

Overview

- Linear Programming
 - Historical perspective
 - Computational progress
- Mixed Integer Programming
 - Introduction: what is MIP?
 - Solving MIPs: a bumpy landscape
 - Computational progress

The Early History

- ▶ 1947 George Dantzig invents simplex method for LP
 - Introduced the idea of an objective function
 - Promoted the idea of actually using LP to make decisions
 - 4 Nobel Prizes in LP
 - First LP solved: Laderman (1947), 9 cons., 77 vars., 120 mandays.
- ▶ 1951 First computer code for solving LPs
- ▶ 1960 LP commercially viable
 - Used largely by oil companies
- ▶ 1970 MIP commercially viable
 - MPSX/370, UMPIRE

The Decade of the 70's

Interest in optimization flowered

- Numerous new applications identified
 - Large scale planning applications particularly popular

Significant difficulties emerged

- Building application was very expensive and very risky
 - 3-4 year development cycles
 - Developers and application owners had to be multi-faceted experts: Computer,
 Data, Algorithm, and Modeling skills necessary.
 - "Deploying an application was virtually impossible"
 - Technology just wasn't ready: LPs were hard and MIP was a disaster
- Result: Disillusionment and much of that disillusionment persists to this day.

The Decade of the 80's

Mid 80's:

- There was perception was that LP software had progressed about as far as it could go – MPSX/370 and MPSIII
- BUT LP was definitely not a solved problem ... example:
 "Unsolvable" airline LP model with 4420 constraints, 6711 variables

There were several key developments

- IBM PC introduced in 1981
- Relational databases developed:
 - Separation of logical and physical allocation of data.
 - ERP systems introduced.
- Karmarkar's 1984 paper on interior-point methods

The Decade of the 90's

- LP performance takes off
 - LP software becomes embeddable and flexible
 - Algorithms
 - Primal-dual log-barrier algorithms completely reset the bar
 - Simplex algorithms unexpectedly kept pace
- Data became plentiful and accessible
 - ERP systems became commonplace
- Popular new applications begin to show that Optimization could work on difficult, real problems
 - Business: Airlines, Supply-Chain
 - Academic: Traveling Salesman Problem

Linear Programming

401,640 constraints 1,584,000 variables

- Test: Went back to 1st CPLEX (1988)
- 1988 (CPLEX 1.0): Houston, 13 Nov 2002

401,640 constraints 1,584,000 variables

- Test: Went back to 1st CPLEX (1988)
- 1988 (CPLEX 1.0):
 8.0 days (Berlin, 21 Nov)

401,640 constraints 1,584,000 variables

- Test: Went back to 1st CPLEX (1988)
- 1988 (CPLEX 1.0): 15.0 days (Dagstuhl, 28 Nov)

401,640 constraints 1,584,000 variables

- Test: Went back to 1st CPLEX (1988)
- 1988 (CPLEX 1.0): 19.0 days (Amsterdam, 2 Dec)

401,640 constraints 1,584,000 variables

- Test: Went back to 1st CPLEX (1988)
- 1988 (CPLEX 1.0): 23.0 days (Houston, 6 Dec)

401,640 constraints 1,584,000 variables

Solution time line (2.0 GHz Pentium 4):

Test: Went back to 1st CPLEX (1988)
 Speedup

• 1988 (CPLEX 1.0): 29.8 days **1x**

• 1997 (CPLEX 5.0): 1.5 hours 480x

2003 (CPLEX 9.0): 59.1 seconds 43500x

The algorithm: Dantzig's primal simplex algorithm!

Progress in LP: 1988—2004

(Operations Research, Jan 2002, pp. 3-15, updated in 2004)

- Algorithms (machine independent):
 - Primal *versus* best of Primal/Dual/Barrier 3,300x
- ► Machines (workstations \rightarrow PCs): 1,600x
- NET: Algorithm \times Machine 5,300,000x (2 months/5300000 \sim = 1 second)

Progress in LP: 1988—2015

All times relative to Dual Simplex (> 1.0x => Dual faster)

▶ Algorithm comparison – 2004 (CPLEX)

Dual simplex vs. primal: 2.70x

Dual simplex vs. barrier: 1.06x

▶ Algorithm comparison – 2015 (Gurobi)

