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Mixed Integer Programming

 A mixed-integer program (MIP) is an optimization problem of the 
form

 Why do we care about this problem?
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Applications

 Accounting

 Advertising

 Agriculture

 Airlines

 ATM provisioning

 Compilers

 Defense

 Electrical power 

 Energy 

 Finance 

 Food service

 Forestry

 Gas distribution

 Government

 Internet applications

 Logistics/supply chain 

 Medical

 Mining

 National research labs

 Online dating

 Portfolio management

 Railways

 Recycling

 Revenue management

 Semiconductor

 Shipping

 Social networking

 Sports betting

 Sports scheduling

 Statistics

 Steel Manufacturing

 Telecommunications

 Transportation

 Utilities

 Workforce scheduling 

 ...
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National Football League
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NFL Schedule

 NFL revenues (2014) from TV
contracts: ~$5 billion in 2014

 256 games in regular season

 Each team plays 16 games (with 1 BYE) over 17 weeks

 Each team’s opponents are predetermined before 
scheduling 

 NFL begins scheduling immediately after Superbowl
(once all opponents known)

 Input from all 32 clubs (stadium blocks, travel 
considerations, competitive factors, etc.)

 Input from all 5 television partners (key games, dates, 
markets, etc.)

 Entire process takes 2-3 months
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2013 NFL Schedule 

 NBC, CBS, FOX, ESPN, NFLN

 Left NFC (E, N, S, W), Right AFC (E, N, S, W)

DAL NYG PHL WAS CHI DET GB MIN ATL CAR NO TB ARZ STL SF SEA BUF MIA NE NYJ BAL CIN CLE PIT HOU IND JAX TEN DEN KC OAK SD

NYG DAL WAS PHI CIN MIN SF DET NO SEA ATL NYJ STL ARZ GB CAR 1 NE CLE BUF TB DEN CHI MIA TEN SD OAK KC PIT BAL JAC IND HOU

KC DEN SD GB MIN ARZ WAS CHI STL BUF TB NO DET ATL SEA SF 2 CAR IND NYJ NE CLE PIT BAL CIN TEN MIA OAK HOU NYG DAL JAC PHI

STL CAR KC DET PIT WAS CIN CLE MIA NYG ARZ NE NO DAL IND JAC 3 NYJ ATL TB BUF HOU GB MIN CHI BAL SF SEA SD OAK PHI DEN TEN

SD KC DEN OAK DET CHI PIT NE MIA ARZ TB SF STL HOU 4 BAL NO ATL TEN BUF CLE CIN MIN SEA JAC IND NYJ PHI NYG WAS DAL

DEN PHI NYG NO GB DET NYJ ARZ CHI CAR JAC HOU IND 5 CLE BAL CIN ATL MIA NE BUF SF SEA STL KC DAL TEN SD OAK

WAS CHI TB DAL NYG CLE BAL CAR MIN NE PHI SF HOU ARZ TEN 6 CIN NO PIT GB BUF DET NYJ STL SD DEN SEA JAC OAK KC IND

PHI MIN DAL CHI WAS CIN CLE NYG TB STL ATL SEA CAR TEN ARZ 7 MIA BUF NYJ NE PIT DET GB BAL KC DEN SD SF IND HOU JAC

DET PHI NYG DEN DAL MIN GB ARZ TB BUF CAR ATL SEA JAC STL 8 NO NE MIA CIN NYJ KC OAK SF WAS CLE PIT

MIN OAK SD GB CHI DAL CAR ATL NYJ SEA TEN TB 9 KC CIN PIT NO CLE MIA BAL NE IND HOU STL BUF PHI WAS

NO OAK GB MIN DET CHI PHI WAS SEA SF DAL MIA HOU IND CAR ATL 10 PIT TB CIN BAL BUF ARZ STL TEN JAC SD NYG DEN

GB WAS PHI BAL PIT NYG SEA TB NE SF ATL JAC NO MIN 11 NYJ SD CAR BUF CHI CLE CIN DET OAK TEN ARZ IND KC DEN HOU MIA

NYG DAL SF STL TB MIN GB NO MIA ATL DET IND CHI WAS 12 CAR DEN BAL NYJ PIT CLE JAC ARZ HOU OAK NE SD TEN KC

OAK WAS ARZ NYG MIN GB DET CHI BUF TB SEA CAR PHI SF STL NO 13 ATL NYJ HOU MIA PIT SD JAC BAL NE TEN CLE IND KC DEN DAL CIN

CHI SD DET KC DAL PHI ATL BAL GB NO CAR BUF STL ARZ SEA SF 14 TB PIT CLE OAK MIN IND NE MIA JAC CIN HOU DEN TEN WAS NYJ NYG

GB SEA MIN ATL CLE BAL DAL PHI WAS NYJ STL SF TEN NO TB NYG 15 JAC NE MIA CAR DET PIT CHI CIN IND HOU BUF ARZ SD OAK KC DEN

WAS DET CHI DAL PHI NYG PIT CIN SF NO CAR STL SEA TB ATL ARZ 16 MIA BUF BAL CLE NE MIN NYJ GB DEN KC TEN JAC HOU IND SD OAK

PHI WAS DAL NYG GB MIN CHI DET CAR ATL TB NO SF SEA ARZ STL 17 NE NYJ BUF MIA CIN BAL PIT CLE TEN JAC IND HOU OAK SD DEN KC

Home Away
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Partial list of rules and goals

 Teams playing in London play home 
week prior, or have BYE week after

 Bills game in Toronto Week 13 
against ATL, BAL, CAR, KC, MIA or 
NYJ

 No team has earliest BYE in 
consecutive seasons

 No team plays more than two road 
games against team coming off their 
BYE

 All teams playing road Thursday 
games are home the previous week

 All teams playing home Thursday 
games have limited travel previous 
week

 Minimize non-division games during 
hurricane season (in order to “swap” 
sites)

