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Typical optimization problems
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Linear Programming: a very brief history

1826/1827 Jean Baptiste Joseph Fourier (1786-1830):
rudimentory form of simplex method in 3 dimensions.

1939 L. V. Kantorovitch (1912-1986): Foundations of linear
programming (Nobel Prize 1975)

1947 G. B. Dantzig (1914-2005): Primal simplex algorithm
1954 C.E. Lemke: Dual simplex algorithm

1953 G.B. Dantzig, Revised simplex
1954 W. Orchard Hays, and algorithm
1954 G. B. Dantzig & W. Orchard Hays:

1979 L. G. Khachiyan (1952-2005):
The ellipsoid method

1984 N. Karmarkar: Interior point methods




Optimal use of scarce ressources foundation
and economic interpretation of LP

Leonid V. Kantorovich  Tijalling C. Koopmans
Nobel Prize for Economics 1975




The Decade of the 70’s: Practice

Interest in optimization flowered

= Large scale planning applications particularly popular,
significant difficulties emerged

= Building applications was very expensive and very risky
= Technology just wasn't ready:
= LP was slow and

= Mixed Integer Programming was impossible.

OR could not really “deliver” — with some exceptions, of course

The ellipsoid method of 1979 was no practical success.




The Decade of the 80’s and beyond

Mid 80’s:

= There was perception was that LP software had progressed about
as far as it could.

There were several key developments

= IBM PC introduced in 1981

= Brought personal computing to business
= Relational databases developed. ERP systems introduced.
= 1984, major theoretical breakthrough in LP

I\I I(:rm:rlz:\r “A new nnl\/nnmlnl -+timao :\Innrli'h nr lin
INs INUITITTICGAL INGII , I-J THINJITIIGIL ULT 1IN 3 ||L||||| I1\JI il

programming”, Comblnatorlca 4 (1984) 373-395
(Interior Point Methods, front page New York Times)

QAr
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= We now have three competitive algorithms:
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Application of LP & MIP - |

Transportation-airlines

= Fleet assignment

= Crew scheduling

= Ground personnel scheduling

= Yield management

= Fuel allocation

= Passenger mix

= Booking control

= Maintenance scheduling

= Load balancing/freight packing
= Airport traffic planning

= @ate scheduling/assignment

= Upset recover and management

Transportation-other

Vehicle routing

Freight vehicle scheduling and
assignment

Depot/warehouse location
Freight vehicle packing

Public transportation system
operation

Rental car fleet management

Process industries

Plant production scheduling and
logistics

Capacity expansion planning
Pipeline transportation planning
Gasoline and chemical blending

10



Application of LP & MIP - I

Financial

Portfolio selection and optimization
Cash management

Synthetic option development
Lease analysis

Capital budgeting and rationing
Bank financial planning
Accounting allocations
Securities industry surveillance
Audit staff planning
Assets/liabilities management
Unit costing

Financial valuation

Bank shift scheduling

Consumer credit delinquency
management

Check clearing systems
Municipal bond bidding
Stock exchange operations
Debt financing

Manufacturing

Product mix planning

Blending

Manufacturing scheduling

Inventory management

Job scheduling

Personnel scheduling

Maintenance scheduling and planning
Steel production scheduling

Coal Industry

= Coal sourcing/transportation logistics
= Coal blending

= Mining operations management
Forestry

= Forest land management

= Forest valuation models

= Planting and harvesting models

11



Application of LP & MIP - I

Agriculture

= Production planning

= Farm land management

= Agricultural pricing models

= Crop and product mix decision models
= Product distribution

Public utilities and natural
resources

= Electric power distribution

Power generator scheduling

Power tariff rate determination
Natural gas distribution planning
Natural gas pipeline transportation
Water resource management
Alternative water supply evaluation
Water reservoir management
Public water transportation models
Mining excavation models

Oil and gas exploration and
production

Oil and gas production scheduling
Natural gas transportation scheduling

Communications and
computing

Circuit board (VLSI) layout
Logical circuit design

Magnetic field design

Complex computer graphics
Curve fitting

Virtual reality systems
Computer system capacity planning
Office automation
Multiprocessor scheduling
Telecommunications scheduling
Telephone operator scheduling
Telemarketing site selection

