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Graph Theory: Super Quick

2

CO@W

Graph Theory: Super Quick
 Graph G=(V,E), nodes, edges e=ij

 Digraph D=(V,A), nodes arcs a=(u,v)

ConceptsConcepts

 Chain, walk, path, cycle, circuit

 clique, stable set, matching

 coloring, clique cover, clique partitioning, edge coloring

 …

 Optimization problems associated with these Optimization problems associated with these

 Polynomial time solvability, NP-hardness

I assume that this is known
Martin

Grötschel
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Special „simple“ 
combinatorial optimization problems
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combinatorial optimization problems

Finding ag

 minimum spanning tree in a graph

h t t th i di t d h shortest path in a directed graph

 maximum matching in a graph

 minimum capacity cut separating two given nodes of a 
graph or digraph g p g p

 cost-minimal flow through a network with capacities and 
costs on all edgescosts on all edges

 … 

Martin 
Grötschel

These problems are solvable in polynomial time. 
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Special „hard“ 
combinatorial optimization problems
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combinatorial optimization problems
 travelling salesman problem (the prototype problem)

 location und routing

 set-packing, partitioning, -coveringset packing, partitioning, covering

 max-cut

 linear ordering linear ordering

 scheduling (with a few exceptions)

 node  and edge colouring

 …

These problems are NP-hard
(in the sense of complexity theory).

Martin 
Grötschel
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Linear Programming
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Linear Programming
Tmax c x

Ax b
max 

1 1 2 2 ... n nc x c x c x
subject to
  max 

0
Ax b
x

11 1 12 2 1 1... n n

subject to
a x a x a x b    0x 

21 1 22 2 2 2... n na x a x a x b   
linear program

1 1 2 2

.
...m m mn n ma x a x a x b   

linear program
in standard form

1 2, ,..., 0nx x x 
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Linear Programming
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Linear Programming

Tc x
Ax b

max Tc x
Ax b

max linear 
program
in

0
Ax b
x  0

Ax b
x

  
 

in 
standard 
form

T
linear 

Tc x
Ax b

max T Tc x c x
Ax Ax Is b

 

 



  

max program
in
“polyhedral

, , 0
( )
x x s
x x x

 

 



 

polyhedral
form”
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A Polytope in the Plane
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A  Polytope in the Plane
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A Polytope in 3-dimensional space
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A  Polytope in 3-dimensional space
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beautiful“ polyehedra
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„beautiful  polyehedra

•a tetrahedron, 
•a cube•a cube, 
•an octahedron, 
•a dodecahedron, ,
•an icosahedron, 
•a cuboctahedron, 
•an icosidodecahedron, and 
•a rhombitruncated cuboctahedron. 

Martin
Grötschel



“Real” polyhedra

13

CO@W

Real  polyhedra

Martin 
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Rhombicuboctahedron
Herrnhuter Stern

Germany’s
most 

lpopular
Christmas
starstar

Martin 
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Crystallographic classifications
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Crystallographic classifications

http://de wikipedia org/wiki/Kristallmorphologiehttp://de.wikipedia.org/wiki/Kristallmorphologie

Martin 
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Polyhedra-Poster
http://www peda com/posters/Welcome html
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http://www.peda.com/posters/Welcome.html

P t hi h di lPoster which displays 
all convex polyhedra 
with regular polygonal

Martin
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with regular polygonal 
faces 
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http://www.ac-noumea.nc/maths/amc/polyhedr/index_.htm
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Kepler s solar system
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Polyhedra have fascinated people 
during all periods of our history
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during all periods of our history

 book illustrations
 magic objects magic objects
 pieces of art
 objects of symmetryj y y
 models of the universe

Martin
Grötschel
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Definitions
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Definitions
Linear programming lives (for our purposes) in the
n dimensional eal (in p a ti e ational) e to spa en-dimensional real (in practice: rational) vector space. 

 convex polyhedral cone: conic combination
(i e nonnegative linear combination or conical hull)(i. e., nonnegative linear combination or conical hull) 
of finitely many points
K = cone(E), E a finite set in �n.

 polytope: convex hull of finitely many points: 
P = conv(V), V a finite set in �n.

 polyhedron: intersection of finitely many halfspaces

{ | }nP x Ax b  R
Martin

Grötschel
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Important theorems 
of polyhedral theory (LP-view)
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of polyhedral theory (LP-view)
When is a polyhedron nonempty?
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Important theorems 
of polyhedral theory (LP-view)
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of polyhedral theory (LP-view)
When is a polyhedron nonempty?

The Farkas-Lemma (1908):

A polyhedron defined by an inequality systemA polyhedron defined by an inequality system

Ax b
is empty, if and only if there is a vector y such that

Ax b

0, 0 , 0T T T Ty y A y b  , ,y y y

Theorem of the alternative
Martin
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Theorem of the alternative
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Important theorems 
of polyhedral theory (LP-view)
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of polyhedral theory (LP-view)
Which forms of representation do polyhedra have?

Martin
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Important theorems 
of polyhedral theory (LP-view)
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of polyhedral theory (LP-view)
Which forms of representation do polyhedra have?

Minkowski (1896), Weyl (1935), Steinitz (1916) Motzkin (1936)

Theorem: For a subset P of      the following are equivalent:nR
(1) P is a polyhedron.