 Minimize 3-game road trips (and 3-
game home stands for teams with 
ticket issues)

 Minimize number of division series 
that end in first half of season

 Minimize number of games that 
would conflict with MLB postseason

 Maximize the number of late-season 
division games

 Minimize early-season games 1PM 
games for teams with weather 
concerns

 Minimize number of Pacific time 
zone teams that play at 1PM ET

 CBS/FOX have at least 3 1PM games 
every week, preferably 
geographically diverse

 CBS/FOX have at least 5 total games

 Team can play no more than 6 prime 
time games, and only 3 teams per 
year can play 6. All other teams can 
play no more than 5 prime time 
games (max 4 NBC)
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DAL NYG PHL WAS CHI DET GB MIN ATL CAR NO TB ARZ STL SF SEA BUF MIA NE NYJ BAL CIN CLE PIT HOU IND JAX TEN DEN KC OAK SD

BB           
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SU-MO

BB            

SU-MO
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SUN

BB               

SUN

BB                     

SUN

BB           

SUN

BB           
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COLL. 
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SU-MO
LEASE 2

BB              
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BB         

TH-MO
LEASE

BB               

MON

BB               

MON

BB                      

MON

BB           

SUN

BB                 
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PGA        
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BB           

MON 3
BB         
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COLL.         
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SNF
NO THU

BB               
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BB               

TH-SU

BB            

SU-MO

BB           

TH-SU

BON        

JOVI
LONDON

BB             

SUN 4
BON             

JOVI

BB                    

TH-SU

BB         

SUN
LONDON

BB        

THU*

DIV DIV DIV BYE NO THU 5 DIV DIV BYE LEASE NASCAR DIV DIV

LCS LCS Marathon NASCAR LEASE AUTO 6 CARNIVAL LCS LCS LCS

LCS LCS NO THU AWAY 7 LCS LCS LCS

WS WS Marathon LONDON MLS 8 WS WS LONDON WS

NO THU BYE 9 BYE

LEASE MLS? 10 LEASE

SOCCER NO THU LEASE 11 NO MNF
NO 

PRIME

MLS? 12 LEASE NO MNF

TGIV TGIV
NO            

SUN 1p 13
HIGH                

SCHOOL

KU 

HOOPS
SEC ACC

NO            

SUN 1p
LEASE

MLS        

CUP 14 Toronto? LEASE BIG 10

ARMY          

NAVY
NO SUN LEASE? 15

16

BELK 17

Stadium blocks

 Of the 544 potential sites, almost 20% unavailable or had some sort 
of conflict

 13 teams had 4 or more potential conflicts, affecting 25% or more of 
their potential home dates
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A $5 billion MIP Model?

 All constraints captured in one MIP:

◦ original: 25K rows, 20K cols, 800K 
nz

◦ presolved: 6K rows, 6K cols, 160K nz

 3600 binary variables

 What does a solution look like:

◦ 256 binary variables to set to 1

 Each captures the particulars of one 
game

◦ the rest set to 0
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New York Independent 
System Operator



11 © 2015 Gurobi Optimization

What is NYISO?

 NYISO is a non-profit,
statutory agency

◦ began operating in 1999 

 NYISO primary responsibilities:

◦ operating New York's high-voltage grid

◦ administering and monitoring state's wholesale electricity markets

◦ long-term planning for high-voltage grid

 reliability, future maintenance and expansion

 Size

◦ grid encompasses 11,000 miles of transmission lines

◦ manages 500 power-generation units

◦ administers $7.5 billion in annual transactions
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Optimization Plays a Central Role In NYISO Operations

 Day-ahead problem

◦ unit-commitment for the next day: which units to be used

 markets close 5 am

 commitments must be posted by 11 am

 30 minutes available to compute commitments

 Real-time problem

◦ solved every 5 minutes, restricted unit-commitment

 Real-time dispatch (EASY!)

◦ linear program, solved every 5 minutes

◦ determines generator clearing prices
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Traditional Solution Approach: Lagrangian Relaxation (LR)

 In use since the early 1980s

 Claimed to produce high-quality solutions

 Solution times are quite good

 Considerable reluctance to make a change

 However in 1999 MIP was demonstrated to be a viable alternative*

◦ pressure was mounting to switch

*Rutgers academic-industry meeting sponsored by Federal Energy Regulatory 
Commission (FERC).
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Experience in Other ISOs*

 In 2004, PJM implemented MIP in its day-ahead market

◦ estimated of annual production cost savings of $60 million

 In 2006, PJM implemented MIP in its real-time market look-
ahead

◦ test findings of $100 million in annual savings

 In April 2009, CAISO implemented MIP as part of its Market 
Redesign and Technology Update

◦ estimated savings of $52 million

 In 2009, the Southwest Power Pool (SPP)  introduced MIP 
enhancements to its day-ahead market 

◦ estimated $103 million in annual benefits

*FERC Staff Report, 2011 (Recent ISO Software Enhancements and Future Software and Modeling Plans)
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MIP: Other Advantages

 Maintainability

◦ LR code: 100,000 lines of FORTRAN

◦ understood by only one or two people

 Transparency

◦ MIP formulation has much simpler representation

 easy to read, interpret, and maintain

◦ solutions much easier to defend against legal challenges

 Extensibility

◦ extremely difficult to add constraints to LR

◦ new constraints easy to add to MIP formulation

 combined cycle-generator modeling enabled
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Solution Implementation 

 Solution launch date:  Q2 2014

 Computing environment

◦ 50 HPUX client machines

◦ 12 Linux compute servers (3-production, 3-stage, 3-development)

 Estimated savings: $4M yearly production costs

 Future

◦ underlying models are highly nonlinear

 MIP speed improvements can always be used to improve model accuracy

◦ conclusion:

 continued MIP improvements will lead directly to efficiency gains in electrical-
power markets!
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Conclusion: Use MIP Instead of Custom Solution!