12



Application of LP & MIP - IV

Food processing

= Food blending

= Recipe optimization

= Food transportation logistics

= Food manufacturing logistics and
scheduling

Health care

= Hospital staff scheduling

= Hospital layout

= Health cost reimbursement
= Ambulance scheduling

= Radiation exposure models

Pulp and paper industry
= Inventory planning

=  Trim loss minimization

= Waste water recycling

= Transportation planning

Textile industry
= Pattern layout and cutting optimization
= Production scheduling

Government and military

= Post office scheduling and planning
= Military logistics

= Target assignment

= Missile detection

=  Manpower deployment

NMicralla eous ap |r\'3+r\ Nno
1VII OL;CIIOLI ICUUO Cl[JlJIIL,OI.L VUl 1o

= Advertising mix/media scheduling
= Pollution control models

= Sales region definition

= Sales force deployment

13
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Linear Program (LP)

Characteristics

Objective
» linear function

Feasible region
» described by
linear constraints

Variable domains
> real values

minc' X
AX = a
BXx <D
X >0

15



Observation

1. Optimization algorithms for linear programs can solve the
feasibility/membership problem for the associated polyhedron.

2. With a membership algorithm for a polyhedron one can solve any
linear optimization problem over the polyhedron.
(binary search or combining the primal and the dual program)

3. An LP “min/max c'x, Ax=Db, x 10" is often called “standard form.
Note, though, that each of the methods to be discussed has a
slightly different “standard form”. They are all “trivially equivalent”
in the sense that one form can be easily transformed into the
other and there is a simple correspondence between feasible and
optimal solutions.

Martin Grotschel 16



Algorithms for the solution of linear programs

1. Fourier-Motzkin Elimination
. The Primal Simplex Method
. The Dual Simplex Method

2
3
4. The Ellipsoid Method
5. Interior-Point/Barrier Methods
6

. Lagrangian Relaxation, Subgradient/Bundle Methods
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Fourier Elimination

= Fourier, 1826/1827
= Motzkin, 1938

= Method: successive projection of a polyhedron in
n-dimensional space into a vector space of dimension n-1 by
elimination of one variable.

Projection on y: (0,y) .

Projection on x: (x,0)

19



step

A Fourier

<0

copy
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Fourier-Motzkin Elimination: an example

min/max + x1 + 3x2 ~

N
D - X2 <=0
(2) - x1 - x2 <=-1
(3 - x1 + x2 <=3 ~
4) + x1 <= 3 2 ()
(5) + x1 + 2x2 <=9 \\\\\\\\\\\
@
<
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Fourier-Motzkin Elimination: an example,
call of PORTA (Polymake)

min/max + x1 +

D
(2)
3)
4)
)

+ 4+ 1 |

x1
x1
x1
x1

- X2
- X2
+ X2

+ 2X2

3x2

DIM = 3

INEQUALITIES_SECTION

(D

(2) - xi1
(3 - x1
(4) + x1
(5) + x1
(6) + x1
(7)) - x1

+

+
+

X2 <=0
X2 <=-1
X2 <= 3

<= 3
2X2 <=9

3X2 - x3 <=0
3X2 + X3 <=0

ELIMINATION_ORDER

100




Fourier-Motzkin Elimination: an example

DIM = 3 -DIM:IB

INEQUALITIES _SECTION INEQUALITIES _SECTION

(D (1 - x2 <= 0 (D - X2 <=0
2,4 (2) - x2 <= 2 (2) - x1 - x2 <=-1
(2,5 (3) + x2 <= 8 (3) - x1 + x2 <= 3
(2,6) (4) +2x2 - x3 <= -1 (4) + x1 <= 3
(3,4) (5) + x2 <= 6 (b)) + x1 + 2x2 <= 9
(3,5 (6) + x2 <= 4 (6) + x1 + 3x2 - x3 <=0
(3,6) (7) +4x2 - x3 <= 3 (7) - x1 - 3x2 + x3 <=0
(7,4 (8) -3x2 + x3 <= 3