(2) P is the intersection of finitely many halfspaces i e(2) P is the intersection of finitely many halfspaces, i.e.,
there exist a matrix A und ein vector b with

(exterior representation){ | }nP x Ax b  R (exterior representation)

(3) P is the sum of a convex polytope and a finitely 
generated (polyhedral) cone i e there exist

{ | }.P x Ax b  R

generated (polyhedral) cone, i.e., there exist 
finite sets V and E with 

(interior representation)(V)+ (E)P
Martin

Grötschel

(interior representation)conv(V)+cone(E).P 
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Representations of polyhedra
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Representations of polyhedra
Carathéodory‘s Theorem (1911), 1873 Berlin – 1950 München

Let                                       , there existconv(V)+cone(E)x P 

0 0
0

,..., V, ,..., , 1
s

s s i
i

v v   


  R

1 s+1 tand e ,..., E, ,...,  with t n such thats te     R
t

i
1 i=s+1

+ 
s

i i i
i

x v e 


 
1 i s 1i
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Representations of polyhedra
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Representations of polyhedra
(1)      - x2 <= 0
(2) 1 2 < 1

The -representation
( )(2) - x1 - x2 <=-1

(3) - x1 +  x2 <= 3
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9

(exterior representation)

Ax b(5) + x1 + 2x2 <= 9 Ax b

(4)

(1)

Martin
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Representations of polyhedra
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Representations of polyhedra
The -representation (interior representation)

conv(V)+cone(E)P  conv(V)+cone(E).P

VP

E

Martin
Grötschel
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Example: the Tetrahedron
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Example: the Tetrahedron

       0 1 0 0
0 , 0 , 1 , 0y conv
                         

 0 0 0 1
        
                 

1y y y  

1 0y 
1 2 3 1y y y  

0
0
 
  1

2 0
y
y 

0
1

 
 
  

0 
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 
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 
  

1
0
0

 
 
 
  
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Example: the cross polytope
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Example: the cross polytope

2n points

 , | 1,..., n
i iP conv e e i n    R

2n points

Martin
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Example: the cross polytope
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Example: the cross polytope

2n points

 , | 1,..., n
i iP conv e e i n    R

2n points

  nT
2n inequalities

  | 1 1,1 nn TP x a x a     R

Martin
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Example: the cross polytope
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Example: the cross polytope

2n points

 , | 1,..., n
i iP conv e e i n    R

2n points

 
n

The “power” of |.|.

1
| 1



    
 

n
i

i
P x xR

1 i

  nT
2n inequalities

  | 1 1,1 nn TP x a x a     R

Martin
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All 3-dimensional 
0/1 polytopes
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0/1-polytopes

Martin
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Polyedra in linear programming
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Polyedra in linear programming
 The solution sets of linear programs are polyhedra.

 If a polyhedron is given explicitlyconv(V)+cone(E)P If a polyhedron                                   is given explicitly 
via finite sets V und E, linear programming is trivial.

conv(V)+cone(E)P

 In linear programming, polyhedra are always given in 
 representation Each solution method has its-representation. Each solution method has its 
„standard form“. 

Martin
Grötschel
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Fourier-Motzkin Elimination
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Fourier-Motzkin Elimination 
 Fourier, 1847 

 Motzkin, 1938

 Method: successive projection of a polyhedron in n-Method: successive projection of a polyhedron in n
dimensional space into a vector space of dimension n-1 by 
elimination of one variable.elimination of one variable.

Projection on y: (0,y)

Martin
Grötschel

Projection on x: (x,0)
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A Fourier-Motzkin step
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A Fourier-Motzkin step
0 â1

.

.

.

1

.

a1 +

.

.

.

.

1

-1 al +
.

.

1

.

.

al

.

0

.

.

-1 am

ân

0

.

b1

.

0

.

b1

.copy

Martin
Grötschel

0 bk 0 bk



39

Fourier-Motzkin elimination proves the 
Farkas Lemma
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Farkas Lemma
When is a polyhedron nonempty?

The Farkas-Lemma (1908):

A polyhedron defined by an inequality systemA polyhedron defined by an inequality system

Ax b
is empty, if and only if there is a vector y such that

Ax b

0, 0 , 0T T T Ty y A y b  , ,y y y

Martin
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Fourier-Motzkin Elimination:
an example
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an example

min/max + x1 + 3x2 

(1) - x2 <= 0(1)      x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + x1 <= 3(4) + x1       <  3
(5) + x1 + 2x2 <= 9

(4)

(1)

Martin
Grötschel
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Fourier-Motzkin Elimination:
an example
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an example

(1) - x2 <= 0(1)      x2 <= 0
(2) - x1 - x2 <=-8
(3) - x1 +  x2 <= 3
(4) + x1 <= 3(4) + x1       <  3
(5) + x1 + 2x2 <= 9

(4)

(1)

Martin
Grötschel
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Fourier-Motzkin Elimination:
an example call of PORTA
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an example, call of PORTA
DIM = 3

INEQUALITIES_SECTION

(1)      - x2      <= 0
(2) - x1 - x2      <=-8
(3) - x1 +  x2      <= 3
(4) + 1 < 3

(1)      - x2 <= 0
(2) - x1 - x2 <=-8
(3) - x1 +  x2 <= 3
(4) + 1 < 3 (4) + x1            <= 3

(5) + x1 + 2x2      <= 9
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9

ELIMINATION_ORDER
1 0  

Martin
Grötschel
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Fourier-Motzkin Elimination:
an example call of PORTA
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an example, call of PORTA
DIM = 3DIM = 3

INEQUALITIES_SECTIONINEQUALITIES_SECTION

(1) (1) 2 0 (1)      - x2      <= 0
(2) - x1 - x2      <=-8
(3) - x1 +  x2      <= 3
(4) + 1 < 3

(1)   (1) - x2      <=  0
(2,4) (2) - x2      <=  -5
(2,5) (3) + x2      <=  1
(3 4) (4) + 2 < 6 (4) + x1            <= 3

(5) + x1 + 2x2      <= 9
(3,4) (4) + x2      <=  6
(3,5) (5) + x2      <=  4

ELIMINATION_ORDER
1 0  

Martin
Grötschel
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Fourier-Motzkin Elimination:
an example call of PORTA
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an example, call of PORTA
DIM = 3DIM = 3

INEQUALITIES_SECTIONINEQUALITIES_SECTION

(1) (1) 2 0 (2,3) 0 <= -4(1)   (1) - x2      <=  0
(2,4) (2) - x2      <=  -5
(2,5) (3) + x2      <=  1
(3 4) (4) + 2 < 6(3,4) (4) + x2      <=  6
(3,5) (5) + x2      <=  4

ELIMINATION_ORDER

0 1 

Martin
Grötschel
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Fourier-Motzkin elimination proves the 
Farkas Lemma
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Farkas Lemma
When is a polyhedron nonempty?