 Easier to maintain a MIP model than complex source code

 Easier to extend a MIP model than to adapt a custom algorithm

 Easier to demonstrate correctness of a MIP model

 Benefit from performance improvements over time coming from MIP 
solver vendors

◦ algorithmic speed-up exceeded hardware speed-up during the last 20 
years!
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Solving Mixed Integer 
Programs
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MIP Application Types

 Static MIP

◦ Formulate problem

◦ Solve it with a black-box MIP algorithm

◦ Read solution

◦ Potentially adjust problem and iterate

◦ most frequent use of MIP in practical applications

 Branch-and-cut

◦ Problem has too many constraints to formulate in static fashion

 e.g., classical TSP model: exponentially many sub-tour elimination constraints

◦ Construct partial problem

◦ Add violated constraints on demand

 "Lazy constraint" separation callback: cut off primal infeasible LP or IP solutions

 Branch-and-price

◦ Problem has too many variables to formulate in static fashion

 e.g., many public transport and airline problems are solved via B&P

◦ Pricing callback: cut off dual infeasible LP solutions

◦ Usually needs problem specific branching rule that is compatible with pricing

◦ Heuristic variant: column generation

 Only apply pricing for the root LP, then solve static MIP with resulting set of variables
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MIP Building Blocks

 Presolve

◦ Tighten formulation and reduce problem size

 Solve continuous relaxations

◦ Ignoring integrality

◦ Gives a bound on the optimal integral objective

 Cutting planes

◦ Cut off relaxation solutions

 Branching variable selection

◦ Crucial for limiting search tree size

 Primal heuristics

◦ Find integer feasible solutions
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MIP Building Blocks

 Presolve

◦ Tighten formulation and reduce problem size

 Solve continuous relaxations

◦ Ignoring integrality

◦ Gives a bound on the optimal integral objective

 Cutting planes

◦ Cut off relaxation solutions

 Branching variable selection

◦ Crucial for limiting search tree size

 Primal heuristics

◦ Find integer feasible solutions
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LP Presolve

 Goal

◦ Reduce the problem size

 Speedup linear algebra during the solution process

 Example

x + y + z ≤ 5 (1)
u – x – z = 0 (2)
………
0 ≤ x, y, z ≤ 1 (3)
u is free (4)

 Reductions

◦ Redundant constraint

 (3)  x + y + z ≤ 3, so (1) is redundant

◦ Substitution

 (2) and (4)  u can be substituted with x + z
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MIP Presolve

 Goals:

◦ Reduce problem size

 Speed-up linear algebra during the solution process

◦ Strengthen LP relaxation

◦ Identify problem sub-structures

 Cliques, implied bounds, networks, disconnected components, ...

 Similar to LP presolve, but more powerful:

◦ Exploit integrality

 Round fractional bounds and right hand sides

 Lifting/coefficient strengthening

 Probing

◦ Does not need to preserve duality

 We only need to be able to uncrush a primal solution

 Neither a dual solution nor a basis needs to be uncrushed
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MIP Presolve

 Goals:

◦ Reduce problem size

 Speed-up linear algebra during the solution process

◦ Strengthen LP relaxation

◦ Identify problem sub-structures

 Cliques, implied bounds, networks, disconnected components, ...

 Similar to LP presolve, but more powerful:

◦ Exploit integrality

 Round fractional bounds and right hand sides

 Lifting/coefficient strengthening

 Probing

◦ Does not need to preserve duality

 We only need to be able to uncrush a primal solution

 Neither a dual solution nor a basis needs to be uncrushed

model
without presolve with presolve

rows cols LP obj rows cols LP obj

roll3000 2291 1166 11097.1 987 855 11120.0

neos-787933 1897 236376 3.0 41 126 30.0
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Single-Row Reductions

 Clean-up rows

◦ Discard empty rows

◦ Discard redundant inequalities: sup{Ar⋅x} ≤ br

◦ Remove coefficients with tiny impact |aij⋅(uj-lj)|

 Bound strengthening

◦ arj > 0, s:= br - inf{Ar⋅x}  xj ≤ lj + s/arj

◦ arj < 0, s:= br - inf{Ar⋅x}  xj ≥ uj + s/arj

 Coefficient strengthening for inequalities

◦ j ∈ I, arj > 0, t:= br - sup{Ar⋅x} + arj > 0

 arj := arj – t, br := br - ujt

2x – y ≤ 1

x – y ≤ 0

s/arj
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Single-Row Reductions – Performance
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 Key to these performance slides:

◦ affected (orig):

 Disabled all presolve methods except for one particular 
reduction, abort after initial presolve

 Chart shows fraction of models for which this method 
found a reduction in the presolve of the original model

◦ affected (all):

 Disabled this one particular reduction, compare vs. 
default run with all reductions enabled

 Chart shows number of models where disabling the 
reduction changes solution path

◦ performance impact

 Disabled this one particular reduction, compare vs. 
default run with all reductions enabled

 Chart shows performance degradation due to disabling 
the reduction

◦ top right number ("23%")

 performance degradation from disabling all presolve
reductions on this slide
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Single-Row Reductions – Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

