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= Digraph D=(V,A), nodes arcs a=(u,v)
Concepts
= Chain, walk, path, cycle, circuit

= clique, stable set, matching

| = coloring, cligue cover, clique partitioning, edge coloring

= Optimization problems associated with these
= Polynomial time solvability, NP-hardness

I assume that this is known
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Special ,,simple*
combinatorial optimization problems

Finding a

= minimum spanning tree in a graph
= shortest path in a directed graph

= maximum matching in a graph

| * minimum capacity cut separating two given nodes of a
graph or digraph

J = cost-minimal flow through a network with capacities and
costs on all edges

These problems are solvable in polynomial time.
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Special ,,hard“
combinatorial optimization problems
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= travelling salesman problem (the prototype problem)
= |ocation und routing

set-packing, partitioning, -covering

max-cut

linear ordering

scheduling (with a few exceptions)

node and edge colouring

These problems are NP-hard
(in the sense of complexity theory).
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1. Linear programs
2. Polyhedra
3. Algorithms for polyhedra

- Fourier-Motzkin elimination
- some Web resources

4. Semi-algebraic geometry

5. Faces of polyhedra

i1 6. Flows, networks, min-max results
/. The travelling salesman polytope
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max ¢, X, +C,X, +...+C X_
subject to

a11Xl+a12X2 +"'+a1nxn :bl
&, % +a,X, +...+a, X =b,

2n™n

a_ X +a X, +..+a X =Db

m

@ Xy Xoyeeny X; 20

max ¢' X
Ax =D
x>0

linear program
in standard form
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max c' x linear max ¢' x
program Ay <b
Ax=Db in :>
standard —AX<-D
x=0 form ~x<0
linear

max c' X program j> max ¢' X" —¢' X~
in _

< AXT+ AX +1s=D
TS AX<D “polyhedral
. form” X", x,s>0
(X=Xx"=Xx")
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http://de.wikipedia.org/wiki/Kristallmorphologie
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We currently offer one poster
for secure online purchasing: our
Polyhedra poster, which
displays all convex polyhedra
with regular polygonal faces (a
finite sampling of prisms and
anti-prisms are included).

It measures 22" x 37" and is
printed on glosssy paper. A
protective coating was applied
during printing.

The poster is shown on the left;
to see a close-up of a portion of
the poster, move your mouse
over the image.

This is the fourth edition of the
poster. Other versions of the
poster are shown in our Posters
Archive.

$14 FOR 1POSTER
$28 FOR 4 POSTERS
FREE SHIPPING

Poster which displays
all convex polyhedra
with regular polygonal

faces
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EG-Models

http://www.eg-models.de/

EG-Models - a new archive of electronic geometry models
Internal Links:

Home Models No Applet Search Submit Instructions Links Help/Copyright

Managing Editors:
Michael Joswig, Konrad Polthier

Editorial Board:

Thomas Banchoff, Claude Paul Bruter,

Antonic F. Costa, lvan Dynnikov,
John M. Sullivan, Stefan Turek

I 1

H.A. Schwarz Ges Math.Abh
Springer Berlin 1280

Mote: Some browser versions do
not display Java applets. Please,
press the 'No Applet’ button in the
navigation bar to avoid using Java.

Anschauliche Geometrie - A tribute to Hilbert, Cohn-Vossen, Klein and all other geometers.

Electronic Geometry Models

This archive is open for any geometer to publish new geometric models, or to browse this site for material to be used in
education and research. These geometry models cover a broad range of mathematical topics from geometry, topology, and
to some extent from numerics.

Click "Models" to see the full list of published models. See here for details on the submission and review process.

Selection of recently published models

Model 2013.10.001 Bruno Benedetti and Frank H. Lutz The dunce hat in a minimal non-extendably

collapsible 3-ball.
Section: Polytopal Complexes

s, We obtain a geometric realization of a minimal 8-vertex triangulation of the dunce hat in Euclidean
= 3-space. We show there is a simplicial 3-ball with 8 vertices that is collapsible, but also collapses onto the
dunce hat, which is not collapsible.

Model 2010.11.001 Udo Hertrich-Jeromin and Wayne Rossman Discrete minimal catenoid in hyperbofic
3-space.
Section: Surfaces

We show a discrete constant mean curvature (in fact, minimal) net of revolution in hyperbolic 3-space (in
its Poincare half-space incarnation).

Model 2010.02 002 Marina Knyazeva and Gaiane Panina Counterexample to a conjecture of Alexandrov.
Section: Surfaces

A pointed graph on the sphere which leads to a counterexample to A D. Alexandrov's conjecture.

This graph is interesting and important not only because of its funny combinatorics, but also because it
leads to a counterexample to A D. Alexandrov's uniqueness conjecture for smooth convex surfaces.



http://www.ac-noumea.nc/maths/amc/polyhedr/index_.htm

a ride through the polyhedra world

" Geometry is a skill of the eyes and the hands as well as of the mind. " (Jean Pedersen)

&
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animations % I
videos clips version FRANCALSE

LiveGraphics3D needs a for your browser. You must see a small grey dodecahedron on the left (use your
mouse and the key "f" to handle it). If your connection is slow be patient while some applets load.

A few pages have links to pop-up windows, thus JavaScript must be enabled.

thanks for reporting possible errors , ADSL and 1024=768 screen (or better) desirable
or incorrect tranclations HTML validated and links verified with

Starck ﬁ mstarck®canl.nc

I ENCTIYTEEEM © scorchin the polyhedra world




A convex polyhedra 1 - Microsoft Internet Explorer

& s Suchen ¢ Favoriten .!J‘Medir:n £

-noumea.nc/maths/al 1edr o _.htm

gy Plato’s five regular polyhedra

The regular polyhedra are, in the space, the analogues of the in the plane ; their faces are regular and identical polygons, and their vertices, regular and identical,
are regularly distributed on a sphere. Their analogues in dimension four are the

As we do for the polygons, we recognize a convex polyhedron by the very fact that all its dmgonals (segments which join two vertices not joined by an edge) are inside the
polyhedron.