The Farkas-Lemma (1908):

A polyhedron defined by an inequality systemA polyhedron defined by an inequality system

Ax b
is empty, if and only if there is a vector y such that

Ax b

0, 0 , 0T T T Ty y A y b  , ,y y y

Martin
Grötschel



46

Which LP solvers are 
used in practice?

CO@W

used in practice?

 Fourier-Motzkin: hopeless Fourier-Motzkin: hopeless

 Ellipsoid Method: total failure

 primal Simplex Method: good

 dual Simplex Method: betterp

 Barrier Method: for LPs frequently even better

F LP l ti f IP d l Si l M th d For LP relaxations of IPs: dual Simplex Method

Martin
Grötschel
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Fourier-Motzkin works reasonably well 
for polyhedral transformations:

CO@W

for polyhedral transformations:

Example: Let a polyhedron be given (as usual in

(V)+ (E)P

Example: Let a polyhedron be given (as usual in 
combinatorial optimization implicitly) via:

conv(V)+cone(E)P 

Find a non-redundant representation of P in the form:
{ | }dP x Ax b  R

Solution: Write P as followsSolution: Write P as follows 

1
{ | 0, 1, 0, 0}

d
d

i
i

P x Vy Ez x y y z       R

and eliminate y und z.
1i

Martin
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Relations between polyhedra 
representations
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representations
 Given V and E, then one can compute A und b as indicated above.

 Similarly (polarity): Given A und b, one can compute V und E.

 The Transformation of a -representation of a polyhedron P into a
-representation and vice versa requires exponential space, and thus, representation and vice versa requires exponential space, and thus, 
also exponential running time.

 Examples: Hypercube and cross polytope.

h h l l l h h That is why it is OK to employ an exponential algorithm such as Fourier-
Motzkin Elimination (or Double Description) for polyhedral
transformations.

 Several codes for such transformations can be found in the Internet, 
e.g., PORTA at ZIB and in Heidelberg. 

 Lecture by Michael Joswig on Polymake! Lecture by Michael Joswig on Polymake!
http://www.polymake.org/doku.php

Martin
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The Schläfli Graph S
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The Schläfli Graph S

Clique and stability numberClique and stability number
Maximal cliques in S have size 6. 
Maximal stable sets in S have size 3.Maximal stable sets in S have size 3. 
S has chromatic number 9 and there 
are two essentially different ways to 
color S with 9 colors. The 
complementary graph has chromatic 
number 6number 6. 

Martin
Grötschel

http://mathworld.wolfram.com/SchlaefliGraph.html
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The Polytope of stable sets of the 
Schläfli Graph
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Schläfli Graph

input file Schlaefli poiinput file Schlaefli.poi 
dimension                    :   27 
number of cone-points  :     0 The incidence vectors of the p
number of conv-points  :  208 stable sets of the Schläfli graph

sum of inequalities over all iterations  : 527962
maximal number of inequalities          :  14230

transformation to integer values 
sorting systemsorting system 

number of equations    :    0 

Martin
Grötschel

q
number of inequalities : 4086 
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The Polytope of stable sets of the 
Schläfli Graph
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Schläfli Graph
FOURIER - MOTZKIN - ELIMINATION:
| iter- | upper | # ineq | max| long| non-| mem | time || iter |      upper |     # ineq  |   max| long|  non |   mem |      time |
| ation|     bound |                |    bit-|arith| zeros |    used |      used |
|        |     # ineq |                |length|metic| in %|   in kB |    in sec |
|-------|------------|--------------|------|-----|--------|-----------|-------------|
|  180 |            29 |         29 |    1 |   n |   0.04 |       522 |        1.00 |
|  179 |            30 |         29 |    1 |   n |   0.04 |       522 |        1.00 |

|    10 |    8748283 |    13408 |    3 |   n |   0.93 |    6376 |    349.00 |
|     9 |   13879262 |    12662 |    3 |   n |   0.93 |    6376 |    368.00 |
|     8 |   12576986 |    11877 |    3 |   n |   0.93 |    6376 |    385.00 |
| 7 | 11816187 | 11556 | 3 | | 0 93 | 6376 | 404 00 ||     7 |   11816187 |    11556 |    3 |   n |   0.93 |    6376 |    404.00 |
|     6 |   11337192 |    10431 |    3 |   n |   0.93 |    6376 |    417.00 |
|     5 |    9642291 |      9295 |    3 |   n |   0.93 |    6376 |    429.00 |
| 4 | 10238785 | 5848 | 3 | n | 0 92 | 6376 | 441 00 ||     4 |   10238785 |     5848 |    3 |   n |   0.92 |    6376 |    441.00 |
|     3 |    3700762 |      4967 |    3 |   n |   0.92 |    6376 |    445.00 |
|     2 |    2924601 |      4087 |    2 |   n |   0.92 |    6376 |    448.00 |
| 1 | 8073 | 4086 | 2 | n | 0.92 | 6376 | 448.00 |

Martin
Grötschel

|     1 |         8073 |      4086 |    2 |   n |   0.92 |    6376 |    448.00 |
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The Polytope of stable sets of the 
Schläfli Graph

CO@W

Schläfli Graph
INEQUALITIES_SECTION

( 1) x1 <= 0(  1)     - x1 <= 0

(4086) +2x1+2x2+2x3+ x4+ x5+ x6  + x10+ x11+ x12+ x13+ x14+ x15 
+x16+ x17+ x18+ x19+2x20 + x22+2x23 + x25+2x26      <= 3

8 different classes of inequalities found in total, among these, 5 classes 
h b k fhave been unknown so far. 