(7,5 (9) - x2 + x3 <= 9

(7,6) ELIMINATION_ORDER
100




Fourier-Motzkin Elimination: an example

DIM = 3 (1,4 ( 1) x3 <= -1
(1,7 ( 2) x3 <= 3
INEQUALITIES_SECTION 2,4 ( 3) x3 <= 3
2,7 ( 4 -x3 <= 11
D (1 - x2 <= 0 (8,3) ( 5 +x3 <= 27
2,4 (2) - x2 <= 2 (8,4 ( 6) x3 <= 3
(2,5 (3) + x2 <= 8 (8,5 ( 7)) +x3 <= 21
(2,6) (4) +2x2 - x3 <= -1 (8,6) ( 8) +x3 <= 15
(3,4) (5) + x2 <= 6 (8,7) ( 9) +x3 <= 21
(3,5) (6) + x2 <= 4 (9,3) ( 10) +x3 <= 17
(3,6) (7) +4x2 - x3 <= 3 (9,4) ( 11) +x3 <= 17
(7,4) (8) -3x2 + x3 <= 3 (9,5 ( 12) +x3 <= 15
(7,5) (9) - x2 +x3 <= 9 (9,6) ( 13) +x3 <= 13
(7,6) (9,7) ( 14)+3x3 <= 39
ELIMINATION_ORDER min = 1 <= X3 <= 13 = max
010
x1l =1 x1l =1
X2 =0 X2 = 4




Fourier-Motzkin Elimination: an example

min/max + x1 + 3x2

i\:§ max
D - X2 <=0
(2) - x1 - x2 <=-1
(3 - x1 + x2 <=3 ~
(4) + x1 <= 3 \S? (5)
(5) + x1 + 2x2 <=9 \\\\\\\\\\\

‘@
&
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Fourier-Motzkin Elimination

FME is a wonderful constructive proof method.

Elimination of all variables of a given inequality system directly yields
the Farkas Lemma:

Ax <b has a solution or

y'A=0,y'b <0 has a solution
but not both.

FME is computationally lousy.

26



Algorithms for the solution of linear programs

1. Fourier-Motzkin Elimination
. The Primal Simplex Method
. The Dual Simplex Method

2
3
4. The Ellipsoid Method
5. Interior-Point/Barrier Methods
6

. Lagrangian Relaxation, Subgradient/Bundle Methods

Martin Grotschel 27



The Primal Simplex Method

Dantzig, 1947: primal Simplex Method
Dantzig, 1953: revised Simplex Method

Underlying ldea: Find a vertex of the set of feasible LP solutions

(polyhedron) and move to a better neighbouring vertex, if possible
(Fourier's idea 1826/27).

28



The Simplex Method:
an example

min/max + x1 + 3x2
N
D - X2 <=0
(2) - x1 - x2 <=-1
(3 - x1 + x2 <=3
(4) + x1 <= 3
(B) + x1 + 2x2 9 \\\\\\\\\\\




The Simplex Method:
an example

min/max + x1 +

D - X2
(2) - x1 - x2
(3 - x1 + x2
(4) + x1

(5) + x1 + 2x2

/
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Hirsch Conjecture

If P is a polytope of dimension n with m facets then every
vertex of P can be reached from any other vertex of P on a path
of length at most m-n.

In the example before: m=5, n=2 and m-n=3,
2 or 3 steps are needed, and the conjecture holds (precisely).

At present, not even a polynomial bound on the path length is
known.,
Disproof:

Santos, Francisco (2011), "A counterexample to the Hirsch
conjecture”, Annals of Mathematics 176 (1): 383412,
arXiv:1006.2814, doi:10.4007/annals.2012.176.1.7, MR 2925387

31



Computationally important idea of the
Simplex Method

Let a (m,n)-Matrix A with full row rank m, an m-vector b and
an n-vector ¢ with m<n be given. For every vertex y of the
polyhedron of feasible solutions of the LP,

max ¢’ x
Ax=b
x=0

A=| B N

=t kIt N T = SENT IS

of A representing the vertex y (basic solution) as follows
VB = B_lbn VN = 0
Many computational consequences:

Update-formulas, reduced cost calculations,
number of non-zeros of a vertex,...

32



Numerical trouble often
has geometric reasons

SO

Where are
the points of intersection
(vertices, basic solutions)?

What you can't see with your eyes,
causes also numerical difficulties.