Whereas there exist an infinity of regular convex polygons, the regular convex polyhedra are only five.

The angle of a regular polygon with n sides is 180%(n-2)'n : 60° {triangle), 90° (square]}, 108° (pentagon), 120 (hexagon)...

proof : On a wertex of a regular polyhedron the sum of the face's angles (there are at least three) must be smaller than 360°.
Since 6x60° = 4x90° = 3x120° = 360° < 4x108%, there are only five possibilities: 3, 4, or 5 triangles, 2 squares or 3 pentagons.

O BY

name cube octahedron tetrahedron icosahedron dodecahedron

faces 6 squares & equiltriangles 4 equiltriangles 20 equiliriangles 12 regul.pentagons
vertices 8 6 4 12

edges 12 12 6 30 30
faces angle 90° 109°28' 70°32' 138°11 116°34'

applet by Martin Kraus (University of Stuttgart) allows you to mowve these polyhedra with your mouse.

v &

The regular octahedron's edges are the sides of three
squares with the same centre and orthogonal by pairs.

The regular icosahedron's vertices are the vertices of
three (sides in golden ratio 1.618..)
with the same centre and orthogonal by pairs.

Four vertices of a cube are the vertices of a regular tetrahedron ; so we can
make a regular tetrahedron by cutting four "corners” of a cube.

Martin

GrOtSChel Graphics3D 1.54: Please drag to rotate. ® Internet
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Polyhedra have fascinated people
during all periods of our history
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book illustrations
magic objects

pieces of art

objects of symmetry
models of the universe

¥ ik — e
ZI] From Livre de Perspective by Jean Cousin, 1568.

Martin

Grotschel
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Linear programming lives (for our purposes) in the
n-dimensional real (in practice: rational) vector space.

= convex polyhedral cone: conic combination
(i. e., nonnegative linear combination or conical hull)
of finitely many points
K = cone(E), E a finite set in [I".

= polytope: convex hull of finitely many points:
P = conv(V), V a finite set in (1",

4 = polyhedron: intersection of finitely many halfspaces

P—{xecR"| Ax < b}
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Important theorems
of polyhedral theory (LP-view)
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When is a polyhedron nonempty?




24

Important theorems
of polyhedral theory (LP-view)

coa@w

When is a polyhedron nonempty?

The Farkas-Lemma (1908):
A polyhedron defined by an inequality system

Ax<b

is empty, if and only if there is a vector y such that

y>0, y'A=0", y'b<0'

Theorem of the alternative
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Important theorems
of polyhedral theory (LP-view)

Which forms of representation do polyhedra have?

coa@w
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Important theorems
of polyhedral theory (LP-view)

Which forms of representation do polyhedra have?
Minkowski (1896), Weyl (1935), Steinitz (1916) Motzkin (1936)

Theorem: For a subset P of R" the following are equivalent:

coa@w

(1) P is a polyhedron.

(2) P is the intersection of finitely many halfspaces, i.e.,
there exist a matrix A und ein vector b with
P={xeR"| Ax<Db}. (exterior representation)

: (3) P is the sum of a convex polytope and a finitely
.L‘» generated (polyhedral) cone, i.e., there exist
finite sets V and E with

i\ P = conv(V)+cone(E). (interior representation)
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Carathéodory‘s Theorem (1911), 1873 Berlin — 1950 Miinchen

Let X e P =conv(V)+cone(E) , there exist

S

Vo,.oVs €V, Ay, A€R,,D A =1

|
=0

e €k, ..., R, witht<nsuch that

X:iﬂivi+ Zt: Hi€i

[} =1 I=s+1
5

and e

S+11"
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gg - Xg <= (1) The H-representation

- X1 - X2 <=- : :
B) - x1 + x2<=3 (exterior representation)
(4) + x1 <= 3
(5) + x1 + 2x2 <= 9 AXSb

~
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The c-representation (interior representation)

P = conv(V)+cone(E).

Martin

Grotschel
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Ih /1t
ample: the cross polytope
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2n points

P=convie,—€|i=1..njcR
The “power of |.].

P:<XER”\Z‘X <1;

y

2" inequalities

i P={xeR"[a'x<1Vae{-11)"|
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All 3-dimensional
0/1-polytopes

X C {Uil}d, P = conv X

> combinatorial optimization

Martin
Grotschel
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1. Linear programs
2. Polyhedra
3. Algorithms for polyhedra

- Fourier-Motzkin elimination
- some Web resources

= 4, Semi-algebraic geometry
| 5. Faces of polyhedra
i1 6. Flows, networks, min-max results
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= The solution sets of linear programs are polyhedra.

(Q
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= If a polyhedron P =conv(V)+cone(E) is given explicitly
via finite sets V und E, linear programming is trivial.

| = In linear programming, polyhedra are always given in
. H-representation. Each solution method has its
,standard form".

4B
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= Fourier, 1847
= Motzkin, 1938

= Method: successive projection of a polyhedron in n-
dimensional space into a vector space of dimension n-1 by
elimination of one variable.

.,

Projection on x: (x,0)

4B
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Fourier-Motzkin elimination proves the
Farkas Lemma

coa@w

When is a polyhedron nonempty?