Dual simplex vs. primal: 2.11x

Dual simplex vs. barrier: 0.51x

Dual simplex vs. concurrent: 0.40x

LP Today

- Practitioners consider LP a solved problem
- Large models can now be solved robustly and quickly
 - Regularly solve models with millions of variables and constraints

LP Today

- However, a word of warning ...
 - Real applications still exist where LP performance is an issue
 - ~2% of MIPs are blocked by LP performance
 - Challenging pure-LP applications persist
 - Ex: Power industry (Financial Transmission Right Auctions)
 - Challenge: Further research in LP algorithms is needed (there has been little progress since 2004)

Mixed Integer Programming

A Definition

A mixed-integer program (MIP) is an optimization problem of the form

Minimize $c^{T}x$ Subject to Ax = b $l \le x \le u$ some or all x_{i} integer

Customer Applications

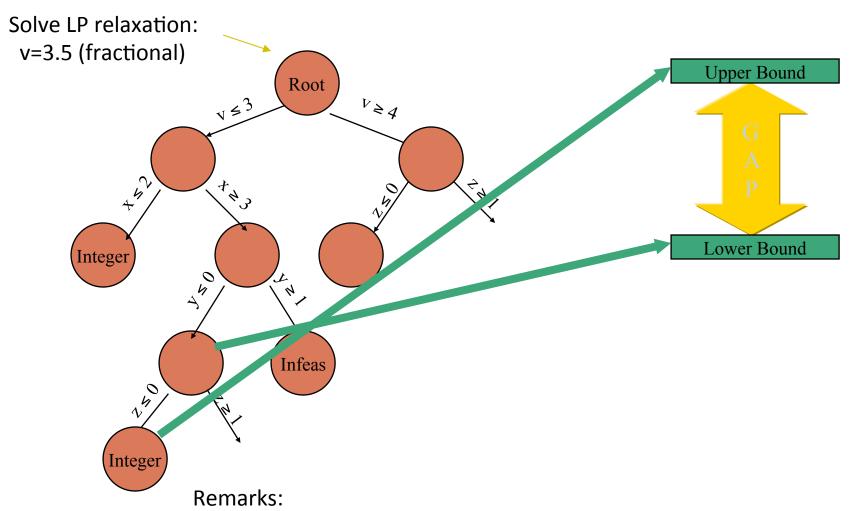
(2012 Gurobi Sales – 200+ new customers)

- Accounting
- Advertising
- Agriculture
- Airlines
- ATM provisioning
- Compilers
- Defense
- Electrical power
- Energy
- Finance
- Food service
- Forestry
- Gas distribution
- Government
- Internet applications
- Logistics/supply chain
- Medical
- Mining

- National research labs
- Online dating
- Portfolio management
- Railways
- Recycling
- Revenue management
- Semiconductor
- Shipping
- Social networking
- Sourcing
- Sports betting
- Sports scheduling
- Statistics
- Steel Manufacturing
- Telecommunications
- Transportation
- Utilities
- Workforce Management

Solving MIPs

MIP solution framework: LP based Branch-and-Bound



- (1) GAP = $0 \Rightarrow$ Proof of optimality
- (2) In practice: Often good enough to have good Solution

A Bumpy Solution Landscape

Example 1: LP still can be HARD

SGM: Schedule Generation Model 157323 rows, 182812 columns

- □ LP relaxation at root node:
 - 18 hours
- □ Branch-and-bound
 - 1710 nodes, first feasible
 - 3.7% gap
 - Time: 92 days!!
- MIP does not appear to be difficult: LP is a roadblock

Example 2: MIP really is HARD

A customer model: 44 constraints, 51 variables, maximization 51 general integer variables (and no bounds)

Branch-and-bound: Initial integer solution -2186.0

Initial upper bound -1379.4

...after 1.4 days, 32,000,000 B&B nodes, 5.5 Gig tree

Integer solution and bound: UNCHANGED

What's wrong? Bad modeling. Free GIs chase each other off to infinity.

Example 2: Here's what's wrong

Maximize
$$x + y + z$$
Subject To
 $2x + 2y \le 1$
 $z \le 0$
 x, y, z free
 x, y integer

Note: This problem can be solved in several ways

- Fix z to 0 and remove, objective is integral [*Presolve*]
- Euclidean reduction on the constraint [*Presolve*]

However: Branch-and-bound cannot solve!