Algorithms for the solution of linear programs

1. Fourier-Motzkin Elimination
. The Primal Simplex Method
. The Dual Simplex Method

2
3
4. The Ellipsoid Method
5. Interior-Point/Barrier Methods
6

. Lagrangian Relaxation, Subgradient/Bundle Methods

Martin Grotschel 34



The Dual Simplex Method

Dantzig, 1947: primal Simplex Method Zib
Dantzig, 1953: revised Simplex Method
Lemke, 1954; Beale, 1954: dual Simplex Method

35



Optimizers' dream: Duality theorems

The Duality Theorem of Linear Programming

maxc'x = _ miny'b
Ax<b y'Ax>c'
x>0 y=>0

36



Optimizers' dream: Duality theorems

Max-Flow Min-Cut Theorem
The value of a maximal (s,t)-flow in a capacitated network is equal to the

minimal capacity of an (s,t)-cut.
The Duality Theorem of Linear Programming

maxc'x  _ miny'b
Ax<b y'Ax>c'
X>0 y >0

37



Optimizers' dream: Duality theorems
for integer programming

The Max-Flow Min-Cut Theorem
does not hold if several source-sink relations are given
(multicommodity flow).

The Duality Theorem of Linear Programming
does not hold if integrality conditions are added

Important technique:

Use polyhedral theory
l to obtain “=",

maxc'x < miny'b

Ax<b y'Ax>c'
<<

X=>0 y=>0

XeZ" yeZ"

38



Dual Simplex Method

The Dual Simplex Method is the (Primal) Simplex Method
applied to the dual of a given linear program.

Surprise in the mid-nineties:

The Dual Simplex Method is faster than the Primal in practice.
One key: Goldfarb’s steepest edge pivoting rule!

A wonderful observation for the cutting plane methods of integer
programming!

Ask Bob Bixby for a detailed explanation!

39



Algorithms for the solution of linear programs

1. Fourier-Motzkin Elimination
. The Primal Simplex Method
. The Dual Simplex Method

2
3
4. The Ellipsoid Method
5. Interior-Point/Barrier Methods
6

. Lagrangian Relaxation, Subgradient/Bundle Methods
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The Ellipsoid Method

= Shor, 1970 - 1979
= Yudin & Nemirovskii, 1976
= Khachiyan, 1979

= M. Grotschel, L. Lovasz, A. Schrijver,
Geometric Algorithms and Combinatorial Optimization
Algorithms and Combinatorics 2, Springer, 1988

This book can be downloaded from my homepage!
= http://www.zib.de/groetschel/pubnew/paper/groetschellovaszschrijver1988.pdf

41



The Ellipsoid Method: an example

SOSERRILS

42



k = O,
N =2n(@n+ I(C)+md)—r’) " p o g
Aog := R?*I with R = \/ﬁz(cid)-—nz . { | < }
Initialization
ay =0

Ifk =N, STOP! (Declare P empty.) Stopping criterion
Ifa, € P, STOP! (A feasible solution is found.) Feasibility check

Ifa, ¢ P, then choose an inequality, say ¢"x <y Cutrt‘in_g plane
of the system Cx < d that is violated by ay. choice
1
b .= AkC
T
ve A"(; The
Aril = ax b Update Ellipsoid
" Method

2
+ 1

A1 = nzni : (Ak - bbT)



HMoxmapgst Axagemnnm wayx CCCP
1979, Tom 244, N 5

YK 519.95 MATEMATIERA

JL T'. XAYHAH

MMOJMHOMMAJIbHBIA AJITOPATM B IHHEWHOM
IIPOrPAMMUPOBAHNN

(Ipedcraeaenc arademuron A. 4. Jopodnuysiiers ¢ X 1978)

PaceMorpuym coereMy W3 m=2 nUHeIIHBIX HEPABEHCTB OTHOCUTEIBHO 7=>2
BEMECTBEHHABIX MEPEMEHHRIX Ly, ..., Ljy .. ., Tn

E“Iq_+ .aa -F“am;"“ib{, i=i1 2., e eay L, (1::'

¢ IMeJsIMu Koa(pdumuenrami aq, by Ilyers

L=[ ) log.(layi+1) +; lﬂgg(ibif-i-l}'{-iuginm] +1 )

1, 7==1

€CTh JUUIHEA BXOJa CHCTEMBI, T, €. wucao ciuMmsoios O w 1, BeobxoquMeix 17s
sanuen (1) B IBOMYHOIT cHeTEMe CUMCTOHI,
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May 1980, New York Times, Nov. 7, 1979

By MALCOLM W. BROWNE

pg. Al

By MALCOLM W. BROWNE

A surprise discovery by an obscure
Soviet mathematician has rocked the
world of mathematics and computer
analysis, and experts have begun explor-
ing its practical applications.

