array (1..4, set of uncertain) of real
[...]

end-declarations

hist_data (1,u(1)) := 12
hist_data (1,u(2)) := 14
hist_data (1,u(3)) := 20
[...]
hist_data (4,u(3)) := 10

scenario (hist_data)
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Real-world cases: Liquid gas production3

Production planning at a liquid oxygen/nitrogen plant:

I Given customer demands at the beginning of the month
I Plan production for each day of the month
I Store extra daily production in inventory (big tanks)
I Maximum production P, tank capacity C

3Latifoglu, C., Belotti, P., Snyder, L.V. (2013). Models for production
planning under power interruptions. Naval Research Logistics 60(5):413-431.
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Production planning under energy uncertainty

I Production very energy-intensive⇒ expensive electric bill
I Interruptible Load Contract (ILC): power company can

suspend supply in periods of high demand (summer)
I At most k interruptions each month (8 hours each)
I Cheaper (per kWh) than with uninterrupted contract

The power supplier won’t tell us when the interruptions will be.

I Treat interruptions as uncertains
⇒ Plan production so that even with the worst-case k

interruptions we satisfy customer demand
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Original model

declarations
produce: array (PERIODS, GASES) of mpvar
inventory: array (PERIODS, GASES) of mpvar

end-declarations

forall(t in PERIODS, g in GASES) do
inventory(0,g) + sum(tp in PERIODS | tp <= t)
(produce (tp,g) - DEMAND(tp,g)) >= 0

inventory (t,g) <= INV_CAP (g)
produce (t,g) <= PROD_CAP (g)

end-do

minimize(sum (t in PERIODS, g in GASES)

(PROD_COST * produce(t,g) + INV_COST * inventory(t,g)))
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Robust model

declarations
produce: array (PERIODS, GASES) of mpvar
inventory: array (PERIODS, GASES) of mpvar
interrupt: array (PERIODS) of uncertain

end-declarations

forall(t in PERIODS, g in GASES) do
inventory(0,g) + sum(tp in PERIODS | tp <= t)
((1-interrupt(tp))*produce(tp,g)-DEMAND(tp,g))>=0

inventory (t,g) <= INV_CAP (g)
produce (t,g) <= PROD_CAP (g)

end-do

sum(t in PERIODS) interrupt (t) <= MAX NINTERR

minimize(sum (t in PERIODS, g in GASES)

(PROD_COST * produce(t,g) + INV_COST * inventory(t,g)))
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Modeling advantage

Modeling this is much easier with the mmrobust module.

The alternative: add the dual constraints to the model.

I Error prone
I Only suited to a user with good knowledge of optimization,

duality, and robust optimization
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Original problem

min
∑

t∈T cprod
g prodtg + cinv

g invtg

s.t. inv0,g +
∑

τ≤t (prodτ,g − demτ,g) ≥ 0 ∀t ∈ T
0 ≤ prodt ,g ≤ Pg ∀t ∈ T , τ ∈ T
0 ≤ invt ,g ≤ Cg ∀t ∈ T , τ ∈ T

© 2015 Fair Isaac Corporation.



Robust problem

min
∑

t∈T cprod
g prodtg + cinv

g invtg

s.t. inv0,g +
∑

τ≤t (prodτ,g − demτ,g)

−
∑

τ∈T µ
t
τ + kσt ≥ 0 ∀t ∈ T

µt
τ + σt ≥ prodτ,g ∀t ∈ T , τ ≤ t
µt
τ + σt ≥ 0 ∀t ∈ T , τ > t
µt
τ ≥ 0, σt ≥ 0 ∀t ∈ T , τ ∈ T

0 ≤ prodt ,g ≤ Pg ∀t ∈ T , τ ∈ T
0 ≤ invt ,g ≤ Cg ∀t ∈ T , τ ∈ T
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Exercise session II (25-30 minutes)

Complete exercise4.mos.
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Exercise session I (25-30 minutes)

Complete exercise1.mos, exercise2.mos, and exercise3.mos.
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