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Mixed-Integer Nonlinear Optimization

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x)

subject to c(x) ≤ 0
x ∈ X
xi ∈ Z for all i ∈ I

f : Rn → R, c : Rn → Rm smooth (often convex) functions

X ∈ Rn bounded, polyhedral set, e.g. X = {x : l ≤ AT x ≤ u}
I ⊂ {1, . . . , n} subset of integer variables

xi ∈ Z for all i ∈ I ... combinatorial problem

Combines challenges of handling nonlinearities
with combinatorial explosion of integer variables

More general constraints possible, e.g. l ≤ c(x) ≤ u etc.
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Complexity of MINLP

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x)

subject to c(x) ≤ 0
x ∈ X
xi ∈ Z for all i ∈ I

Complexity of MINLP

MINLP is NP-hard: includes MILP, which are NP-hard
[Kannan and Monma, 1978]

Worse: MINLP are undecidable [Jeroslow, 1973]:
quadratically constrained IP for which no computing device
can compute the optimum for all problems in this class
... but we’re OK if X is compact!
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Convexity of Nonlinear Functions

MINLP techniques distinguish convex and nonconvex MINLPs.
For our purposes, we define convexity as ...

Definition

A function f : Rn → R is convex, iff ∀x (0), x (1) ∈ Rn we have:

f (x (1)) ≥ f (x (0)) + (x (1) − x (0))T∇f (0)

In a slight abuse of notation, we say that ...

Definition

MINLP is a convex if the problem functions f (x) and c(x) are
convex functions. If either f (x) or any ci (x) is a nonconvex
function, then MINLP is nonconvex.
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Convexity (cont.)

We also define the convex hull of a set S as ...

Definition

For a set S , the convex hull of S is conv(S):{
x |x = λx (1) + (1− λ)x (0), ∀0 ≤ λ ≤ 1, ∀x (0), x (1) ∈ S

}
.

If X = {x ∈ Zp : l ≤ x ≤ u} and l ∈ Zp, u ∈ Zp,
then conv(X ) = [l , u]p

Finding convex hull is hard, even for polyhedral X .

Convex hull important for MILP ...

Theorem

MILP can be solved as LP over the convex hull of feasible set.
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MILP 6= MINLP
Important difference between MINLP and MILP

minimize
x

n∑
i=1

(xi − 1
2 )2, subject to xi ∈ {0, 1}

... solution is not extreme point (lies in interior)
Remedy: Introduce objective η and a constraint η ≥ f (x)



minimize
η,x

η,

subject to f (x) ≤ η,
c(x) ≤ 0,
x ∈ X ,
xi ∈ Z, ∀i ∈ I .

Assume wlog that MINLP objective
is linear

x1

x2

(x̂1, x̂2)

η
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MINLP Modeling Practices

Modeling plays a fundamental role in MILP see [Williams, 1999]
... even more important in MINLP

MINLP combines integer and nonlinear formulations

Reformulations of nonlinear relationships can be convex

Interactions of nonlinear functions and binary variables

Sometimes we can linearize expressions

MINLP Modeling Preference

We prefer linear over convex over nonconvex formulations.
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Convexification of Binary Quadratic Programs

Consider pure binary quadratic function

q(x) = xTQx + gT x where x ∈ {0, 1}p

Let λ be smallest eigenvalue of Q

If λ ≥ 0 then q(x) is convex

Convexification of Binary Quadratics

Let W := Q − λI and c := g + λe, where e = (1, . . . , 1),
then q(x) = xTWx + cT x is convex.
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Linearization of Constraints

Assume x2 6= 0. A simple transformation (a constant parameter):

x1

x2
= a ⇔ x1 = ax2

Linearization of bilinear terms x1x2 with:

Binary variable x2 ∈ {0, 1}
Variable upper bound: 0 ≤ x1 ≤ Ux2

... introduce new variable x12 to replace x1x2 and add constraints

0 ≤ x12 ≤ x2U and − U(1− x2) ≤ x1 − x12 ≤ U(1− x2),
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Never Multiply a Nonlinear Function by a Binary

Previous example generalizes to nonlinear functions
Often binary variables “switch” constraints on/off

Warning

Never model on/off constraints by multiplying by a binary variable.