Mathematicians describe the discov-
ery by L.G. Khachian as a method by
which computers can find guaranteed
solutions to a class of very difficult prob-
lems that have hitherto been tackled on a
kind of hit-or-miss basis.

Apart from its profound theoretical in-
terest, the discovery may be applicable

A Soviet Discovery Rocks World of Mathematics

in weather prediction, complicated indus-
trial processes, petroleum refining, the
scheduling of workers at large factories,
secret codes and many other things.

““1 have been deluged with calls from
virtually every department of govern-
ment for an interpretation of the signifi-
cance of this,” a leading expert on com-
puter methods, Dr. George B. Dantzig of
Stanford University, said in an interview.

The solution of mathematical problems
by computer must be broken down into a
series of steps. One class of problem
sometimes involves so many steps that it

New York Times (1857-Current file); Nov 7, 1979; ProQuest Historical Newspapers The New York Times (1851 - 2003)

A Soviet Discovery Rocks World of Mathematics |

could take billions of years to compute,
The Russian discovery offers a way by

which the number of steps in a solution

can be dramatically reduced. It also of-

[fers the mathematician a way of learning
‘quickly whether a problem has a solution

or not, without having to complete the en-
tire immense computation that may be
required.

According to the American journal Sci-

Continued on Page A20, Column 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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May 1980
National Association of Science Writers

X XXX
XXX

‘l
KA

115

EWSLETTER

NATIONAL ASSOCIATION OF SCIENCE WRITERS

Volume 28, Number 2 May 1980

Science Writers Rock World of Mathematics:
Tales of the Traveling Salesman Problem

by Jonathan Weiner

Echoes of Sputnik. An obscure young Russian mathematician solves a key problem in linear programming, and
American defense experts wring their hands worrying about its applications to secret codes, weather forecasting,
and Kremlin-only-knows what else.

It was a pretty good story, as mathematics news goes, and it wound up on page one of The New York Times last
November 7. It was run by The Times news service, and it was picked up far and wide as a nifty science novelty
item. It had all the elements of a spy novel: the cold war, a valuable scientific formula, and sexual innuendo in
the form of a traveling salesman. Who could ignore it?

46



Algorithms for the solution of linear programs

1. Fourier-Motzkin Elimination
. The Primal Simplex Method
. The Dual Simplex Method

2
3
4. The Ellipsoid Method
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6

. Lagrangian Relaxation, Subgradient/Bundle Methods
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Interior-Point Methods: an example

central path

S~

~~

N %)
o)
()

)

Often also called
Barrier Methods

\\\\\\\Z\\\\VVhy?
\

inté.rior Point

BN

N
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The Karmarkar Algorithm

(13.25) Der Karmarkar-Algorithomuos.

Input: A € Q'™ und ¢ ¢ Q" Zusitzlich wird vorausgesetzt, dass —15_;1: 0
und 71 = 0 gilt.

Output: Ein Vektor r mit Ar = 0, 1Tz = 1, = > 0 und &= < 0 oder die

Feststellung, dass kein derartiger Vektor existiert. _
(2} Abbruchkriterium.

(1) Initialiskerung, Setze (2a) Gilt k — N, dann hat Az = 0, 1Tz = 1,z > 0, Tz = 0 keine
Lasung, STOP!

B (2.b) GiltcTc* < 2-Wi-ie) dann ist eine Losung gefunden. Falls &¥ =* < 0,

N =3n({4) + 2c) —n) dann ist £* eine Lisung, andernfalls kann wie bei der Ellipsoidme tho-

H
==

Erd
—
=

de (Satz (12.34)) aus =* ein Vektor T konstruien werden mit «* T < 0
AF —0,17F = 1, T > 0, STOF!

Update.
(3) (3.a) D := diag(z*)
(3.b) := (I-DA"(AD*ATYy 'AD—-L11")De

Tl
- k+1 . 1. 1 1 1
G0y =l -3 n(n—1) Il

[ij I.fs:+1 — F‘TL,FTDF;:_H

(3.e) k:=kE+1

C

il

Gehe zu (2).
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| Breakthrough in Problem Solving

A 28-year-old mathematician at A T.&T,
Bell Laboratories has made a snli
theoretical breakth in the solving
systems of equations that ofien grow too
vast and complex for the most powerful
compuoters.