3
9
%

7
0
%

2
4
%

1
4
%

2
7
%

2
2
%

1
%

7
9
%

7
4
%

5
1
%

6
0
%

5
2
%

4
4
%

1
%

6
.4

%

4
.8

%

3
.3

%

5
.7

%

4
.6

%

0
.0

%

0
.9

%

affected (orig) affected (all) performance impact

benchmark data based on Gurobi 5.6



28 © 2015 Gurobi Optimization

Single-Column Reductions

 Remove fixed variables and empty columns

◦ If |uj-lj| ≤∊, fix to some value in [lj,uj] and move terms to rhs

◦ Choice of value can be very tricky for numerical reasons

 Round bounds of integer variables

 Strengthen semi-continuous and semi-integer variables

 Dual fixing, substitution, and bound strengthening

◦ Variable xj does not appear in equations

◦ cj ≥ 0, A⋅j ≥ 0    xj := lj

◦ cj ≥ 0, A⋅j ≥ 0 except for aij < 0,

z = 0 → row i redundant,  xj := lj + (uj-lj)⋅z
z = 1 → xj = uj

◦ cj ≥ 0, all rows i with aij < 0 redundant for xj ≥ t    xj ≤ max{lj,t}
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Single-Column Reductions – Performance
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Multi-Row Reductions

 Parallel rows

◦ Search for pairs of rows such that coefficient vectors are parallel to each other

◦ Discard the dominated row, or merge two inequalities into an equation

 Sparsify

◦ Add equations to other rows in order to cancel non-zeros

◦ Can also add inequalities with explicit slack variables

 Multi-row bound and coefficient strengthening

◦ Like single-row version, but use other rows to get tighter bound on infimum 
and supremum  tighter bounds, better coefficients

 Clique merging

◦ Merge multiple cliques into larger single clique, e.g.:

x1 + x2 ≤ 1
x1 + x3 ≤ 1

x2 + x3 ≤ 1

with binary variables x1, x2, x3 can be merged into

x1 + x2 + x3 ≤ 1
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Multi-Row Reductions
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Multi-Column Reductions

 Fix redundant penalty variables

◦ Penalty variables: support(A⋅j) = 1

◦ Multiple penalty variables in a single constraint

 Some can be fixed if others can accomplish all that is needed

 Parallel columns (say, columns 1 and 2): A⋅1 = sA⋅2

◦ u2 = ∞, c1 ≥ sc2, 2 ∉ I or (|s| = 1, {1,2} ⊆ I): x1 := l1

◦ l2 = -∞, c1 ≤ sc2, 2 ∉ I or (|s| = 1, {1,2} ⊆ I): x1 := u1

◦ c1 = sc2, 1,2 ∉ I or (|s| = 1, {1,2} ⊆ I): x1' := x1 + sx2

◦ Detection algorithm: two level hashing plus sorting

 Dominated columns: A⋅1 ≥ sA⋅2, only inequalities

◦ u2 = ∞, c1 ≥ sc2, 2 ∉ I or (|s| = 1, {1,2} ⊆ I): x1 := l1

◦ Detection algorithm: essentially pair-wise comparison

 Can be very expensive: needs work limit
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Multi-Column Reductions – Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

PENALTY VARS PARALLEL COLS DOMINATED COLS

5
%

3
1
%

2
9
%

9
%

5
9
%

5
7
%

0
.0

%

5
.7

%

5
.0

%

affected (orig) affected (all) performance impact

benchmark data based on Gurobi 5.6



34 © 2015 Gurobi Optimization

Full Problem Reductions

 Symmetric variable substitution

◦ Integer variables in same orbit can be aggregated if the involved symmetries do not 
overlap

◦ Continuous variables in same orbit can always be aggregated

◦ Issue: symmetry detection can sometimes be time consuming!

 Probing

◦ Tentatively fix binary x = 0 and x = 1, propagate fixing to get domain reductions for 
other variables

 x = 0 → y ≤ u0, x = 1 → y ≤ u1  y ≤ max{u0,u1} (bound strength.)

 x = 0 → y = ly, x = 1 → y = uy  y := ly + (uy-ly)⋅x (substitution)

 ay ≤ b, x = 1 → ay ≤ d < b  ay + (b-d)⋅x ≤ b (lifting)

◦ Sequence dependent

◦ Can be very time consuming

 Needs specialized data structures and algorithms

 Implied Integer Detection

◦ Primal version: ax + y = b, x integer variables, a ∈ ℤn, b ∈ ℤ  y integer

◦ Dual version:

 One of the inequalities for y will be tight, but do not know which

 If all those inequalities lead to primal version of implied integer detection, y is implied integer
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Full Problem Reductions
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MIP Building Blocks

 Presolve

◦ Tighten formulation and reduce problem size

 Solve continuous relaxations

◦ Ignoring integrality

◦ Gives a bound on the optimal integral objective

 Cutting planes

◦ Cut off relaxation solutions

 Branching variable selection

◦ Crucial for limiting search tree size

 Primal heuristics

◦ Find integer feasible solutions



37 © 2015 Gurobi Optimization

Primal and Dual LP

 Primal Linear Program:

 Weighted combination of constraints (y) and bounds (z) yields

 Dual Linear Program:

0

..

min





x

bAxts

xcT

0

..

max





z

czAyts

by
TTT

T

 0 with     zbyxzAxy TTT

Strong Duality Theorem:

(if primal and dual are both feasible)

byxc
TT  
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Karush-Kuhn-Tucker Conditions

 Conditions for LP optimality:

◦ Primal feasibility: Ax = b (x ≥ 0)

◦ Dual feasibility: ATy + z = c (z ≥ 0)

◦ Complementarity: xTz = 0

Primal feas Dual feas Complementarity
Primal simplex Maintain Goal Maintain
Dual simplex Goal Maintain Maintain
Barrier Goal Goal Goal
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Simplex Algorithm