Example 3: A typical situation today - Supply-chain scheduling

- Model description:
 - Weekly model, daily buckets: Objective to minimize end-of-day inventory.
 - Production (single facility), inventory, shipping (trucks), wholesalers (demand known)
- Initial modeling phase
 - Simplified prototype + complicating constraints (production run grouping req't, min truck constraints)
 - RESULT: Couldn't get good feasible solutions.
- Decomposition approach
 - Talk to current scheduling team: They first decide on "producibles" schedule. Simulate using heuristics.
 - Fixed model: Fix variables and run MIP

Supply-chain scheduling (continued): Solving the fixed model

CPLEX 5.0 (1997):

```
Integer optimal solution (0.0001/0): Objective = 1.5091900536e+05
Current MIP best bound = 1.5090391809e+05 (gap = 15.0873)
Solution time = 3465.73 sec. Iterations = 7885711 Nodes = 489870 (2268)
```

CPLEX 11.0 (2007):

```
Implied bound cuts applied: 60
Flow cuts applied: 85
Mixed integer rounding cuts applied: 41
Gomory fractional cuts applied: 29

MIP - Integer optimal solution: Objective = 1.5091900536e+05
Solution time = 0.63 sec. Iterations = 2906 Nodes = 12
```

Original model: Now solvable to optimality in ~100 seconds (20% improvement in solution quality)

Computational History: 1950 –1998

- 1954 Dantzig, Fulkerson, S. Johnson: 42 city TSP
 - Solved to optimality using LP and cutting planes
- 1957 Gomory
 - Cutting plane algorithms
- 1960 Land, Doig; 1965 Dakin
 - B&B
- 1969 LP/90/94
 - First commercial application (British Pet, ref: Max Shaw)
- IBM 360 computer
 - 1974 MPSX/370
 - 1976 Sciconic
 - LP-based B&B
 - MIP became commercially viable

- 1975 1998 Good B&B remained the state-of-the-art in commercial codes, in spite of
 - Edmonds, polyhedral combinatorics
 - 1973 Padberg, cutting planes
 - 1973 Chvátal, revisited Gomory
 - 1974 Balas, disjunctive programming
 - 1983 Crowder, Johnson, Padberg: PIPX, pure 0/1 MIP
 - 1987 Van Roy and Wolsey: MPSARX, mixed 0/1 MIP
 - TSP, Grötschel, Padberg, ...

1998 ... A New Generation of MIP Codes

- Linear programming
 - Stable, robust dual simplex
- Variable/node selection
 - Influenced by traveling salesman problem
- Primal heuristics
 - 12 different tried at root
 - Retried based upon success
- Node presolve
 - Fast, incremental bound strengthening (very similar to Constraint Programming)

- Presolve numerous small ideas
 - Probing in constraints:

$$\sum_{j} x_{j} \leq (\sum_{j} u_{j}) y, \quad y = 0/1$$

$$\rightarrow x_j \le u_j y \text{ (for all j)}$$

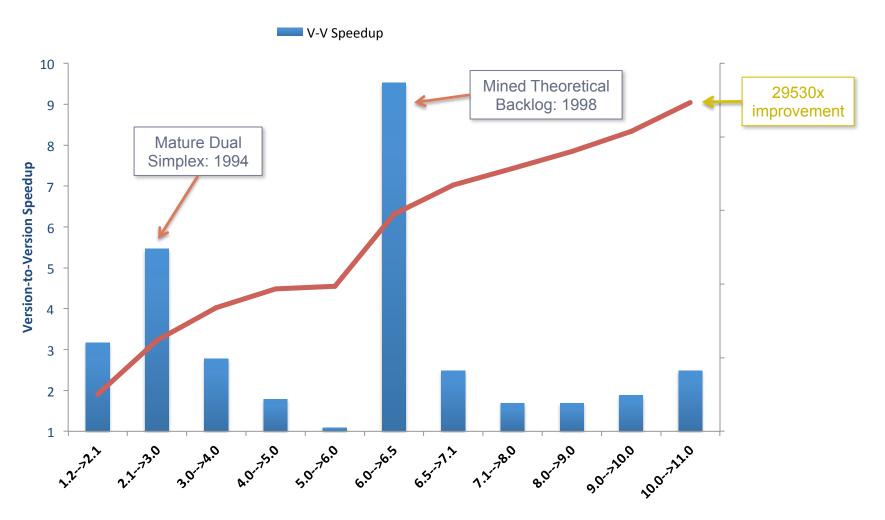
- Cutting planes
 - Gomory, mixed-integer rounding (MIR), knapsack covers, flow covers, cliques, GUB covers, implied bounds, zero-half cuts, path cuts