Three alternative approaches

Disjunctive programming, see [Grossmann and Lee, 2003]

Perspective formulations (not always), see
[Günlük and Linderoth, 2012]

Big-M formulation (weak relaxations)
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Design of Water Distribution Networks

Goal: Design minimum cost
network from discrete pipe
diameters to meet water demand

Sets

N nodes in network

S source nodes

A: arcs in the network

K: Pipe diameters
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Design of Water Distribution Networks

Variables

qij : flow pipe (i , j) ∈ A
hi : hydraulic head at node i ∈ N
dij : diameter of pipe (i , j) ∈ A, where dij ∈ {P1, . . . ,Pr}
aij : area of cross section (i , j) ∈ A
yijk : Binary variable = 1 if pipe of size k ∈ K chosen for (i , j) ∈ A

Constraints

Conservation of flow∑
(i ,j)∈A

qij −
∑

(j ,i)∈A

qji = Di , ∀i ∈ N \ S.

Flow bounds: (linear in a, but since aij = 0.25πd2
ij , nonlinear

in d)
−Vmaxaij ≤ qij ≤ Vmaxaij , ∀(i , j) ∈ A.
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Design of Water Distribution Networks

Discrete pipe sizes dij ∈ {P1, . . . ,Pr}
Use “multiple choice” integrality to remove nonlinearity
aij = πd2

ij/4

This is in general a good modeling practice

1 Binary variables yijk ∈ {0, 1} for k ∈ K
2 Model discrete choice as∑

k∈K
yijk = 1, and

∑
k∈K

Pkyijk = dij . ∀(i , j) ∈ A

3 Model aij = πd2
ij/4 (nonlinear) as

aij =
∑
k∈K

(π
4
Pk

)2
yijk ∀(i , j) ∈ A
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Design of Water Distribution Networks

Nonsmooth, nonlinear pressure loss as a function of flow qij
along arc (i , j) ∈ A and diameter dij :

hi − hj = κijd
−c1
ij sgn(qij)|qij |c2 ∀(i , j) ∈ A

Another trick: disaggregate flow into flow variables for each
pipe size:

qij =
∑
k∈K

qijk

(−Vmaxaij)yijk ≤ qijk ≤ (Vmaxaij)yijk
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Why On Earth?

Doing this allows us to write
the (nonlinear) headloss as a
function of a single variable
qijk

Often in applications, the
nonlinearity is
low-dimensional (low
∈ {1, 2})

Therefore a piecewise linear
approximation (or
relaxation) may be
sufficiently accurate

Luedtke’s Theorem!

Note also that
yijk = 0⇒ qijk = 0

q

f (q) = sgn(q)|q|c2
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Optimization of IEEE 802.11 Broadband Networks

Optimize 802.11 broadband networks for resource sharing meshes

objective: minimizing co-channel and inter-channel
interference

integrality: assign channels to basic nodes within a network

13 Direct Sequence Spread Spectrum (DSSS) overlapping
channels

co-channel interference: two access points with same channel

inter-channel interference: cards with overlapping channels
transmit simultaneously

⇒ general nonconvex MINLP

Original model has one horrible constraint ...
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Optimization of IEEE 802.11 Broadband Networks

... and the horrible constraint is ...

z =
1

1 + 1000(x − y)10

highly nonlinear/nonconvex

z = 1, if x = y

z = 0, if x 6= y

x , y integer (channels)

model as MIP not NLP

Exercise

Assuming that 0 ≤ x , y ≤ U are integers, derive an equivalent
linear model.
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Relaxation and Constraint Enforcement

Relaxation

Used to compute a lower bound on the optimum

Obtained by enlarging feasible set; e.g. ignore constraints

Typically much easier to solve than MINLP

Constraint Enforcement

Exclude solutions from relaxations not feasible in MINLP

Refine or tighten of relaxation; e.g. add valid inequalities

Upper Bounds

Obtained from any feasible point; e.g. solve NLP for fixed xI
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Classes of Relaxations for Convex MINLP

Nonlinear and polyhedral relaxation
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Nonlinear Branch and Bound

Solve continuous “natural” NLP relaxations
... branch to “enforce” integrality

... creates branch-and-bound tree
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Nonlinear Branch and Bound

Solve NLP relaxation (xI continuous, not integer)

minimize
x

f (x) subject to g(x) ≤ 0, x ∈ X

If xi ∈ Z ∀ i ∈ I , then solved MINLP

If relaxation is infeasible, then MINLP infeasible

... otherwise search tree whose nodes are NLPs:
minimize

x
f (x),

subject to g(x) ≤ 0,
x ∈ X ,
li ≤ xi ≤ ui , ∀i ∈ I .