The Farkas-Lemma (1908):
A polyhedron defined by an inequality system

Ax<b

is empty, if and only if there is a vector y such that

y>0, y'A=0", y'b<0'
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Fourier-Motzkin Elimination:
an example

coa@w

min/max + x1 + 3x2 ~

N
D - X2 <=0
(2) - x1 - x2 <=-1
(3B) - x1 + x2 <=3 n)\ \%\
(4) + x1 <= 3 \& (5
(5) + x1 + 2x2 <=9 h ) \\\\\\\\\\\
, “(4)
&
)

/

4B
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Fourier-Motzkin Elimination:
an example

coa@w

N
D - X2 <=0
(2) - x1 - x2 <=-8 /4%}
(3 - x1 + x2 <=3 ~
@) + xi <=3 AL 3)
(5) + x1 + 2x2 <=9
(4)
e
(&
213 /
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Fourier-Motzkin Elimination:

an example, call of PORTA

(D
(2)
3)
4)
)

+ 4+ 1 |

x1
x1
x1
x1

X2
X2
X2

2X2

DIM = 3

INEQUALITIES_SECTION

(D
(2)
€)
(4)
)

ELIMINATION_ORDER

10

+ + 1 |

x1
x1
x1
x1

+

+

X2
X2
X2

2X2

<= 0
<=-8
<= 3
<= 3
<= 9



43

coa@w

4B

Martin
Grotschel

Fourier-Motzkin Elimination:
an example, call of PORTA

DIM = 3

INEQUALITIES_SECTION

O @
(2,4) (2)
(2,5) (3)
(3.4) (4

y (3.5) (5)

+ + 4+ 1

X2
X2
X2
X2
X2

DIM = 3

INEQUALITIES_SECTION

<= 0 (D - X2
<= -5(2) - x1 - x2
<=1 (3) - x1 + x2
<= 6 () + x1

<= 4 (5) + x1 + 2x2

—

ELIMINATION_ORDER
10

<= 0
<=-8
<= 3
<= 3
<=9
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Fourier-Motzkin Elimination:
an example, call of PORTA

DIM = 3 DIM = 3
INEQUALITIES_SECTION INEQUALITIES_SECTION
D (1) - x2 <= 0 (2,3) 0 <= -4
2,4 (@) - x2 <= -5
(2,5 (3) + x2 <= 1
3.4) (4) + x2 <= 6
y (3,5) (B) + x2 <= 4
= ELIMINATION_ORDER ‘
01
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' Fourier-Motzkin elimination proves the
Farkas Lemma
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When is a polyhedron nonempty?

The Farkas-Lemma (1908):
A polyhedron defined by an inequality system

Ax<b

is empty, if and only if there is a vector y such that

y>0, y'A=0", y'b<0'




46

Which LP solvers are
used In practice?

coa@w

= Fourier-Motzkin: hopeless

= Ellipsoid Method: total failure

= primal Simplex Method: good

= dual Simplex Method: better
| = Barrier Method: for LPs frequently even better
| = For LP relaxations of IPs: dual Simplex Method

4B

Martin
Grotschel
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' Fourier-Motzkin works reasonably well
for polyhedral transformations:

coa@w

Example: Let a polyhedron be given (as usual in
combinatorial optimization implicitly) via:

P = conv(V)+cone(E)
Find a non-redundant representation of P in the form:
P={xeR’|Ax<b}

Solution: Write P as follows d
P={xeR"|Vy+Ez—x=0,)y,=1y>0,2>0}
i=1

)
o3l  and eliminate y und z.
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Relations between polyhedra

ANy Nntatin
lJ

I LQLIUI ID
= Given V and E, then one can compute A und b as indicated above.
= Similarly (polarity): Given A und b, one can compute V und E.

= The Transformation of a c-representation of a polyhedron P into a
H-representation and vice versa requires exponential space, and thus,
also exponential running time.

-1
CD

coa@w

= Examples: Hypercube and cross polytope.

= That is why it is OK to employ an exponential algorithm such as Fourier-
Motzkin Elimination (or Double Description) for polyhedral
transformations.

= Several codes for such transformations can be found in the Internet,
e.g., PORTA at ZIB and in Heidelberg.

= |ecture by Michael Joswig on Polymake!
http://www.polymake.org/doku.php

24| B
Martin
Grotschel
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Claw-free Graphs VI. Colouring Claw-free Graphs

Maria. Chudnovsky
Columbia University, New York NY 10027 !
and
Paul Seymour
Princeton University, Princeton N.J 08544 2

May 27, 2009

Abstract

In this paper we prove that if G is a connected claw-free graph with three pairwise non-adjacent ver-
tices, with chromatic number y and clique number w, then y < 2w and the same for the complement
of G. We also prove that the choice number of G is at most 2w, except possibly in the case when &
can be obtained from a subgraph of the Schlifli graph by replicating vertices. Finally, we show that
the constant 2 is best possible in all cases.

4B

Martin
Grotschel
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Clique and stability number

Maximal cliques in S have size 6.
Maximal stable sets in S have size 3.
S has chromatic number 9 and there
are two essentially different ways to
color S with 9 colors. The
complementary graph has chromatic
number 6.

The Schlafli graph is a strongly regular graph on 27 nodes which is the
graph complement of the generalized quadrangle G @ (2, 4). ltis the
unigque strongly regular graph with parameters (27, 16, 10, 8) (Godsil
and Royle 2001, p. 259).

21| B :
Martin http://mathworld.wolfram.com/SchlaefliGraph.html

Grotschel
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he Polytope of stable sets of the
Schlafli Graph
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input file Schlaefli.poi

dimension . 27

number of cone-points : 0  The incidence vectors of the
number of conv-points : 208  stable sets of the Schldfli graph

gemn SUM of inequalities over all iterations : 527962
§ maximal number of inequalities : 14230

transformation to integer values
sorting system

¥ number of equations : 0
Zipll number of inequalities : 4086

Martin

Grotschel
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he Polytope of stable sets of the
Schlafli Graph

FOURIER - MOTZKIN - ELIMINATION:

coa@w

| iter- | upper | #ineq | max| long| non-| mem | time |
| ation| bound | | bit-]arith| zeros | used | used |
| |  #ineq | |length|metic| in %| inkB| insec|
R oo R B B R |
| 180 | 29 | 29| 1| n| 0.04] 522 | 1.00 |
| 179 | 30 | 29| 1] n| 0.04] 522 | 1.00 |

| 10| 8748283 | 13408| 3| n| 0.93| 6376| 349.00 |
| 9| 13879262 | 12662| 3| n| 0.93| 6376 368.00 |
| 8| 12576986 | 11877| 3| n| 0.93| 6376| 385.00 |
| 7| 11816187 | 11556| 3| n| 0.93| 6376| 404.00 |
| 6| 11337192| 10431] 3| n| 0.93| 6376 417.00 |
| 5| 9642291| 9295| 3| n| 0.93| 6376| 429.00 |
| 4| 10238785| 5848| 3| n| 0.92| 6376| 441.00 |
| 3| 3700762| 4967| 3| n| 0.92| 6376| 445.00 |
| 2| 2924601 | 4087| 2| n| 0.92| 6376| 448.00 |
|1 8073| 4086| 2| n| 0.92| 6376| 448.00 |

Martin

Grotschel
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he Polytope of stable sets of the
Schlafli Graph

INEQUALITIES_SECTION
(1) -x1<=0

coa@w

(4086) +2x1+2x2+2x3+ x4+ x5+ x6 + x10+ x11+ x12+ x13+ x14+ x15
+x16+ X174+ X184+ x19+2x20 + x22+2x23 + x25+2x26 <=3

“a 8 different classes of inequalities found in total, among these, 5 classes
have been unknown so far.