MIP Speedups

Some Test Results

- ▶ Test set: 1852 real-world MIPs
 - Full library
 - 2791 MIPs
 - Removed:
 - 559 "Easy" MIPs
 - 348 "Duplicates"
 - 22 "Hard" LPs (0.8%)
- Parameter settings
 - Pure defaults
 - 30000 second time limit
- Versions Run
 - CPLEX 1.2 (1991) -- CPLEX 11.0 (2007)

CPLEX Version Performance Improvements (1991–2008)

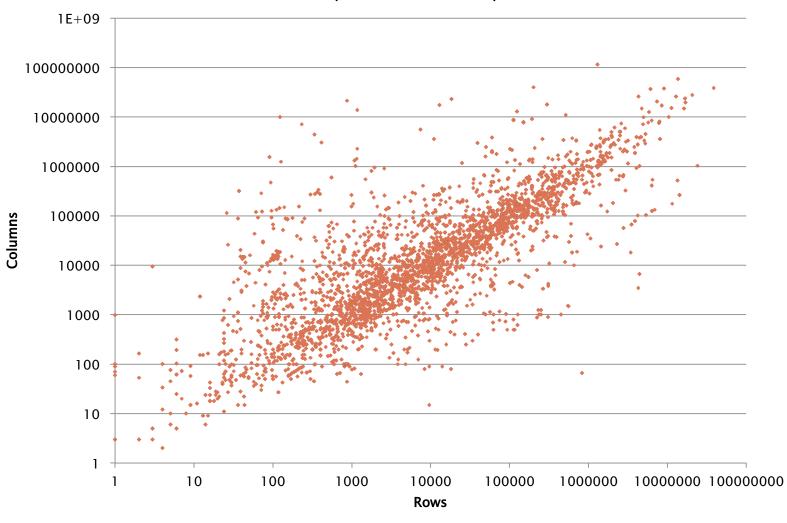


CPLEX Version-to-Version Pairs

Progress: 2009 - Present

Gurobi MIP Library

(3550 models)



MIP Speedup 2009-Present

- Starting point
 - Gurobi 1.0 & CPLEX 11.0 ~equivalent on 4-core machine
- Gurobi Version-to-version improvements

```
    Gurobi 1.0 -> 2.0: 2.4X
```

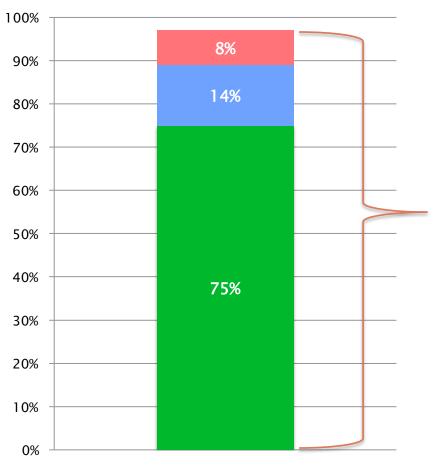
```
Gurobi 2.0 -> 3.0: 2.2X (5.1X)
```

- Gurobi 6.0 -> (6.5): 1.4X (38.6X)
- Machine-independent IMPROVEMENT since 1991
 - Over 1.1M X -- 1.8X/year

MIP Solvability

Solvability of MIPs - Gurobi (6.5)

3550 MIPs, 30000 second time limit, run with defaults



97% (107 MIPs found no solution)

- 54 blocked by LP, ~1.5%
- 16 tunable
- 37 remain, ~1%

Suppose you were given the following choices:

- Option 1: Solve a MIP with today's solution technology on a machine from 1991
- Option 2: Solve a MIP with 1991 solution technology on a machine from today

Which option should you choose?

 Answer: Option 1 would be faster by a factor of approximately ~300.

Questions?