 Phase 1: find some feasible vertex solution

objective
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Simplex Algorithm

 Pricing: find directions in which objective improves and select one of 
them

◦ Gurobi parameters: SimplexPricing, NormAdjust

objective
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Simplex Algorithm

 Ratio test: follow outgoing ray until next vertex is reached

objective
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Simplex Algorithm

 Iterate until no more improving direction is found

objective
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MIP – LP Relaxation

objective

MIP-optimal solutions

LP-optimal solutions
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No feasible solutions can be better than an LP optimum

MIP – LP Relaxation

objective

MIP-optimal solutions

LP-optimal solutions
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Side Note – Performance Variability

 Measuring performance of MIP is a difficult task

 Seemingly performance neutral changes can have a dramatic impact on the solve 
time for an individual model

◦ Changing the random seed

◦ Permuting the columns and rows

 e.g., store model in *.lp file format and reading it back in

◦ Solving model on a different machine

 Different operating system

 Different CPU

 Main reason: degeneracy of LP relaxation

◦ Most models have multiple optimal solutions to their LP relaxation

◦ LP solver's choice of solution is arbitrary

 Depends on random seed, column and row ordering, tiny differences in numerics

◦ Different optimal solution vector leads to different cutting planes, different branching 
decisions, and thus different search tree

 Conclusion: need big test set to measure performance

◦ Use multiple random seeds to artificially increase test set

 More on performance variability: tomorrow
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MIP Building Blocks

 Presolve

◦ Tighten formulation and reduce problem size

 Solve continuous relaxations

◦ Ignoring integrality

◦ Gives a bound on the optimal integral objective

 Cutting planes

◦ Cut off relaxation solutions

 Branching variable selection

◦ Crucial for limiting search tree size

 Primal heuristics

◦ Find integer feasible solutions
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fractional LP-optimal solution

MIP – Cutting Planes

objective
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fractional LP-optimal solution

MIP – Cutting Planes

objective
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fractional LP-optimal solution

MIP – Cutting Planes

objective

new LP-optimal solution
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MIP – Cutting Planes

objective
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MIP – Cutting Planes

objective
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No feasible solutions can be better than an LP optimum

MIP – Cutting Planes

objective

improved dual bound
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Cutting Planes – Overview

 General-purpose cutting planes

◦ Gomory mixed integer cuts

◦ Mixed Integer Rounding (MIR) cuts

◦ Flow cover cuts

◦ Lift-and-project (L&P) cuts

◦ Zero-half and mod-k cuts

◦ ...

 Structural cuts

◦ Implied bound cuts

◦ Knapsack cover cuts

◦ GUB cover cuts

◦ Clique cuts

◦ Multi-commodity-flow (MCF) cuts

◦ Flow path cuts

◦ ...
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Chvatal-Gomory Cuts

 Consider a rational polyhedron

P = {x ∈ Rn | Ax ≤ b, x ≥ 0}, A ∈ ℚmxn, b ∈ ℚm

 We want to find the integer hull PI = conv {x ∈ ℤn | Ax ≤ b, x ≥ 0}

 Chvatal-Gomory procedure:

1. Choose non-negative multipliers λ ∈ ℝm
≥0

2. Aggregated inequality λTAx ≤ λTb is valid for P because λ ≥ 0

3. Relaxed inequality ⌊λTA⌋x ≤ λTb is still valid for P because x ≥ 0

4. Rounded Inequality ⌊λTA⌋x ≤ ⌊λTb⌋ is still valid for PI because x ∈ ℤn

 CG procedure suffices to generate all non-dominated valid 
inequalities for PI in a finite number of iterations!

◦ P(0) = P

◦ P(k) = P(k-1) ∩ {CG cuts for P(k-1)}: k-th CG closure of P - is a polyhedron!

◦ CG rank of a valid inequality for PI: minimum k s.t. inequality is valid for P(k)
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Gomory Fractional Cuts

 How to find the multipliers λ in the Chvatal-Gomory procedure?

 Read them from an optimal simplex tableau!

xi + ⌊(AB
-1)i⋅AN⌋ xN ≤ ⌊(AB

-1)i⋅b⌋

 Note: new slack variable is integer

◦ Hence, procedure can be iterated

 Gomory (1963): These cuts lead to an integral LP solution in a finite 
number of iterations.

 Conclusion:

◦ Integer programs with rational data can be solved by pure cutting plane 
algorithms in finite time

◦ What about mixed integer programs?

◦ And is this result useful in practice?
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Gomory Cuts – Numerics

 Pictures stolen from Zanette, Fischetti and Balas (2011):

"Lexicography and degeneracy: can a pure cutting plane algorithm work?"

 Evolution of optimal basis matrix condition number and average absolute 
coefficient values of Gomory cuts for model "sentoy"

◦ Gomory fractional cuts added in rounds
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Mixed Integer Rounding Cuts

 Consider S := {(x,y) ∈ ℤℝ≥0 | x – y ≤ b}.

Then,

is valid for S with f0 := b - ⌊b⌋.

 Example: x – y ≤ 2.5

 MIR cut: x – 2y ≤ 2

𝑥 −
1

1 − 𝑓0
𝑦 ≤ 𝑏

x – y ≤ 2.5

x – 2y ≤ 2

x

y



58 © 2015 Gurobi Optimization

Mixed Integer Rounding Cuts

 Consider S := {(x,y) ∈ ℤℝ≥0 | x – y ≤ b}.

Then,

is valid for S with f0 := b - ⌊b⌋.

 Consider S := {(x,y) ∈ ℤp
≥0ℝq

≥0 | ax + dy ≤ b}.

Then,

is valid for S with fi := ai - ⌊ai⌋, f0 := b - ⌊b⌋.