4B

Martin
Grotschel
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= PORTA - POlyhedron Representation Transformation Algorithm
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= SoPlex - The Sequential object-oriented simplex class library
= ZiImpl - A mathematical modelling language

= SCIP - Solving constraint integer programs (IP & MIP)

21| B
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1. Linear programs
2. Polyhedra
3. Algorithms for polyhedra

- Fourier-Motzkin elimination
- some Web resources

4. Semi-algebraic geometry

5. Faces of polyhedra

i1 6. Flows, networks, min-max results
/. The travelling salesman polytope

Martin

Grotschel
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f.(x),9,;(x),h.(x) are polynomials in d real variables

S, ={Xe R f.(X)>0,...,f (X) >0} basic closed
2 S, ={X € R g,(x) >0,...,g.(X) >0} basic open
1S ={xeR":Nh(x)=0,....h (X) =0}

@ S =S US US_ isasemi-algebraic set




58

Theorem of Brocker(1991) & Scheiderer(1989)
basic closed case

coa@w

Every basic closed semi-algebraic set of the form

d
S={xeR":f(x)>0,..,f(x)>0}
where f € R[X,,...,X;],1<1 <1, are polynomials,
can be represented by at most d(d +1)/2

polynomials, i.e., there exist polynomials
such that

Pyyees Pyasnyz € RIXsees %]
] S ={xeR":p,(X)20,...,Pyq.1,(X) = 0}.
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Theorem of Brocker(1991) & Scheiderer(1989)
basic open case
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Every basic open semi-algebraic set of the form

S ={xeR*"f,(x)>0,....f (x) > O},

where f € R[X,,...,X,],1<1 <1, are polynomials,

can be represented by at most  d

polynomials, i.e., there exist polynomials
such that

Py Py € R[X,eeey Xy ]
4}‘ S ={x e R p,(X)>0,...,py (X) > O}.
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Bernig [1998] proved that, for d=2, every convex
polygon can be represented by two polynomial
inequalities.

p(1)= product of all
linear inequalities

p(2)= ellipse

4B

Martin
Grotschel
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Bernig [1998] proved that, for d=2, every convex
polygon can be represented by two polynomial
inequalities.

p(1)= product of all
linear inequalities

p(2)= ellipse

4B
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Theorem Let P - R" be a n-dimensional

polytope given by an inequality representation. Then
k<n" polynomials p. € R[X,..., X]

can be constructed such that

P=P(p,..., ).

d Martin Grotschel, Martin Henk:
The Representation of Polyhedra by Polynomial

Inequalities
Discrete & Computational Geometry, 29:4 (2003) 485-504

4B

Martin
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Theorem Let P - R" be a n-dimensional

polytope given by an inequality representation. Then
2n polynomials p; € R[X,..., X,]

can be constructed such that

P=P (P, P,y)-

J Hartwig Bosse, Martin Grotschel, Martin Henk:
Polynomial inequalities representing polyhedra
Mathematical Programming 103 (2005)35-44

http://www.springerlink.com/index/10.1007/s10107-004-0563-2

4B
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=3
ZIB {z e R?: py(x) > Oand po(x) > 0}

Martin
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Minimal polynomial descriptions of polyhedra and
special semialgebraic sets

Gennadiy Averkov, Ludwig Brocker
(Submitted on 4 Feb 2010)

We show that a d-dimensional polyhedron S in $\real*d$ can be represented by d-polynomial
inequalities, that is, $5 = \[x\in \real*d : p_0(x)\ge 0, =..., p_{d-1}4x) \ge 0 \}%, where

Py, - - - Pg 1 Are appropriate polynomials. Furthermore, if an elementary closed semialgebraic
set S is given by polynomials gy, . .., g and for each £ € .S at most & of these polynomials
vanish in z, then S can be represented by 8§ + 1 polynomials (and by 8 polynomials under the
extra assumption that the number of points £ € 5 in which s g;'s vanish is finite).

Subjects: Algebraic Geometry (math.AG); Metnc Geometry (math.MG)
MSC classes: 14P05; 52B11; 14Q99; 52A20
Cite as: arXiv:1002.0921 [math.AG]

{or arXiv:1002.0921v1 [math.AG] for this version)

Submission history

From: Gennadiy Averkov [view email]
ZiB a5
[v1] Thu, 4 Feb 2010 08:36:55 GMT (13kb)
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1. Linear programs
2. Polyhedra
3. Algorithms for polyhedra

- Fourier-Motzkin elimination
- some Web resources

4. Semi-algebraic geometry

5. Faces of polyhedra

i1 6. Flows, networks, min-max results
/. The travelling salesman polytope

Martin

Grotschel
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Important concept: dimension
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(neighbourly polytopes)
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1. Linear programs
2. Polyhedra
3. Algorithms for polyhedra

- Fourier-Motzkin elimination
- some Web resources

= 4, Semi-algebraic geometry

| 5. Faces of polyhedra

i1 6. Flows, networks, min-max results
/. The travelling salesman polytope

Martin

Grotschel
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Linear Programming:

Thnn MialitvwyThanvrarnm
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The most important and influential theorem in optimization.

min{wx|Ax>b}=max{yb|y >0, yA=w}

A good research idea is to try to mimic this result:

min {something } = max {something |

54 A relation of this type is called min-max result.

V
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Max-flow min-cut theorem
(Ford & Fulkerson, 1956)

Let D =(V,A)beadirected graph, let r,seV andlet c:A—j .,
be a capacity function. Then the maximum value of an r—s -flow
subject to the capacity c is equal to the minimum capacity of an
r—s -cut.
If all capacities are integer, there exists an integer optimum flow.