(NLP(l , u))

NLP relaxation is NLP(−∞,∞)
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Nonlinear Branch and Bound

Branching: solution x ′ of (NLP(l , u)) feasible but not integral:

Find a nonintegral variable, say x ′i , i ∈ I .

Introduce two child nodes with bounds
(l−, u−) = (l+, u+) = (l , u) and setting:

u−i := bx ′i c, and l+i := dx ′i e

⇒ create NLP(l−, u−) / NLP(l+, u+) (down/up branch)

Pruning Rules: Let U upper bound on solution

1 (NLP(l , u)) infeasible ⇒ NLPs in subtree also infeasible

2 Integer feasible solution x (l ,u) of (NLP(l , u)):

If f (x (l,u)) < U, then new x∗ = x (l,u) and U = f (l,u).
Otherwise, prune node: no better solution in subtree

3 Optimal value of (NLP(l , u)), f (x (l ,u)) ≥ U
⇒ prune node: no better integer solution in subtree
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Nonlinear Branch and Bound

Solve relaxed NLP (0 ≤ x ≤ 1) . . . solution gives lower bound

1 Solve NLPs & branch on xi until

2 Node infeasible: •
3 Node integer feasible: �
⇒ get upper bound (U)

4 Lower bound ≥ U:

Search until no unexplored nodes

Theorem (Convergence)

Assume that:

X bounded polyhedral set;

NLP solver returns global min.

⇒ BnB terminates at optimal solution

infeasible

integer

feasible
UBD

dominated

by UBD

x=0 x=1
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Nonlinear Branch and Bound

BnB trees can get pretty large ...

Synthesis MINLP B&B Tree: 10000+ nodes after 360s

... be smart about solving NLPs & searching tree ...

Common Theme in MINLP

Extend proven MILP techniques to MINLP
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Relaxations of Nonlinear Convex Constraints
Relaxing Convex Constraints

Convex 0 ≥ c(x) and η ≥ f (x) relaxed by supporting
hyperplanes

η ≥ f (k) +∇f (k)T (x − x (k))

0 ≥ c(k) +∇c(k)T (x − x (k))

for a set of points x (k), k = 1, . . . ,K .

Obtain polyhedral relaxation of convex constraints.

Used in the outer approximation methods.

29 / 43



MILP Master Problem & Relaxations

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x) subject to g(x) ≤ 0, x ∈ X , and xi ∈ Z for all i ∈ I

Equivalent MILP master problem for f , g convex:
minimize

η,x
η

subject to η ≥ f (k) +∇f (k)T (x − x (k)), ∀k ∈ K
0 ≥ g (k) +∇g (k)T (x − x (k)), ∀k ∈ K
x ∈ X , xi ∈ Z for all i ∈ I

where ∃ finite set K =
{
k : x (k) ∈ X , x

(k)
I ∈ Zp

}
and

f (k) = f (x (k)) etc.

MILP relaxation use J ⊂ K
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LP/NLP Branch and Bound

LP/NLP-based branch-and-bound

Branch-and-cut algorithm with cuts from NLP solves

Create MILP relaxation of MINLP

& refine linearizations

0 ≥ g(x) 0 ≥ g (k) +∇g (k)T (x − x (k))

Search MILP-tree ⇒ faster re-solves

Interrupt MILP tree-search to create new linearizations
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LP/NLP-Based Branch and Bound

Aim: avoid perform tree-search on “cheaper” MILP tree
NLP subproblem for fixed x̂I :

NLP(x̂I )

{
min
x

f (x)

s.t. g(x) ≤ 0, xI = x̂I

Relax MILP master

Start initial MILP tree

interrupt MILP, when x
(j)
I integral

solve NLP(x
(j)
I ) get x (j)

linearize f , c about x (j)

add linearization to tree

continue MILP tree-search

... until lower bound ≥ upper bound
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Outer Approximation, Benders Decomposition & ECP
Alternate between solve of NLP(xI ) and MILP relaxation