Martin
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Data resources at ZIB open access
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Data resources at ZIB, open access
 MIPLIB

 FAPLIB

 STEINLIB

 TSPLIB

 ...

Martin
Grötschel



55

ZIB offerings
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ZIB offerings
 PORTA - POlyhedron Representation Transformation Algorithm

 SoPlex - The Sequential object-oriented simplex class library

 Zimpl - A mathematical modelling languageZimpl   A mathematical modelling language

 SCIP - Solving constraint integer programs (IP & MIP)

Martin
Grötschel
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Semi-algebraic Geometry
Real-algebraic Geometry
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Real-algebraic Geometry

d

( ), ( ), ( )i j kx g x h xf are polynomials in d real variables

1: { : ( ) 0,..., ( ) 0}dS x x x    
d

d

R lf f basic closed

1: { : ( ) 0,..., ( ) 0}d

d

S x g x g x    
d

d

R m basic open

1: { : ( ) 0,..., ( ) 0}dS x h x h x    
dR n

:S S S S     is a semi-algebraic set

Martin
Grötschel
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Theorem of Bröcker(1991) & Scheiderer(1989) 
basic closed case
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Every basic closed semi-algebraic set  of the form

basic closed case

1{ : ( ) 0,..., ( ) 0},dS x x x   
dR lf f

where                                           are polynomials,

can be represented by at most                      
1[ ,..., ],1 ,dx x i l  Rif

( 1) / 2d d 
polynomials, i.e., there exist polynomials 

such that

( )

( 1) / 2 1,..., [ ,..., ]d d dx x R1p p
{ : ( ) 0 ( ) 0}dS x x x  R p p1 ( 1) / 2{ : ( ) 0,..., ( ) 0}.d dS x x x   R p p

Martin
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Theorem of Bröcker(1991) & Scheiderer(1989) 
basic open case
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Every basic open semi-algebraic set  of the form

basic open case

1{ : ( ) 0,..., ( ) 0},dS x x x   
dR lf f

where                                            are polynomials,

can be represented by at most                      
1[ ,..., ],1 ,dx x i l  Rif

dp y

polynomials, i.e., there exist polynomials 
such that

d

1,..., [ ,..., ]d dx xR1p p
d

1{ : ( ) 0,..., ( ) 0}.d
dS x x x   R p p

Martin
Grötschel
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A first constructive result
Bernig [1998] proved that, for d=2, every convex g [ ] p , , y
polygon can be represented by two polynomial 
inequalities. q

p(1)= product of all
linear inequalities

p(2)= ellipse

Martin
Grötschel
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A first Constructive Result
Bernig [1998] proved that, for d=2, every convex g [ ] p , , y
polygon can be represented by two polynomial 
inequalities. q

p(1)= product of all
linear inequalities

p(2)= ellipse

Martin
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Our first theorem
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Theorem Let              be a n-dimensional nP  R

Our first theorem

polytope given by an inequality representation. Then              

k≤nn polynomials [ ]x xRpk≤n polynomials                          

can be constructed such that
1[ ,..., ]i nx xRp

( ,..., ).kP  P 1p p

Martin Grötschel, Martin Henk:
The Representation of Polyhedra by PolynomialThe Representation of Polyhedra by Polynomial
Inequalities

Martin
Grötschel

Discrete & Computational Geometry, 29:4 (2003) 485-504
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Theorem Let              be a n-dimensional nP  R

Our main theorem

polytope given by an inequality representation. Then              

2n polynomials [ ]x xRp2n polynomials                          

can be constructed such that
1[ ,..., ]i nx xRp

2( ,..., ).nP  1p pP

Hartwig Bosse, Martin Grötschel, Martin Henk:
Polynomial inequalities representing polyhedraPolynomial inequalities representing polyhedra
Mathematical Programming 103 (2005)35-44

http://www springerlink com/index/10 1007/s10107 004 0563 2

Martin
Grötschel

http://www.springerlink.com/index/10.1007/s10107-004-0563-2



64

The construction in the 
2-dimensional case
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2-dimensional case

Martin
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The construction in the 
2-dimensional case
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2-dimensional case
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d polynomials suffice
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1. Linear programs
2. Polyhedra
3. Algorithms for polyhedrag p y

- Fourier-Motzkin elimination
- some Web resources

4. Semi-algebraic geometry
5. Faces of polyhedra
6. Flows, networks, min-max results
7. The travelling salesman polytopeg p y p
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Faces etc (extremely short)
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Faces etc. (extremely short)
 Important concept: dimension

 faceface

 vertex

 edge

 (neighbourly polytopes)

 ridge = subfacet

 facet facet

Martin
Grötschel
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3. Algorithms for polyhedrag p y

- Fourier-Motzkin elimination
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4. Semi-algebraic geometry
5. Faces of polyhedra
6. Flows, networks, min-max results
7. The travelling salesman polytopeg p y p
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Linear Programming: 
The DualityTheorem
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The DualityTheorem
The most important and influential theorem in optimization.p p

   min | max | 0,wx Ax b yb y yA w      | | ,y y y

A good research idea is to try to mimic this result:

   min max ssomet omething hing   min max ssomet omething hing

A relation of this type is called min max resultA relation of this type is called min-max result.



Max-flow min-cut theorem 
( d & lk )
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(Ford & Fulkerson, 1956)

Let be a directed graph, let                and let    ,D V A ,r s V :c A  ¡
be a capacity function. Then the maximum value of an r-s -flow
subject to the capacity c is equal to the minimum capacity of an

tr-s -cut. 
If all capacities are integer, there exists an integer optimum flow.