Here an r—s-flow is a vectorX: A — i such that

(1) (i) x(a >0 Vae A

(ii) X(5_(V);= X(5+(V)) VveV,r#v#Ss

The value of the flow is the net amount of flow leaving r, i.e., is
) N _
S @ x(s7(r))-x(a7 ()

(which is equal to the net amount of flow entering s). The flow x
is subject to ¢ if x(a)<c(a)forall zin A.
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= http://www.cs

(D

.yorku.ca/~aaw/Wang/MaxFlowStart.htm
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ne Ford-Fulkerson Algorithm
he grandfather of augmenting paths algorithms

= The Dinic-Malhorta-Kumar-Maheshwari Algorithm

= Preflow (Push-Relabel) Algorithms

4B

Martin
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Complexity survey

from Sch rijiler, Combinatorial Optimization - Polyhedra and Efficiency, 2003 Springer
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10.8b. Complexity survey for the maximum flow problem

Complexity survey (* indicates an asymptotically best bound in the table):

O(n’mC) Dantzig [1951a] simplex method
O (nmC) Ford and Fulkerson [1955,1957h|
o augmenting path
O(nm?) Dinits [1970], Edmonds and Karp
' [1972] shortest augmenting path
. . Edmonds and Karp [1972] fattest
O(n*mlognC) augmenting path . |
2 Dinits [1970] shortest augmenting
O(rn"m) path, layered network
O(m.g log O) Eclmm.nqs a,nffl Karp [1970,1972]
capacity-scaling
O(nm log C) Dinits [1973a], Gabow [1983b,1985b]

capacity-scaling

Karzanov [1974] (preflow push); cf.
O(n?) Malhotra, Kumar, and Maheshwari

[1978], Tarjan [1984]

Cherkasskil [1977a] blocking preflow
with long pushes

Shiloach [1978], Galil and Naamad

2,
21| B Onmlog™n) [1979,1980]

Martin 5/3 PRE -
Grotschel O(n"?m?/*) Galil [1978,1980a]

O(n?/m)
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Complexity survey

from Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, 2003 Springer
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4B

continued

O(nmlogn)

Sleator [1980], Sleator and Tarjan
[1981,1983a] dynamic trees

O(nmlog(n®/m))

Goldberg and Tarjan [1986,1988a)]
push-relabel4+dynamic trees

O(nm + n*log C)

Ahuja and Orlin [1989] push-relabel +

excess scaling

O(nm + n?y/Tog C)

Ahuja, Orlin, and Tarjan [1989]
Ahuja-Orlin improved

O(nmlog((n/m)log C' + 2))

Ahuja, Orlin, and Tarjan [1989]

Ahuja-Orlin improved + dynamic trees

O(n® /logn)

Cheriyvan, Hagerup, and Mehlhorn
[1990,1996]

O(n(m +n°/*logn))

Alon [1990] (derandomization of
Cherivan and Hagerup [1989,1995])

O(nm + n**t*)

(for each £ > 0) King, Rao, and Tarjan
[1992]

O(nmlog,, ,, n+ n? log?

T n)

(for each £ > 0) Phillips and
Westbrook [1993,1998]

Onmlog_m n)

mn log n

King, Rao, and Tarjan [1994]

O(m** log(n? /m)log C)

Goldberg and Rao [1997a,1998]

O(n**mlog(n” /m)log C')

Goldberg and Rao [1997a,1998]

Here C' := ||¢||s for integer capacity function c. For a complexity survey for unit

Martin . .
oo capacities, see Section 9.6a.
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Complexity survey

from Sch rijiler, Combinatorial Optimization - Polyhedra and Efficiency, 2003 Springer
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Research problem: [s there an O(nm)-time maximum flow algorithm?
For the special case of planar undirected graphs:

O(r logn) [tal and Shiloach [1979]

Reif [1983] (minimum eut), Hassin and Johnson

2
O(nlog®n) [1985] (maximum flow )

O(nlognlog® n) | Frederickson [1983h]
* O(nlogn) Frederickson [1987h]

For directed planar graphs:

O(n?*? logn) Johnson and Venkatesan [19582]
Klein, Rao, Rauch, and Subramanian [1994],

Henzinger, Klein, Rao, and Subramanian [1997]

* O(nlogn) Weihe [1994b,1997h]

O(nt? log? nlog C)

Martin
Grotschel
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Let D =(V,A)be adirected graph, let r,s eV, letc:A—j ,
be a capacity function, w: A—j a cost function, and f a flow value.
Find a flow x of value f subject to ¢ with minimum value w'x.

min > w(a)x(a)

ae A

0<x(a)<c(a) YVae A
x(5+(v))—x(8‘(v))=0 Vr#V#S

X (6 (r))-x(e (r))=f

There is a similarly large number of algorithms with varying
complexity, see Schrijver (2003).
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Konig “s Matching Theorem (1931) (Frobenius, 1912)

The maximum size of a matching in a bipartite
graph is equal to the minimum number of
vertices covering all edges, i. e.,

v(G)=7(G)
for bipartite graphs G.
Tutte-Berge Formula (Tutte(1947), Berge(1958))

TS
‘f’ max{|M |: M < E matching! = min 1(|V|+|W|—O(G—W))
wcVv 2

iy where G=(V,E) is an arbitrary graph.




coa@w

TAtal : Arilarit
1 Otal Uunimodaduia i"L‘y'

A matrix A is called totally unimodular if each square submatrix of
A has determinant 0, +1 or —1. In particular, each entry of A is

0, +1 or —1.