The discovery, which is to be formally
published next month, is already cir-
culating rapidly through the mathematical
world. It also set off a deluge of
inquiries from brokerage houses, oil com-

and sirfines. indutstries with pmill
of dollars at stake in problems known as
linear programming.
Faster Solutions Seen

These problems are fiendishly com-
plicated systems, often with thousands of
variables. They arise in a veriety of com-
mercial and government applications, rang-
ing from allocating time on 2 communica-
tions satellite w0 routing millions of
telephone calls over long distances, or
whenever a limited, expensive resource
must be spread most efficiently amang
competing users. And investment com-
panies use them in creating portfolios with
the best mix of stocks mdpggnds.

The Bell Labs mathematician, Dr.
Narendra Karmarkar, ml;ulas devised 2
radically new ure speed the
routine handling of such mem by
mmm and ncies and

make it possible to tackle problems
that are now far out of reach. P

“This s a ing result,” said Dr,
Ronald L. Graham, director of
mathematical sciences for Bell Labs in
Murray Hill, N.1.

THE NEW YORK TIMES, November 19, 1984

By JAMES GLEICK

“Science has its moments of great pro-
gress, and this may well be one of them,"”

Becausz problems in linear program-
ming can have billions or more possible
answers, even high-speed computers can-
not check every one. So computers must
use a special procedure, an algorithm, 10
examing as few answers as possible before
finding the best one — typically the one
that minimizes cost or maximizes
efficiency.

A procedure devised in 1947, the simplex
methed. is now used for such problems,

Continued oa Page A19, Column 1

Folding the Perfect Corner

A young Bell scientist makes a major math breakthrough

very day 1,200 American Airlines jets

crisscross the U.S,, Mexico, Canada and
the Caribbean, stopping in 110 cities and bear-
ing over 80,000 passengers. More than 4,000
pilots, copilots, flight personnel, maintenance
workers and baggage carriers are shuffled
among the flights; a total of 3.6 million gal.
of high-octane fuel is burned. Nuts, belts,
altimeters, landing géars and the like must be
checked ar each destination. And while per-
forming these scheduling gymnastics, the
company must keep a close eye on costs, pro-
Jected revenue and profits.

Like American Airlines, thousands of com-
panies must routinely untangle the myriad
variables that complicate the efficient distribu-
tion of their resources, Solving such monstrous
problems requires the use of an abstruse
branch of mathematics knewn 25 linear pro-
gramming. It is the kind of math that has
frustrated theoreticians for vears, and even the
fastest and most powerful computers have had
great difficulty juggling the bits and pieces of
data. Now Narendra Karmarkar, a 28-year-old

Indian-born  mathematician  at  Bell
Laboratories in Murray Hill, N 1., after only
a years' work has cracked the puzzle of linear
programming by devising a new algorithm,
step-by-step mathematical formula. He has
translated the procedure into a program that
should allow computers i track & greater com-
bination of tasks than ever before and in & frac-
ton of the time,

- Unlike most advances in theoretical
mathematics, Karmarkar's work will have an
immediate and major impact on the real world.
“Breakthrough is one of the most abused
words in science,” says Ronald Graham, direc-
tor of mathematical sciences at Bell Labs,
“But this is one situation where it is truly ap-
propriate.”

Before the Karmarkar method, linear equa-
tions could be solved only in a cumbersome
fashion, ironically kmown as the simplex
method, devised by Mathematician George
Dantzig in 1947. Problems are conceived of
as giant geodesic domes with thousands of
sides. Each comer of a facet on the dome

TIME MAGAZINE, December 3, 1984



Milestones for
Interior Point Methods (IPMs)

1984 Projective IPM: Karmarkar — efficient in practice!?
1989 O(n3L) for IPMs: Renegar — best complexity
1989 Primal-Dual IPMs: Kojima ... — dominant since then

1989 Self-Concordant Barrier: Nesterov—Nemirovskii
— extensions to smooth convex optimozation

1992 Semi-Definite Optimization (SDO) and Second Order
Conic Optimization (SOCO): Alizadeh, Nesterov—Nemirovskii
—new applications, approximations, software