Here an r-s-flow is a vector such that:x A  ¡Here an r s flow is a vector      such that
(1) (i)

(ii) 
  0x a 
     x x    

:x A  ¡

 a A
,   v V r v s

The value of the flow is the net amount of flow leaving r, i.e., is
(2)

   

     (2)   

(which is equal to the net amount of flow entering s). The flow x

     x r x r   

(which is equal to the net amount of flow entering s). The flow x 

is subject to c if for all a in A.   x a c a
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Ford-Fulkerson animation
 http://www.cse.yorku.ca/~aaw/Wang/MaxFlowStart.htm

Martin
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Flow Algorithms
 The Ford-Fulkerson Algorithm

The grandfather of augmenting paths algorithms

 The Dinic-Malhorta-Kumar-Maheshwari Algorithmg

 Preflow (Push-Relabel) Algorithms

Martin
Grötschel
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p y y
from Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, 2003 Springer
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p y y
from Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, 2003 Springer
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p y y
from Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, 2003 Springer

Martin
Grötschel



Min-cost flow
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Min-cost flow
Let be a directed graph, let              , let    ,D V A ,r s V :c A  ¡
be a capacity function,               a cost function, and f a flow value.
Find a flow x of value f subject to c with minimum value wTx.

: w A ¡

m in ( ) ( )

0 ( ) ( )


   


a A

w a x a

x a c a a A

    
   

0 ( ) ( )

( ) 0  

   

     

x a c a a A

x v x v r v s

Th i i il l l b f l ith ith i

         x r x r f

There is a similarly large number of algorithms with varying 
complexity, see Schrijver (2003). 



Min-Max Results
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Min-Max Results
König´s Matching Theorem (1931) (Frobenius, 1912)

The maximum size of a matching in a bipartite 
graph is equal to the minimum number ofgraph is equal to the minimum number of 
vertices covering all edges, i. e., 

for bipartite graphs G

   G G 

for bipartite graphs G.
Tutte-Berge Formula (Tutte(1947), Berge(1958))

he e G (V E) i n bit g ph

  1max | |: min (| | | | ( ))
2    W VM M E matching V W O G W

where G=(V,E) is an arbitrary graph.



Total unimodularity
CO@W

Total unimodularity
A matrix A is called totally unimodular if each square submatrix of 
A has determinant 0, +1 or –1. In particular, each entry of A is
0, +1 or –1.
The interest of totally unimodular matrices for optimization wasThe interest of totally unimodular matrices for optimization was 
discovered by the following theorem of Hoffman and Kruskal (1956):

If A is totally unimodular and b and w are
integer vectors then both sides of the LP-dualityinteger vectors, then both sides of the LP-duality
equation

   max | min | 0,   wx Ax b yb y yA w

have integer optimum solutions.



Total unimodularity
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Total unimodularity
There have been many characterizations of totally
unimodular matrices:
Ghouila-Houri (1962)
Camion (1965)
Padberg (1976)
Truemper(1977)
....

Full understanding was achieved by establishing a link to
regular matroids, Seymour (1980). This connection also
yields a polynomial time algorithm to recognize totally 
unimodular matrices.



Min-Max Results
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Min-Max Results
Dilworth‘s theorem (1950)

Th i i f ti h i i ti ll d dThe maximum size of an antichain in a partially ordered 
set (P, <) is equal to the minimum number of chains
needed to cover P.needed to cover P.

Fulkerson‘s optimum branching theorem (1974)
Let              be a directed graph, let            and let  ,D V A r V

be a length function. Then the minimum 
length of an r-arborescence is equal to the maximum number t of 

cuts C C (repetition allowed) such that no arc is in more

 
:l A R

r-cuts C1,..., Ct (repetition allowed)  such that no arc a is in more 
than  l(a) of  the Ci.

Edmonds‘ disjoint branching theorem (1973)Edmonds  disjoint branching theorem (1973)
Let              be a directed graph, and let        .  Then the 
maximum number of pairwise disjoint  r-arborescences is equal 

 ,D V A r V

to the minimum size of an r-cut.



Min-Max Results
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Min-Max Results
Edmonds’ matroid intersection theorem (1970)

Let                     and                        be matroids,

with rank functions r1 and r2, respectively. Then the

 1 1,M S J  2 2,M S J

with rank functions r1 and r2, respectively. Then the 
maximum size of a set in               is equal to 1 2J J

    1 2
'

' \ ' .min
S S

r S r S S






Min-Max Results and Polyhedra
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Min-Max Results and Polyhedra
 Min-max results almost always provide polyhedral insight 

and can be employed to prove integrality of polyhedra.

 For instance, the matroid intersection theorem can be 
used to prove a theorem on the integrality of the 
intersection of two matroid polytopes.

Martin
Grötschel
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Min-Max Results and Polyhedra
Let  M=(E, I) be a matroid with rank function r. 

Define IND(I):=conv{xI | I is an Element of I}. 
IND(I) is called matroid polytope. Let

 


       R( ) : : ( )  ,  0  E
e e

e F
P I x x r F F E x e E

Theorem: P(I) = IND(I).