The interest of totally unimodular matrices for optimization was
discovered by the following theorem of Hoffman and Kruskal (1956):

m
U

If A is totally unimodular and b and w are
integer vectors, then both sides of the LP-duality

: equation

max {wx | AX<b} =min{yb|y >0, yA=w}

have integer optimum solutions.
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There have been many characterizations of totally
unimodular matrices:
Ghouila-Houri (1962)
Camion (1965)
Padberg (1976)
- Truemper(1977)

coa@w

Full understanding was achieved by establishing a link to
regular matroids, Seymour (1980). This connection also
- 4 yields a polynomial time algorithm to recognize totally
i unimodular matrices.
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Dilworth's theorem (1950)
The maximum size of an antichain in a partially ordered
set (P, <) is equal to the minimum number of chains

needed to cover P.

Fulkerson's optimum branching theorem (1974)
Let D=(V,A) be a directed graph, let reV and let
|:A— R, be a length function. Then the minimum
length of an r~arborescence is equal to the maximum number ¢ of
r~cuts Cy,..., C (repetition allowed) such that no arc ais in more

than /(a)of the C.
Edmonds' disjoint branching theorem (1973)

Let D=(V,A) be a directed graph, and let reV . Then the
..... maximum number of pairwise disjoint r-arborescences is equal

22N to the minimum size of an r~cut.
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Edmonds’ matroid intersection theorem (1970)
Let M,=(S,J,) and M,=(S,J,) be matroids,

with rank functions r; and r,, respectively. Then the
maximum size of asetin J,NJ, isequal to

min (r,(S")+r,(S\S")).

S'cS
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Min-Max Results and P
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= Min-max results almost always provide polyhedral insight
and can be employed to prove integrality of polyhedra.

= For instance, the matroid intersection theorem can be
used to prove a theorem on the integrality of the
intersection of two matroid polytopes.

4B
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Let M=(E, /) be a matroid with rank function r.

Define IND(/):=conv{x! | I is an Element of 7}.
IND(J) is called matroid polytope. Let

P(I)={xeR : Y x,<r(F)V FCE, x,20V ecE }

ecF

'A‘a‘ Theorem: P(Z) = IND(J).
| Theorem: Let M;=(E, 7,) and M,=(E, ) be two matroids

-
T

with rank functions ; and r,, respectively. Then
IND(/15) = P(1)IP(L)

4B

Martin
Grotschel
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In other words, if M,=(E, 7,) and M,=(E, 7,) are two matroids on the
same ground set E with rank functions r; and r,, respectively, and if c, is
a weight for all elements e of E, then a set that is independent in M; and
M, and has the largest possible weight can be found via the following
linear program

max ) C.x,

eckt

Yx,<r(F)Y FcE

ecF

Y x,<n(FYVFcE

ecF

E\ xX,20V eeckE
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Let E be a finite set, /7 a subset of the power set of E.
The pair (E,7) is called independence system on E if the
following axioms are satisfied:
(I.1) The empty set is in 1.
(I.2) If Jisin 7 and I is a subset of J then
I belongs to 7.
| Let
(I.3) If I and J are in 7and if J is larger than I then
there is an element jin J, j not in I, such that
the union of I and jis in 1.

Then M=(E, /) is called a matroid.

/[ \ mmbianbf s tom ~AAd R A
(E,/ ) satisty in aadition:
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Let (E,7/) be an independence system.

= Every set in 7 is called independent.

= Every subset of E not in 7 is called dependent.

= For every subset F of E, a basis of F is a subset of F that is

independent and maximal with respect to this property.

| The rank r(F) of a subset F of E is the cardinality of a largest
‘ basis of F. The lower rank r (F) of F is the cardinality of a
smallest basis of F.




The Largest Independent Set
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Problem:
Let (E,7) be an independence system with weights on the
elements of E. Find an independent set of largest weight.

We may assume w.l.0.g. that all weights are nonnegative

'A"‘ (or even positive), since deleting an element with
4 nonpositive weight from an optimum solution, will
not decrease the value of the solution.
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Let (E,/) be an independence system with weights c(e) on th
elements of E. Find an independent set of largest weight.

The Greedy Algorithm:

coa@w

1. Sort the elements of E such that ¢, >¢, >...> ¢, >0.

2. Let Igreedy 3.
3. FOR i=1 TO n DO:

IF 1 ceqy Y {} el THEN I 4= 1 ceqy Y {I}
T
22l 4. OUTPUT I, .
g A key idea is to interprete the greedy solution

as the solution of a linear program.
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Let M=(E,/) be an independence system
with weights c(e) on the elements of E.

IND(M) = conv {x" e R | I e I}

Y x.<r(F)Y FcE, XQZOVeeE}

eeF

- conv{x c Rf

The LP relaxation
minc’ x st.  x,<r(F)VY F cE,

eefF

x.>0 VYV eekE

e

s
323 The dual LP
min > y.r(F) st.) y.>c, VeeE,

FcE Fse

y.20 V FcE
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Let (E,/) be an independence system with weights c(e) for all e
After sorting the elements of E so that

¢262.2Cc,20,¢c,, =0 set

E:={1, 2, ..., i},i=1, 2, ..., n and
YE/ = C/' _C/+1, |=1, 2, oy n.
Then Y. =C —Cy,1=1,2, ..,

is a feasible solution of the dual LP

B ' F
4"‘» min I%“EJ/Fru( )I

s.t. Y ye2c, V eeE,

y.20V FcE
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Let (E,7/) be an independence system with weights c(e) for all e.
After sorting the elements of E so that

¢ =¢2>..2¢,20, ¢, =0
we can express every greedy and optimum solution as follows

n
C(:[greedy) = Z (C/ - C/+1) ‘Igreedy M E/
/=1

Iopt N E,

IS C(Iopt) — Z_; (C/ - C/+1)
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Let (E,7/) be an independence system with weights c(e) for all e.

d:= min 2%,
I:(%—'LS;O f(F)

The number q is between 0 and 1 and
is called rank quotient of (E,[7).

Observation: g = 1 iff (E,/) is a matroid.