 𝑎𝑖 +
𝑚𝑎𝑥 𝑓𝑖−𝑓0,0

1−𝑓0
𝑥𝑖 +  

𝑚𝑖𝑛 𝑑𝑗,0

1−𝑓0
𝑦𝑗 ≤ 𝑏

𝑥 −
1

1 − 𝑓0
𝑦 ≤ 𝑏
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Mixed Integer Rounding Cuts

 General idea just like Chvatal-Gomory cuts:

1. Choose non-negative multipliers λ ∈ ℝm
≥0

2. Aggregated inequality λTAx ≤ λTb is valid for P because λ ≥ 0

3. Apply MIR formula to aggregated inequality to produce cutting plane

 Cut separation procedure of Marchand and Wolsey (1998, 2001):

1. Start with one constraint of the problem (do this for each one), call this the 
"current aggregated inequality"

2. Apply MIR procedure to current aggregated inequality

(a) Complement variables if LP solution is closer to upper bound

(b) For each aj in constraint and each of  ∈ {1,2,4,8} divide the constraint by |aj|

(c) Apply MIR formula to resulting scaled constraint

(d) Choose most violated cut from this set of MIR cuts

(e) Check if complementing one more (or one less) variable yields larger violation

3. If no violated cut was found (and did not yet reach aggregation limit):

(a) Add another problem constraint to the current aggregated inequality such that a 
continuous variable with LP value not at a bound is canceled

(b) Go to 2
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Gomory Mixed Integer Cuts

 Just an alternative way to aggregate constraints

 Read them from an optimal simplex tableau:

◦ Let i be a basis index with xi*  ℤ

◦ Choose λT = (AB
-1)i⋅

◦ Resulting aggregated inequality: xi + (AB
-1)i⋅AN xN ≤ (AB

-1)i⋅b

 Apply MIR formula on resulting aggregated inequality

 In theory, always produces a violated cutting plane

 Practical issues:

◦ Gomory Mixed Integer Cuts can be pretty dense

◦ Numerics (in particular for higher rank cuts) can be very challenging

 But:

◦ If done right, GMICs (together with MIRs) are currently the most important 
cutting planes in practice
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Knapsack Cover Cuts

 A (binary) knapsack is a constraint ax ≤ b with

◦ ai ≥ 0 the weight of item i, i = 1,...,n

◦ b ≥ 0 the capacity of the knapsack

 An index set C ⊆ {1,...,n} is called a cover, if

 A cover C entails a cover inequality

 Interesting for cuts: minimal covers

and for all 

 

𝑖∈𝐶

𝑎𝑖 > 𝑏

 

𝑖∈𝐶

𝑥𝑖 ≤ 𝐶 − 1

 

𝑖∈𝐶

𝑎𝑖 > 𝑏  

𝑖∈𝐶′

𝑎𝑖 ≤ 𝑏 𝐶′ ⊊ 𝐶
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Knapsack Cover Cuts – Example

 Consider knapsack 3x1 + 5x2 + 8x3 + 10x4 + 17x5 ≤ 24, x ∈ {0,1}5

 A minimal cover is C = {1,2,3,4}

 Resulting cover inequality: x1 + x2 + x3 + x4 ≤ 3

 Lifting

◦ If x5 = 1, then x1 + x2 + x3 + x4 ≤ 1

◦ Hence, x1 + x2 + x3 + x4 + 2x5 ≤ 3 is valid

◦ Need to solve knapsack problem αj := d0 - max{dx | ax ≤ b - aj} to find 
lifting coefficient for variable xj

 Use dynamic programming to solve knapsack problem
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Cutting Planes – Performance
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Achterberg and Wunderling: "Mixed Integer Programming: Analyzing 12 Years of Progress" (2013)

benchmark data based on CPLEX 12.5
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MIP Building Blocks

 Presolve

◦ Tighten formulation and reduce problem size

 Solve continuous relaxations

◦ Ignoring integrality

◦ Gives a bound on the optimal integral objective

 Cutting planes

◦ Cut off relaxation solutions

 Branching variable selection

◦ Crucial for limiting search tree size

 Primal heuristics

◦ Find integer feasible solutions
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MIP – Branching

objective
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MIP – Branching

objective

P1 P2
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MIP – Branching

objective

P1 P2
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MIP – Branching

objective

P1 P2

another improvement in dual bound
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LP based Branch-and-Bound

Root

Solve LP relaxation:

v=3.5 (fractional)
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LP based Branch-and-Bound

Root
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LP based Branch-and-Bound

Root

Integer

Upper Bound
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Remarks:
(1) GAP = 0   Proof of optimality
(2) In practice:  good quality solution often enough

LP based Branch-and-Bound

G

A

P

Root

Integer

Infeas

Infeas

Lower Bound

Upper Bound

Infeas
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Solving a MIP Model

Solution

Bound

O
b
je

c
ti

v
e

Time
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Branching Variable Selection

 Given a relaxation solution x*

◦ Branching candidates:

 Integer variables xj that take fractional values

 xj = 3.7 produces two child nodes (x ≤ 3 or x ≥ 4)

◦ Need to pick a variable to branch on

 Choice is crucial in determining the size of the overall search tree
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Branching Variable Selection

 What’s a good branching variable?