1998 Robust LO: Ben Tal-Nemirovskii
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Complexity of Self-Regular IPMs

Method Large update | Small update
7 1—-1/100 1/\/n
[ter. bound O(nlog %) O(y/nlog %)
Performance Efficient Very poor
SR-Method SR-Large SR-Small SR-Large ¢ = logn
0 1—-1/100 1/\/n constant
_q# n v n n
[ter. bound | O(gqn 2¢ log%) | O(y/nlog?) O(y/nlognlogZ)
Performance Efficient Very poor Efficient

" Almost” constant (< 100) number of iterations in practice!
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Algorithms for the solution of linear programs

1. Fourier-Motzkin Elimination
. The Primal Simplex Method
. The Dual Simplex Method

2
3
4. The Ellipsoid Method
5. Interior-Point/Barrier Methods
6

. Lagrangian Relaxation, Subgradient/Bundle Methods
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Lagrangean Relaxation &
Non-differentiable Optimization

Approach for very large scale and structured LPs ZiB
Methods:

= subgradient
= bundle

= bundle trust region

or any other nondifferentiable NLP method that looks
promissing
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Lagrangian Relaxation
Turning an LP into a nonlinear nondifferentiable optimization prolglé

minc' x
maxf(A)
AX=Db T T
f(A)=minc'x+A4 (AXx-D)
Dx<d| _. xeQ
= Q
X=>0

(14.25) Satz. Sei Q nicht leer und endlich und f(\) := mingeo(c'x + AT (Ax —
b)), so gilt folgendes: Setzen wir fiir \g € R™, Ly := {29 € R™ | f(\) =
g+ N (Azg — b)}, so st

Jf(Ag) = conv{(Axg —b) | 29 € Lo} .
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Algorithms for
nonlinear nondifferential programming

Xig =%+ Sidi
d. = subgradient (instead of gradient)

or element of ¢-subdifferential (bundle)
s, = steplength
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Bundle Method

(Kiwiel [1990], Helmberg [2000])

Max  f(1):=minc'x+A"(b-Ax)
xeX

X polyhedral (piecewise linear)

r T T
f,(A)=c'x,+4 (b-Ax))

f.(1)'=minf (1
(1) min 4 (4)

~ Uy ~ 12
Isa = argmaxfy (2) == |2 &
A
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Quadratic Subproblem

(1) maxf, (z)——Hz ﬂkH

< (2) max v—u?kuﬁ—/sz

st v<f,(2), forall yed,

2
|
& (3) Mmax Zaﬂfﬂ(i)—ﬂ Zaﬂ(b—Axﬂ)
HE, K ||1ed,
S.t. Z a, =1
JZIENN

O<eg, <1 forall xeJy
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Primal Approximation

/1k+1:£k+% Z a,(b-AXx,) 4

ued,

Xir1= D, AuXy
Hed,

f (1) =c'X, +A(b—A%X)

Thanram
I 1T INO\JI U1

)k+1 A

Ib— A% =0 (k = )

= (X )ken CONverges to a point X e {x: Ax =b,x € X}

59



Where Bundle Wins

RALF BORNDORFER ANDREAS LOBEL STEFFEN WEIDER

A Bundle Method for Integrated
Multi-Depot Vehicle and Duty
Scheduling in Public Transit
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Computational Results for a (Duty Scheduling)
Set Partitioning Model

Coordinate Ascent: Fast, low quality

Duty Scheduling Problem Ivu41: Subgradient: (Theoretical) Convergence
e 870 500 col Volume: Primal approximation
e 3570 rows Bundle+AS: Conv. + primal approx.

e 10.5 non-zeroes per col Dual Simplex: Primal+dual optimal

Barrier: Primal+dual optimal

450
400
350

300

250

0 20 40 60 80 100

— Coordinate Ascent — Subgradient Volume —— Bundle+AS —— Dual Simplex — Barrier [s]
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Algorithms for the solution of linear programs

1. Fourier-Motzkin Elimination
. The Primal Simplex Method
. The Dual Simplex Method

2
3
4. The Ellipsoid Method
5. Interior-Point/Barrier Methods
6

. Lagrangian Relaxation, Subgradient/Bundle Methods
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Algorithms for the solution of linear programs