The General Greedy Quality Guarantee

max Y C.X.,s.t. D> x,<r(F)V FcE, x,20V ecE

eck ecF

> max » c.x., st Y x,<r(F)V FcE, x,20V eec£, x integral

eeF eeF

= C(Iopt) Z C(Igreedy) - Z (€; =€)
/=1

Igreedy a E/" 2 Z (C/ B C/+1)ru(E/)
i=1

:ZyE,-ru(E/)
/=1
> min Y yr,(F),st. Yy 2c,VeeE,y, 20V FcE

FcE Fse

> qmin Y yr(F),st. Y ye2c,VeeE,y, 20V FcE

FcE F>e

= gmax ) C.x.st. > x,<r(F)VFcE, x,20V eckE

eckE ecF
> gmax Y c.X., st Y x.<r(F)v FcE, x,>20V eeE, x integral
eckE ecF

= g c(I,,) a quality guarantee
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Let M=(E,/) be an independence system with weights c(e) on the
elements of E.

IND(M) = conv {x'| I e I}

P(M) ={X€REZXE,S/’(F)VF§E, XeZO‘v’eeE}
ecF

Theorem: (a) P(M) = IND(M) if and only if M is a matroid
(b) If M is a matroid then all optimum vertex solutions of the primal LP

maxc’ x st. > x,<r(F)VFcE, x,20 VeekE

eeF

are integral. If the weights are integral then the dual LP
min > y.r(F) st >y.>c, VeeE,y.,20 VFcE

FcE Fre
also has integral optimum solutions,

i.e., the system is totally dual integral.
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Despite all the beautiful min-max results mentioned before
(and the not mentioned far reaching generalizations such
as submodular flows or matroid matching), there is still a

great challenge:
understand integral duality.
~A
U
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1. Linear programs
2. Polyhedra
3. Algorithms for polyhedra

- Fourier-Motzkin elimination
- some Web resources

4. Semi-algebraic geometry

5. Faces of polyhedra

i1 6. Flows, networks, min-max results
/. The travelling salesman polytope

Martin

Grotschel
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Combinatorial optimization

Given a finite set E and a subset 7/ of the power set of E (the set of
feasible solutions). Given, moreover, a value (cost, length,...) c(e) for all
elements e of E. Find, among all sets in 7, a set I such that its total value
c(I) (= sum of the values of all elements in I) is as small (or as large) as
possible.

The parameters of a combinatorial optimization problem are: (E, 7, ¢).

min{c(l) =Y c(e)|le I}, where | < 2Fand E finite

eel

An important issue: How is I given?
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Given n ,cities" and ,distances" between them. Find a
tour (roundtrip) through all cities visiting every city
exactly once such that the sum of all distances travelled
is as small as possible. (TSP)

aq The TSP is called symmetric (STSP) if, for every pair of

=Y aVYalaY

LILICb I CIIIU _j, LI [S UIbLCIIILC IIUIII I LU_j Ib LI 1€ Saime das tl 1€
one from j to i, otherwise the problem is called
asymmetric (ATSP).

4B
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Grotschel



101

coa@w

4B

Martin
Grotschel

HE TSP
book

suggested reading for
everyone interested
in the TSP
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The Traveling
Salesman Problem

A Compurational Stug

David L. Applegate,
Robert E. Bixby, Vasek Chvatal,
and William J. Cook

The Traveling Salesman
Problem:
A Computational Study

David L. Applegate, Robert E.
Bixby, Vasek Chvatal & William J.
Cook

Princeton University Press 2006,
606 pp.

QOur primary concern in this book 1s
to describe a method and computer
code that have succeeded in solving
a wide range of large-scale instances
of the TSP. Along the way we cover
the interplay of applied mathematics
and increasingly more powerful
computing platforms, using the
solution of the TSP as a general
model in computational science.

e Table of Contents
e Links to Bookstores

Cover illustration by Julian
Lethbridge, Traveling Salesman 4,
1995, oil on linen, 72 x 72 inches,
The Robert and Jane Meyerhoff
Collection, photograph by Adam
Reich.



In Pursuit of the Traveling Salesman:
Mathematics at the Limits of Computation
William J. Cook

Cloth | 2012 | $27.95/£19.95 | ISBM: 9780691152707 :
248 pp. | 6x 9| 113 colorillus. 19 halftones. 19 line illus.
2 tables.

eBook | ISBN: 9731400839598 | ='"Where to buy this
ebook

{Princeton L & L Lactuss)
Shopping Cart | Reviews | Table of Contents @ ]
Chapter 1™

Google full text of this book:
GO

Further explorations with the TSP

The Traveling Salesma
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The Travelling Salesman Problem

AnAd CArmna AF 1+ \/ariante
AQAllIU OUIIIT Ul 1TLto vaAalidlililo

ne symmetric TSP

ne asymmetric TSP

ne TSP with precedences or time windows
ne online TSP

ne symmetric and asymmetric m-TSP

ne price collecting TSP

The Chinese postman problem
(undirected, directed, mixed)

Bus, truck, vehicle routing
Edge/arc & node routing with capacities
Combinations of these and more

o e B R = =
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Two mathematical formulations of the TSP

1. Version:
Let K, = (V,E) be the complete graph or digraph with n nodes
and let c, be the length of e e E. Let H be the setof all
hamiltonian cycles (tours) in K_. Find

min{c(T)|T € H}.