MILP ⇒ lower bound; NLP ⇒ upper bound
Snag: Solve multiple MILPs ... no hot-starts

Outer approximation [Duran and Grossmann, 1986]

Benders decomposition [Geoffrion, 1972]

Extended cutting plane [Westerlund and Pettersson, 1995]
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Solvers for MINLP

Convex Nonconvex
α-ECP α-BB
BONMIN ANTIGONE
DICOPT BARON
FilMINT COCONUT
GUROBI† COUENNE
KNITRO CPLEX‡
MILANO LGO
MINLPBB LindoGlobal
MINOPT SCIP
MINOTAUR
SBB
Xpress†
†MIQP ‡MIQP/convex MIQP

Open-source and commercial solvers
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What Could Go Wrong in MINLP?

Syn20M04M : a synthesis design problem
in chemical engineering

Problem size: 160 Integer Variables,
56 Nonlinear constraints

1000+ nodes after solving for 75s

5000+ nodes after solving for 200s

See solution this afternoon!

250+ nodes after solving for 45s

Solver CPU Nodes

Bonmin >2h >149k
MINLPBB >2h >150k
Minotaur >2h >264k
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Improving Coefficients: An Example

(1) x1 + 21x2 ≤ 30

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}
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(1) x1 + 21x2 ≤ 30

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}

If x2 = 0

x1 + 0 ≤ 30

(1) is loose.

If x2 = 1

x1 ≤ 9

(1) is tight.

(0,0)

(0,1)
(9,1)

(14,0)

x1 + 21x2 ≤ 30

(0,0)

(0,1)
(9,1)

(14,0)

x1 + 5x2 ≤ 14

Reformulation:

(2) x1 + 5x2 ≤ 14

0 ≤ x1 ≤ 14

x2 ∈ {0, 1}

If x2 = 0

x1 + 0 ≤ 14

(2) is tight.

If x2 = 1

x1 ≤ 9

(2) is tight.

(1) and (2) equivalent. But relaxation of (2) is tighter.
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Improving Coefficients: Using Implications
Common MINLP structure: x0 ∈ {0, 1}, and xi ∈ R:

c(x1, x2, . . . , xk) ≤ M(1− x0)

0 ≤ x1 ≤ M1x0

0 ≤ x2 ≤ M2x0

. . .

0 ≤ xk ≤ Mkx0

x0 ∈ {0, 1}

x0 = 0⇒ x1 = x2, . . . = xk = 0. (Implications)

If cu := c(0, . . . , 0) < M, then we can improve coefficients

c(x1, . . . , xk) ≤ cu(1− x0)

harder without 0 ≤ xi ≤ Mix0 (need global minimization)
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Presolve for MINLP

Advanced functions of presolve (Reformulating):

Improve coefficients.

Disaggregate constraints.

Derive implications and conflicts.

Basic functions of presolve (Housekeeping):

Tighten bounds on variables and constraints.

Fix/remove variables.

Identify and remove redundant constraints.

Check duplicacy.

Popular in Mixed-Integer Linear Optimization [Savelsbergh, 1994]
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Presolve for MINLP: Computational Results

Syn20M04M from egon.cheme.cmu.edu

No Presolve Basic Presolve Full Presolve

Variables: 420 328 292
Binary Vars: 160 144 144
Constraints: 1052 718 610
Nonlin. Constr: 56 56 56
Bonmin(sec): >7200 NA NA
Minotaur(sec): >7200 >7200 2.3

Minotaur, no presolve: 10000+ nodes after solving for 360s

Full Presolve
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Presolve for MINLP: Results
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Presolve for MINLP: Results
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Take Home Messages

Modeling is extremely important for MINLP
... strong relaxations are key

Effective MILP techniques useful for MINLP
... more work can be done!

MINLP software maturing,
... but lags behind commercial MILP software

Linear better than convex better than nonconvex

Exploit structure whenever possible

42 / 43



MINOTAUR’s Soft-Wear Stack

... available at www.mcs.anl.gov/minotaur
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