◦ Superb: fractional variable infeasible in both branch directions

◦ Great: infeasible in one direction

◦ Good: both directions move the objective

 Expensive to predict which branches lead to infeasibility or big 
objective moves

◦ Strong branching

 Truncated LP solve for every possible branch at every node

 Rarely cost effective

◦ Need a quick estimate
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Pseudo-Costs

 Use historical data to predict impact of a branch:

◦ Record cost(xj) = Δobj / Δxj for each branch

◦ Store results in a pseudo-cost table

 Two entries per integer variable

 Average down cost

 Average up cost

◦ Use table to predict cost of a future branch

c*=13
x* = 2.7
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Pseudo-Costs

 Use historical data to predict impact of a branch:

◦ Record cost(xj) = Δobj / Δxj for each branch

◦ Store results in a pseudo-cost table

 Two entries per integer variable

 Average down cost

 Average up cost

◦ Use table to predict cost of a future branch

c*=13

c*=20 c*=19

x* = 2.7

down pseudo-cost update:

∆obj/∆x = 7/0.7 = 10

up pseudo-cost update:

∆obj/∆x = 6/0.3 = 20
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Pseudo-Costs

 Use historical data to predict impact of a branch:

◦ Record cost(xj) = Δobj / Δxj for each branch

◦ Store results in a pseudo-cost table

 Two entries per integer variable

 Average down cost

 Average up cost

◦ Use table to predict cost of a future branch

c*=13

c*=20 c*=19

c*=17

pseudo costs:

downcost(x) = 10

upcost(x) = 20

x* = 5.4

down estimate:
c' = 17 + 0.4 ⋅ 10 = 21

up estimate:
c' = 17 + 0.6 ⋅ 20 = 29
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Pseudo-Costs Initialization

 What do you do when there is no history?

◦ E.g., at the root node

 Initialize pseudo-costs [Linderoth & Savelsbergh, 1999]

◦ Always compute up/down cost (using strong branching) for new fractional 
variables

 Initialize pseudo-costs for every fractional variable at root

 Reliability branching [Achterberg, Koch & Martin, 2005]

◦ Do not rely on historical data until pseudo-cost for a variable has been 
recomputed r times
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Branching Rules – Performance
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Achterberg and Wunderling: "Mixed Integer Programming: Analyzing 12 Years of Progress" (2013)

benchmark data based on CPLEX 12.5

Achterberg, Koch, and Martin: "Branching Rules Revisited" (2005)
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MIP Building Blocks

 Presolve

◦ Tighten formulation and reduce problem size

 Solve continuous relaxations

◦ Ignoring integrality

◦ Gives a bound on the optimal integral objective

 Cutting planes

◦ Cut off relaxation solutions

 Branching variable selection

◦ Crucial for limiting search tree size

 Primal heuristics

◦ Find integer feasible solutions
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Primal Heuristics Explained on Twitter
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Primal Heuristics

 Try to find good integer feasible solutions quickly

◦ Better pruning during search due to better bound

◦ Reach desired gap faster

◦ Often important in practice: quality of solution after fixed amount of time

 Start heuristics

◦ Try to find integer feasible solution, usually "close" to LP solution

 Rounding heuristics: round LP solution to integral values
 Potentially, try to fix constraint infeasibilities

 Fix-and-dive heuristics: fix variables, propagate, resolve LP

 Feasibility pump: push LP solution towards integrality by modifying objective

 RENS: Solve sub-MIP in neighborhood of LP solution

 Improvement heuristics

◦ Given integer feasible solution, try to find better solution

 1-Opt and 2-Opt: Modify one or two variables to get better objective

 Local Branching: Solve sub-MIP in neighborhood of MIP solution

 Mutation: Solve sub-MIP in neighborhood of MIP solution

 Crossover: Solve sub-MIP in neighborhood of 2 or more MIP solutions

 RINS: Solve sub-MIP in neighborhood of LP and MIP solution
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Primal Heuristics – Performance
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Berthold: "Primal Heuristics for Mixed Integer Programs" (2006)

benchmark data based on SCIP 0.82b
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Primal Heuristics – Measuring Performance

 Is time to optimality a good measure to assess impact of heuristics?

◦ Goal of heuristics is to provide good solutions quickly

◦ Faster progress in dual bound due to additional pruning is only secondary

◦ Often important for practitioners:

 Find any feasible solution quickly to validate that model is reasonable

 Find good solution in reasonable time frame

 Primal gap: 𝛾𝑝  𝑥 =
𝑐𝑇𝑥∗−𝑐𝑇  𝑥

𝑚𝑎𝑥 𝑐𝑇𝑥∗ , 𝑐𝑇  𝑥

 Primal gap function: 𝑝 𝑡 =  
1, if no incumbent until time 𝑡

𝛾𝑝  𝑥 𝑡 , with  𝑥 𝑡 being incumbent at time 𝑡

 Primal integral: 𝑃 𝑇 =  𝑡=0

𝑇
𝑝 𝑡 𝑑𝑡
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Primal Heuristics – Performance
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Putting It All Together
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Gurobi Optimizer version 6.0.0 (linux64)

Copyright (c) 2014, Gurobi Optimization, Inc.

Read MPS format model from file /models/mip/roll3000.mps.bz2

Reading time = 0.03 seconds

roll3000: 2295 rows, 1166 columns, 29386 nonzeros

Optimize a model with 2295 rows, 1166 columns and 29386 nonzeros

Coefficient statistics:

Matrix range    [2e-01, 3e+02]

Objective range [1e+00, 1e+00]

Bounds range    [1e+00, 1e+09]

RHS range       [6e-01, 1e+03]

Presolve removed 1308 rows and 311 columns

Presolve time: 0.08s

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes    |    Current Node    |     Objective Bounds      |     Work

Expl Unexpl |  Obj Depth IntInf | Incumbent    BestBd Gap | It/Node Time

0     0 11120.0279    0  154          - 11120.0279     - -

0     0 11526.8918    0  207          - 11526.8918     - -

0     0 11896.9710    0  190          - 11896.9710     - -
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Which open node should be processed next?
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Branch-and-Cut

Presolving Node Selection

LP Relaxation
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Node Presolve

Branching

Heuristics
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes    |    Current Node    |     Objective Bounds      |     Work

Expl Unexpl |  Obj Depth IntInf | Incumbent    BestBd Gap | It/Node Time

0     0 11120.0279    0  154          - 11120.0279     - - 0s

0     0 11526.8918    0  207          - 11526.8918     - - 0s

0     0 11896.9710    0  190          - 11896.9710     - - 0s

...