2.Version:

Find a cyclic permutation 7 of {l,...,n} such that
r Y Ciﬂi
Is as small as possible.
i

Does that help solve the TSP?
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STSP-, ATSP-, TSP-with-side-constraints-

Polytope:= Convex hull of all incidence
vectors of feasible tours

coa@w

To be investigated:

= Dimension

j = Equation system defining the affine hull
4 = Facets

= Separation algorithms

4B
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Qf =conv{y' eZ"|T tourin K.}  (x; =1if ijeT, else =0)

c{xeR"|x(s(i)) =2 VieV
X(EW)) <|W | -1 YW <V \{1},3<|W |<n-3
0<x; =1 Vij € E}
minc' x
X(6(1)) =2 VieV
iy X(EW)<W[-1 YW =V \{1},3qW[<n-3
’ X; €10, Vije E

The LP relaxation is solvable in polynomial time
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General cutting plane theory:

) Gomorx Mixed-Integer Cut

Given y,x; e ¢ ,and
y+Zau j=d=|d]+f, f>0
Rounding: Where aij:LaijJ+fj' define
t=y+Z(Laiijj < f)+2([aﬂxj f > f)e¢
Then
DXt <)+ (f -1 f; > f=d -t
Disjunction:
t<LdJ:>Z(fJxJ

f,
t>[d]= > ((1-f;)x: ;> f)21-f

Combining

S((F/6)x:f < f)+ 2 ([(1- 1) /a-)]x

> )21
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= A cligue tree is a connected graph C=(V,E), composed of
cliques satisfying the following properties

(1) The cliques are partitioned into two sets, the set of handles and the set
of teeth,

(2) No two teeth intersect.

(3) No two handles intersect.

Av{ (4} Each tooth contains at feast two and at most n —2 vertices and at least

‘ one vertex not belonging to any handle.

4 (5) The number of teeth that each handle intersects is odd and at least
three.

(6) If a tooth T and a handle H have a nonempty intersection, then HNT
is an articulation set of the clique tree.

4B
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Comb inequality
2-matching
constraint

handle

- tooth
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Cligue Tree Inequalities

http://www.zib.de/groetschel/pubnew/paper/groetschelpulleyblank1986.pdf

h h
D X@H )+ D x@(T ) 2D I H |+h+2
i—1 j=1 i—1

h h
D XEMH )+ D XEC N <D H [+ 2,07 [ )-
| i= j=1 i=1 i=1

, i=1,...,h are the handles
T, j=1,...,t are the teeth

L is the number of handles
that tooth Tj intersects

4B
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Valid In egu
Trivial inequalities
Degree constraints
Subtour elimination constraints
2-matching constraints, comb inequalities
Cligue tree inequalities (comb)
Bipartition inequalities (clique tree)
A‘a Path inequalities (comb)
o Star inequalities (path)
Binested Inequalities (star, clique tree)
Ladder inequalities (2 handles, even # of teeth)
Domino inequalities

-3 Hypohamiltonian, hypotraceable inequalities
ZIBY otC,

Martin

CD
wn
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Grotschel
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Petersen graph, G = (V, F),
the smallest hypohamiltonian graph

x(F) <9 defines a facet of Q;’
but not a facet of Q;,n>11

M. Grotschel & Y. Wakabayashi
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Hypotraceable graphs and the STSP
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On the right is the smallest
known hypotraceable graph
(Thomassen graph, 34 nodes).

Such graphs have no
hamiltonian path, but when
any node is deleted, the
o~ remaining graph has a

® ¥ hamiltonian path.

8| How do such graphs induce
inequalities valid for the
symmetric travelling salesman
polytope?

For further information see:
vt Nttp://www.zib.de/groetschel/pubnew/paper/groetschel1980b.pdf

Grotschel
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“Wild facets of the asymmetric
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= Hypohamiltonian and hypotraceable directed graphs also exist and
induce facets of the polytopes associated with the asymmetric TSP.

Theorem 4.11. There are hypohamiltonian digraphe of order n if and

only if n > 6. @

Theorem 1. There exists a hypotraceable digraph of order n iff n=7.
Furthermore, for each k=1 there exist infinitely many hypotraceable Fig. 4.7
digraphs with precisely k strong components.

= Information “hypohamiltonian” and “hypotraceable” inequalities can

be found in

http://www.zib.de/groetschel/pubnew/paper/groetschelwakabayashi1981a.pdf
http://www.zib.de/groetschel/pubnew/paper/groetschelwakabayashi1981b.pdf
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Valid and facet defining inequalities for
STSP: Survey articles

coa@w

M. Grotschel, M. W. Padberg (1985 a, b)
M. Juinger, G. Reinelt, G. Rinaldi (1995)

'Aqu’ D. Naddef (2002)

The TSP book (ABCC, 2006)

artin
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Counting Tours and Facets
n| # tours # different facets| # facet classes
3 1 0 0
4 3 3 1
5 12 20 2
6 60 100 4
7 360 3,437 6
8 2520 194,187 24
9| 20,160 42,104,442 192
10| 181,440 >=52,043,900,866 >=15,379
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= Given a system of valid inequalities (possibly of
exponential size).

= [s there a polynomial time algorithm (or a good
heuristic) that,

= given a point,

= checks whether the point satisfies all inequalities of the
system, and

= if not, finds an inequality violated by the given point?

4B
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Grotschel, Lovasz, Schrijver (GLS):
“Separation and optimization
are polynomial time equivalent.”
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= There has been great success in finding exact
polynomial time separation algorithms, e.q.,

coa@w

= for subtour-elimination constraints

= for 2-matching constraints (Padberg&Rao, 1982)
= or fast heuristic separation algorithms, e.g.,

= for comb constraints

= for clique tree inequalities

= and these algorithms are practically efficient

4B
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= This line of research has resulted in powerful
cutting plane algorithms for combinatorial
optimization problems.
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= They are used in practice to solve
exactly or approximately (including
branch & bound) large-scale real-world instances.
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Some TSP World Records

2006 year| authors| # cities # variables

pla 85,900
solved 1954 DFJ 42/49 820/1,146
3,646,412,050 | 1977 G 120 7,140

variables
1987 PR 532 141,246
number of cities | 1988 GH 666 221,445

X

increase 1991 PR 2,392 2,859,636
4000000 | 1992  ABCC| 3,038 4,613,203
times 1994 ABCC 7,397 27,354,106

d problem size
é increase 1998 ABCC 13,509 91,239,786
| oo 2001|  ABCC| 15,112 114,178,716
| years 2004| ABCC| 24,978 311,937,753

ZITNN

2005 W. Cook, D. Epsinoza, M. Goycoolea 33,810 571,541,145 \
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