Theorem: Let  M1=(E, I1) and M2=(E, I2) be two matroids

with rank functions r1 and r2, respectively. Then

IND(I1I2) = P(I1)P(I2) 

Martin
Grötschel
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Min-Max Results and Polyhedra
In other words, if M1=(E, I1) and M2=(E, I2) are two matroids on the 
same g o nd set E ith ank f n tions and espe ti el and if issame ground set E with rank functions r1 and r2, respectively, and if ce is 
a weight for all elements e of E, then a set that is independent in M1 and 
M2 and has the largest possible weight can be found via the following 2 g p g g
linear program


max e e
e E

c x




   1( )   
e E

e
e F

x r F F E



  

 

 2( )  

0

e
e F

x r F F E

x e E  0  ex e E

Martin
Grötschel
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An Excursion into Matroid Theory
 If time permits

Martin
Grötschel



Matroids and 
Independence Systems
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Independence Systems
Let E be a finite set, I a subset of the power set of E.
The pair (E,I ) is called independence system on E if the   
following axioms are satisfied:g

(I.1) The empty set is in I.
(I.2) If J is in I and I is a subset of J then(I.2) If J is in I and I is a subset of J then 

I belongs to I.
Let (E I ) satisfy in addition:Let (E,I ) satisfy in addition:

(I.3) If I and J are in I and if J is larger than I then 
h l h hthere is an element j in J, j not in I, such that    

the union of I and j is in I.
Then M=(E,I ) is called a matroid.



Notation
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Notation
Let (E,I ) be an independence system.

 Every set in I  is called independent.

 Every subset of E not in I is called dependent.Every subset of E not in I is called dependent.

 For every subset F of E, a basis of F is a subset of F that is 

independent and maximal with respect to this propertyindependent and maximal with respect to this property.

The rank r(F) of a subset F of E is the cardinality of a largest

basis of F. The lower rank ru(F) of F is the cardinality of a 

smallest basis of F.



The Largest Independent Set 
Problem
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Problem
Problem:

Let (E,I ) be an independence system with weights on the

elements of E. Find an independent set of largest weight.p g g

We may assume w l o g that all weights are nonnegativeWe may assume w.l.o.g. that all weights are nonnegative

(or even positive), since deleting an element with

nonpositive weight from an optimum solution, will

not decrease the value of the solution.



The Greedy Algorithm
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The Greedy Algorithm
Let (E,I ) be an independence system with weights c(e) on the

elements of E. Find an independent set of largest weight.

The Greedy Algorithm:The Greedy Algorithm:

1. Sort the elements of E such that

2 Let

   1 2 ... 0.nc c c

I :2. Let 

3. FOR  i=1  TO  n  DO:
 greedyI : .

    greedy greedy greedyIF  I i   THEN  I := I i .I

4. OUTPUT greedyI .

A k id i t i t t th d l tiA key idea is to interprete the greedy solution 

as the solution of a linear program.



Polytopes and LPs
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Polytopes and LPs
Let M=(E,I ) be an independence system 

with weights c(e) on the elements of E.

   RI  IIND(M) Econv x I 



 
        

 
R          ( )  ,  0  E

e e
e F

conv x x r F F E x e E
 

The LP relaxation



  

  

min             s.t.     ( )  ,  

                                   0      

T
e

e F

e

c x x r F F E

x e E

 

The dual PL
e

    Fmin ( )   s.t. y      ,   F ey r F c e E
 

  
F E F e

                                     0      Fy F E



The Dual Greedy Algorithm
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The Dual Greedy Algorithm
Let (E,I ) be an independence system with weights c(e) for all e.

After sorting the elements of E so that

set 
    1 2 1... 0, : 0n nc c c c

 i:= 1, 2, ..., i , i=1, 2, ..., n and

i 1 2

  E
1 2 1,n n

  1: ,     i=1, 2, ..., ny .
i iE ic c

Then                        1y , i=1, 2, ..., n
iE i ic c (integral if the weights are integral)

m in ( )y r F

is a feasible solution of the dual LP
i





  




F E

F
F e

m in  ( ),

s .t. y   ,

F u

e

y r F

c e E


  
F e

         0   Fy F E
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Observation
Let (E,I ) be an independence system with weights c(e) for all e.

After sorting the elements of E so that

    1 2 1... 0, : 0n nc c c c
we can express every greedy and optimum solution as follows

1 2 1,n n

(integral if the weights are integral)  greedy 1 greedy
1

c(I ) ( ) I
n

i i i
i

c c E


  
1

opt 1 opt   c(I ) ( ) I

i

n

i i ic c E

opt 1 opt

1

( ) ( )i i i
i



Rank Quotient
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Rank Quotient
Let (E,I ) be an independence system with weights c(e) for all e.( , ) p y g ( )

( )
i

r F





( ) 0

( )
:  min

)(
 u

F E
r F

q r F
r F

( )

The number q is between 0 and 1 and 

is called rank quotient of (E I )is called rank quotient of  (E,I ).

Observation: q = 1 iff (E I ) is a matroidObservation: q = 1 iff (E,I ) is a matroid. 



The General Greedy Quality Guarantee

 

     

 

 

 

  max , s.t. ( )  ,  0  

t ( ) 0 i t

 

l

 e e e e
e E e F

c x x r F F E x e E

F F E E
 

      

     

 

 

 max , s.t. ( )  ,  0  ,

c(I ) c(

inte

( ) ( )

gral

I ( )I )

e e e e
e E e F

n n

c x x r F F E x e E

c c c c

x

E r E 
 

   



 



opt greed 1 1
1 1

eey gr dyc(I ) c( ( ) ( )

( )

I ( )I )

i

i ui i i i
i

n

E u

i
i

i

c c c c

y r E

E r E






1

 min 

i
i

y
 

       F
F E F e

, s.t. y   , 0  ( )F e Fu c e E y F Er F

 



      

   









F
F E F e

q max , s.t.

  min , s.

( )

t. y   , 0  

=

q ( )

, 0

F e F

c x x r F F E x e

y c e E y F EF

E

r



 





     

  



 







q max , s.t. ( )   

 q max , s.t. ( )  ,  0  ,  

,  0

i e e e e
e E e

e e e e
e E e F

F

c x x r F F E x e

c x x r F F E x e E x

E

n r lteg a

opt q c(= I ) a quality guaranteea quality guarantee
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Consequences
Let M=(E,I ) be an independence system with weights c(e) on the

elements of E.