1. Fourier-Motzkin Elimination
. The Primal Simplex Method
. The Dual Simplex Method

2
3
4. The Ellipsoid Method
5. Interior-Point/Barrier Methods
6

. Lagrangian Relaxation, Subgradient/Bundle Methods

Conclusions

Martin Grotschel 63



/1B Instances

Variables | Constraints Non-zeros | Description

1|12,471,400| 5,887,041 49,877,768 | Group Channel Routing on a
3D Grid Graph
(Chip-Bus-Routing)

2 | 37,709,944 | 9,049,868 | 146,280,582 | Group Channel Routing on a
3D Grid Graph
(different model, infeasible)

3129,128,799| 19,731,970| 104,422,573 | Steiner-Tree-Packing on a 3D
Grid Graph

4 37,423 | 7,433,543 | 69,004,977 | Integrated WLAN
Transmitter Selection and
Channel Assignment

51 9,253,265 9,808 | 349,424,637 | Duty Scheduling with base

constraints




LP/MIP survey

Robert E. Bixby, Solving Real-World Linear Programs:
A Decade and More of Progress.
Operations Research 50 (2002)3-15.

Newest results at CO@W next week
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Which LP solvers are used in practice?

Preview summary

= Fourier-Motzkin: hopeless

Ellipsoid Method: total failure

primal Simplex Method: good

dual Simplex Method: better than primal

Barrier Method: for large LPs frequently best

= Subgradient Methods: only useful for extremely large scale

= For LP relaxations of IPs: dual Simplex Method

= Who would have predicted that from theoretical insights?
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Mixed Integer Program (MIP)

Characteristics

Objective function
» linear function

Feasible region
» described by
linear constraints

Variable domains
» real or integer
values

min c’ x
s.t. Ax <b

(x;, xC) = ZI X RI

ceR", beR", Ac R™X"

In reality all numbers are rational
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Mixed Integer Program (MIP)
41 B
Characteristics min CT X
Objective function AX = 3 (IP/
> linear function MIP
Bx <b _MIP,
Feasible region MILP
» described by X=0 0/1-|:P
linear constraints somex. € Z ) '
J EEnE
Variable domains some X. {(),]_}
» real or integer J
values

In reality all numbers are rational
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,founding fathers"

~1950 ~1960
linear programming integer programming
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George Dantzig and Ralph Gomory
ISMP Atlanta 2000

the fathers of
Linear Programming and Integer Programming

71



Dantzig and Bixby

George Dantzig and
Bob Bixby

at the International Symposium
on Mathematical Programming,

Atlanta, August 2000
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MIP-Solving technologies

Branch and Bound

Cutting Planes

Column Generation

Primal and Dual Heuristics
Constraint Programming Ideas

i h =

Martin Grotschel 73



MIP Solver Techniques

Presolving

Branch & Bound

Primal Heuristics

o Lo 0 o

Domain Propagation
X1 < X1 i<
X2 <M X2 i<
X3 — X3 <X I

GEETE XK

AlB

Conflict Analysis

y



The importance of LP in IP solving
(slide from Bill Cook)

Best current tour length 7,515,772,212 was
found on May 24, 2013, by Keld Helsgaun

1,904,711-City World TSP, 2001

K Optimality Gap

0 0.235%
8 0.190%
12 0.135%
14 0.111%
16 0.103%

Solution of LP Problems takes over 99% of CPU time

# of variables = 1,813,961,044,405 = 1,8 trillion
current gap: 0.0474%
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Final comments

= Theoretical versus experimental mathematics:
algorithm engineering

= Further challenges:
= Parallelization for simplex algorithm (for super computers)
= Parallelization for MIP-solver (for super computers)
=  Warm start for barrier method
= Finding a basis for barrier

= Coping with a changing computational environment

= Coping with huge data and new data environments
= Reproducibility

= Solving multi-objective LPs and MIPs

= Solving MINLPs
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Multiobjective optimization

Travel Time vs. Line Costs in Potsdam
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German backbone gas pipeline system

SOSERREA
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Aspects of Gas Transportation

The OGE problem It consists of:
IS a:
 Stochastic
e Mixed
 Integer
 Non

e Linear

e Constraint
e Program

e Stochastic Part

» Mixed Integer Part

e Constraint Integer
Programming Part

&
L 2 ar
e

L]

el (]
0.
& »®
L1 e )
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CSEPRAS
SR

Linear and Mixed Integer Optimization:
The Solution Methods — Just a Glimpse

Martin Grotschel
CO@W Berlin

Thanks for your attention
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