H  327   218                    13135.000000 12455.2162  5.18%  42.6    1s

H  380   264                    13093.000000 12455.2162  4.87%  41.6    1s

H  413   286                    13087.000000 12455.2162  4.83%  41.4    1s

1066   702 12956.2676   31  192 13087.0000 12629.5426  3.50%  37.2    5s
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes    |    Current Node    |     Objective Bounds      |     Work

Expl Unexpl |  Obj Depth IntInf | Incumbent    BestBd Gap | It/Node Time

0     0 11120.0279    0  154          - 11120.0279     - -

0     0 11526.8918    0  207          - 11526.8918     - -

0     0 11896.9710    0  190          - 11896.9710     - -

0     0 12151.4022    0  190          - 12151.4022     - -

0     0 12278.3391    0  208          - 12278.3391     - -

...

5485   634 12885.3652   52  143 12890.0000 12829.0134  0.47%  54.5   25s

Cutting planes:

Learned: 4

Gomory: 46

Cover: 39

Implied bound: 8

Clique: 2

MIR: 112

Flow cover: 27

GUB cover: 11

Zero half: 91

Explored 6808 nodes (357915 simplex iterations) in 27.17 seconds

Thread count was 4 (of 8 available processors)
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Branch-and-Cut

Presolving Node Selection
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes    |    Current Node    |     Objective Bounds      |     Work

Expl Unexpl |  Obj Depth IntInf | Incumbent    BestBd Gap | It/Node Time

0     0 11120.0279    0  154          - 11120.0279     - - 0s

0     0 11526.8918    0  207          - 11526.8918     - - 0s

0     0 11896.9710    0  190          - 11896.9710     - - 0s

...

0     0 12448.7684    0  181          - 12448.7684     - - 0s

H    0     0                    16129.000000 12448.7684  22.8%     - 0s

H    0     0                    15890.000000 12448.7684  21.7%     - 0s

0     2 12448.7684    0  181 15890.0000 12448.7684  21.7%     - 0s

H  142   129                    15738.000000 12450.7195  20.9%  43.8    1s

H  212   189                    14596.000000 12453.8870  14.7%  42.3    1s

H  217   181                    13354.000000 12453.8870  6.74%  42.6    1s

*  234   181              40    13319.000000 12453.8870  6.50%  42.1    1s

H  254   190                    13307.000000 12453.8870  6.41%  41.3    1s

H  284   194                    13183.000000 12453.8870  5.53%  42.6    1s

H  286   194                    13169.000000 12453.8870  5.43%  42.7    1s
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Branch-and-Cut
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Branch-and-Cut

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

Presolved: 987 rows, 855 columns, 19346 nonzeros

Variable types: 211 continuous, 644 integer (545 binary)

Root relaxation: objective 1.112003e+04, 1063 iterations, 0.03 seconds

Nodes    |    Current Node    |     Objective Bounds      |     Work

Expl Unexpl |  Obj Depth IntInf | Incumbent    BestBd Gap | It/Node Time

0     0 11120.0279    0  154          - 11120.0279     - - 0s

0     0 11526.8918    0  207          - 11526.8918     - - 0s

0     0 11896.9710    0  190          - 11896.9710     - - 0s

...

H    0     0                    15890.000000 12448.7684  21.7%     - 0s

0     2 12448.7684    0  181 15890.0000 12448.7684  21.7%     - 0s

...

1066   702 12956.2676   31  192 13087.0000 12629.5426  3.50%  37.2    5s

1097   724 12671.8285    8  147 13087.0000 12671.8285  3.17%  41.6   10s

1135   710 12732.5601   32  126 12890.0000 12727.1362  1.26%  44.6   15s

3416   887 12839.9880   46  136 12890.0000 12780.7059  0.85%  49.7   20s

5485   634 12885.3652   52  143 12890.0000 12829.0134  0.47%  54.5   25s



102 © 2015 Gurobi Optimization

Performance Impact of MIP Solver Components 

(CPLEX 12.5 or SCIP)

Presolving Node Selection

LP Relaxation

Cutting Planes

Node Presolve

Branching

Heuristics

default vs. DFS [1]

SCIP/CPLEX vs. 

SCIP/Soplex [2]

default vs.

most fractional

Achterberg and Wunderling: "Mixed 

Integer Programming: Analyzing 12 

Years of Progress" (2013)

[1] Achterberg: "Constraint Integer 

Programming" (2007)

[2] http://plato.asu.edu/ftp/milpc.html
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Parallelization

 Parallelization opportunities

◦ Parallel probing during presolve

 Almost no improvement

◦ Use barrier or concurrent LP for initial LP relaxation solve

 Only helps for large models

◦ Run heuristics or other potentially useful algorithms in parallel to the root 
cutting plane loop

 Moderate performance improvements: 20-25%

 Does not scale beyond a few threads

◦ Solve branch-and-bound nodes in parallel

 Main speed-up for parallel MIP

 Performance improvement depends a lot on shape of search tree

 Typically scales relatively well up to 8 to 16 threads
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Parallelization

 Parallelization issues

◦ Determinism

◦ Load balancing

◦ CPU heat and memory bandwidth

 Additional threads slow down main thread

◦ Root node does not parallelize well

 Sequential runtime of root node imposes limits on parallelization speed-up

 Amdahl's law

◦ A dive in the search tree cannot be parallelized

 Parallelization only helps if significant number of dives necessary to solve model

 More on parallel MIP: tomorrow
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Parallel MIP – Performance
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Achterberg and Wunderling: "Mixed Integer Programming: Analyzing 12 Years of Progress" (2013)

benchmark data based on CPLEX 12.5, models with ≥ 100 seconds solve time