  IIND(M)  Iconv x I 



 
        
 

R  P(M) ( )  ,  0  E
e e

e F
x x r F F E x e E

(a) P(M) = IND(M) if and only if M is a matroid
(b) If M is a matroid then all optimum vertex solutions of the primal LP 
Theorem: 

   max


                 s.t. ( )  ,  0      

are integral. If the weights are integral then the dual LP

T
e e

e F
c x x r F F E x e E

 

       F
F E F e

    min ( )    s.t. y      ,  0      

also has integral optimum so

F e Fy r F c e E y F E

lutions,also has integral optimum solutions, 
i.e., the system totally dual integ is ral.



Min-Max Results: Challenges
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Min-Max Results: Challenges

Despite all the beautiful min-max results mentioned before
(and the not mentioned far reaching generalizations such 
as submodular flows or matroid matching), there is still a 
great challenge: 

understand integral duality.

Where and when does it occur?Where and when does it occur? 

Why?....
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3. Algorithms for polyhedrag p y

- Fourier-Motzkin elimination
- some Web resources

4. Semi-algebraic geometry
5. Faces of polyhedra
6. Flows, networks, min-max results
7. The travelling salesman polytopeg p y p
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Combinatorial optimization
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Given a finite set E and a subset I of the power set of E (the set of 

Combinatorial optimization

feasible solutions). Given, moreover, a value (cost, length,…) c(e) for all 
elements e of E. Find, among all sets in I, a set I such that its total value 
c(I) (= sum of the values of all elements in I) is as small (or as large) asc(I) (= sum of the values of all elements in I) is as small (or as large) as 
possible.

The parameters of a combinatorial optimization problem are: (E, I, c).

I
min (I) ( ) | I , 2E

e
c c e I where I and E finite



 
   

 


An important issue: How is I  given?

Martin 
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The travelling salesman problem
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The travelling salesman problem
Given n „cities“ and „distances“ between them. Find a 
tour (roundtrip) through all cities visiting every city 
exactly once such that the sum of all distances travelled 
is as small as possible. (TSP)

The TSP is called symmetric (STSP) if, for every pair of 
cities i and j the distance from i to j is the same as thecities i and j, the distance from i to j is the same as the 
one from j to i, otherwise the problem is called 
asymmetric (ATSP)asymmetric (ATSP).

Martin 
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THE TSP
book
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book

suggested reading for 
everyone interested 
in the TSPin the TSP

Martin 
Grötschel



Another recommendation
Bill Cook‘s new book

102
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Bill Cook s new book 

Martin 
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and Some of its Variants
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and Some of its Variants
 The symmetric TSP
 The asymmetric TSP
 The TSP with precedences or time windows
 The online TSP
 The symmetric and asymmetric m-TSP
 The price collecting TSP
 The Chinese postman problem p p

(undirected, directed, mixed)
 Bus, truck, vehicle routing
 Edge/arc & node routing with capacities
 Combinations of these and more

Martin 
Grötschel



104

The travelling salesman problem
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The travelling salesman problem
Two mathematical formulations of the TSP

1. :
( , )n

Version
Let K V E be the complete graph or digraph with n nodes

. H
( ) .

e

n

and let c be the length of e E Let be the set of all
hamiltonian cycles tours in K Find



min{ ( ) | H}.

2 :

c T T

Version



2. :
{1,..., }

Version
Find a cyclic permutation of n such that

c


n

c ( )
1

.

i i
i

is as small as possible





Martin 
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Does that help solve the TSP?
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Polyhedral Theory (of the TSP)
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Polyhedral Theory (of the TSP)
STSP-, ATSP-,TSP-with-side-constraints-

Polytope:=  Convex hull of all incidence       
vectors of feasible tours

To be investigated:

 Dimension Dimension

 Equation system defining the affine hull 

 Facets

 Separation algorithmsSeparation algorithms

Martin 
Grötschel
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The symmetric travelling salesman polytope
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The symmetric travelling salesman polytope

|: { } ( 1 0)n T E T
T ijT tour in KQ conv if ij T else     Z

 

|: { } ( 1 , 0)

{ | ( ( )) 2
( ( )) | | 1 \ 1 3 | | 3

T n ij

E

T tour in KQ conv if ij T else

x x i i V
E W W W V W

 



 

    

   

Z

R

 ( ( )) | | 1 \ 1 ,3 | | 3
0 1 }ij

x E W W W V W n
x ij E

      

   

min Tc x

 
( ( )) 2
( ( )) | | 1 \ 1 ,3 | | 3

x i i V
x E W W W V W n
   

       
 

( ( )) | | 1 \ 1 ,3 | | 3

0,1ij

x E W W W V W n

x ij E

    

  

Martin 
Grötschel

The LP relaxation is solvable in polynomial time
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General cutting plane theory:
Gomory Mixed Integer Cut
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Gomory Mixed-Integer Cut
 Given               and, ,jy x ¢

 Rounding: Where                        define
, 0ij jy a x d d f f      

,ij ij ja a f   
      

 Then
   : :ij j j ij j jt y a x f f a x f f             ¢

   1f f f f f f d 
 Disjunction:

   : 1 :j j j j j jf x f f f x f f d t      

 :t d f x f f f      

 Combining

 
  

:

1 : 1

j j j

j j j

t d f x f f f

t d f x f f f

     

       




g

       : 1 1 : 1j j j j j jf f x f f f f x f f        
Martin 

Grötschel

       j j j j j j  



clique trees
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clique trees
 A clique tree is a connected graph C=(V,E), composed of 

cliques satisfying the following properties

Martin 
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Polyhedral Theory of the TSP
CO@W

Polyhedral Theory of the TSP
Comb inequality

2-matching
constraintconstraint

tooth
handle

Martin 
Grötschel

tooth



110

Clique Tree Inequalities
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Clique Tree Inequalities
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http://www.zib.de/groetschel/pubnew/paper/groetschelpulleyblank1986.pdf

h ht

  
1 1 1

( ( )) ( ( )) | | 2i i
i j i

j HH hT tx x
  

       

1
( ( )) ( ( )) | | (| | )

h ht t

TH
t

T tx HE x E


       
1 1 1 1

( ( )) ( ( )) | | (| | )
2

i
i j i i

j ji jTHT tx HE x E
   

     

Hi, i=1,…,h are the handles

T j 1 t are the teethTj, j=1,…,t are the teeth

tj   is the number of handles

Martin 
Grötschel

that tooth Tj intersects
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Valid Inequalities for STSP
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Valid Inequalities for STSP
Trivial inequalities
Degree constraints
Subtour elimination constraints
2-matching constraints, comb inequalities
Clique tree inequalities (comb)
Bi titi i liti ( li t )Bipartition inequalities (clique tree)
Path inequalities (comb)
Star inequalities (path)Star inequalities (path)
Binested Inequalities (star, clique tree)
Ladder inequalities (2 handles even # of teeth)Ladder inequalities (2 handles, even # of teeth)
Domino inequalities
Hypohamiltonian hypotraceable inequalities

Martin 
Grötschel

Hypohamiltonian, hypotraceable inequalities
etc.
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A very special case
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A very special case

Petersen graph, G = (V, F),

the smallest hypohamiltonian graphthe smallest hypohamiltonian graph

10( ) 9F d fi f f Q 10( ) 9

, 11
T
n
T

x F defines a facet of Q

but not a facet of Q n





M. Grötschel & Y. Wakabayashi

Martin 
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Hypotraceable graphs and the STSP
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Hypotraceable graphs and the STSP
On the right is the smallest
known hypotraceable graph
(Thomassen graph, 34 nodes).

Such graphs have no 
hamiltonian path, but when 
any node is deleted theany node is deleted, the
remaining graph has a
hamiltonian path.

How do such graphs induce
inequalities valid for the

i lli lsymmetric travelling salesman
polytope?

For further information see:
http://www.zib.de/groetschel/pubnew/paper/groetschel1980b.pdfMartin 

Grötschel



“Wild facets of the asymmetric 
travelling salesman polytope”
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travelling salesman polytope
 Hypohamiltonian and hypotraceable directed graphs also exist and 

ind e fa ets of the pol topes asso iated ith the as mmet i TSPinduce facets of the polytopes associated with the asymmetric TSP.

 Information “hypohamiltonian” and “hypotraceable” inequalities can 
b f d ibe found in
http://www.zib.de/groetschel/pubnew/paper/groetschelwakabayashi1981a.pdf
http://www.zib.de/groetschel/pubnew/paper/groetschelwakabayashi1981b.pdf
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Valid and facet defining inequalities for 
STSP: Survey articles
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STSP: Survey articles

M. Grötschel, M. W. Padberg (1985 a, b)

M. Jünger, G. Reinelt, G. Rinaldi (1995)

D. Naddef (2002)

The TSP book (ABCC, 2006)

Martin 
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Counting Tours and Facets
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Counting Tours and Facets
n # tours # different facets # facet classesn # tours # different facets # facet classes

3 1 0 0

4 3 3 1

5 12 20 2

6 60 100 4

7 360 3 437 67 360 3,437 6

8 2520 194,187 24

9 20,160 42,104,442 192

10 181 440 >= 52 043 900 866 >=15 379

Martin 
Grötschel

10 181,440 >= 52,043,900,866 >=15,379
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Separation Algorithms
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Separation Algorithms
 Given a system of valid inequalities (possibly of 

exponential size). 

 Is there a polynomial time algorithm (or a good 
heuristic) that, 
 given a point, 

 checks whether the point satisfies all inequalities of the 
system, and 

if t fi d i lit i l t d b th i i t? if not, finds an inequality violated by the given point?

Martin 
Grötschel
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Separation
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Separation

K

Grötschel, Lovász, Schrijver (GLS):
“Separation and optimization

Martin 
Grötschel

Separation and optimization
are polynomial time equivalent.”
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Separation Algorithms
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Separation Algorithms
 There has been great success in finding exact 

polynomial time separation algorithms, e.g.,
 for subtour-elimination constraints

 for 2-matching constraints (Padberg&Rao, 1982)

 or fast heuristic separation algorithms, e.g.,p g , g ,
 for comb constraints

 for clique tree inequalitiesfor clique tree inequalities

 and these algorithms are practically efficient

Martin 
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Polyhedral Combinatorics
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Polyhedral Combinatorics
 This line of research has resulted in powerful 

cutting plane algorithms for combinatorial 
optimization problems. 

 They are used in practice to solve 
exactly or approximately (including e act y o app o ate y ( c ud g
branch & bound) large-scale real-world instances.

Martin 
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122 Some TSP World Records
year authors # cities # variables2006
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year authors # cities # variables

1954 DFJ 42/49 820/1,146

2006
pla 85,900 

solved
1977 G 120 7,140

1987 PR 532 141,246

3,646,412,050
variables

,

1988 GH 666 221,445

1991 PR 2 392 2 859 636

number of cities
2000x

increase 1991 PR 2,392 2,859,636

1992 ABCC 3,038 4,613,203

increase

4,000,000
i 1994 ABCC 7,397 27,354,106

1998 ABCC 13,509 91,239,786

times
problem size

increase

2001 ABCC 15,112 114,178,716

2004 ABCC 24 978 311 937 753
in 52
years

Martin 
Grötschel

2004 ABCC 24,978 311,937,753y

2005 W. Cook, D. Epsinoza, M. Goycoolea 33,810       571,541,145
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