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Linear Programming: a very brief historyg g y y
1826/1827 Jean Baptiste Joseph Fourier (1786-1830): 

rudimentory form of simplex method in 3 dimensionsrudimentory form of simplex method in 3 dimensions.
1939 L. V. Kantorovitch (1912-1986): Foundations of linear   

programming (Nobel Prize 1975)programming (Nobel Prize 1975)
1947 G. B. Dantzig (1914-2005): Primal simplex algorithm
1954 C.E. Lemke: Dual simplex algorithm1954 C.E. Lemke: Dual simplex algorithm
1953 G.B. Dantzig, 
1954 W. Orchard Hays, and 

Revised simplex 
algorithmy ,

1954 G. B. Dantzig & W. Orchard Hays:
1979 L. G. Khachiyan (1952-2005): 

The ellipsoid method 
1984 N. Karmarkar: Interior point methods
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Optimal use of scarce ressources foundation 
and economic interpretation of LPp

Leonid V Kantorovich Tjalling C Koopmans
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Leonid V. Kantorovich Tjalling C. Koopmans 
Nobel Prize for Economics 1975 



The Decade of the 70’s: Practice

Interest in optimization flowered
L l l i li ti ti l l l Large scale planning applications particularly popular,
significant difficulties emerged
B ildi li i i d i k Building applications was very expensive and very risky

 Technology just wasn’t ready: 
 LP was slow and 
 Mixed Integer Programming was impossible.

OR could not really “deliver” – with some exceptions, of course

The ellipsoid method of 1979 was no practical success.



The Decade of the 80’s and beyondy
Mid 80’s:  
 There was perception was that LP software had progressed about There was perception was that LP software had progressed about 

as far as it could.
There were several key developments y p
 IBM PC introduced in 1981
 Brought personal computing to business

R l ti l d t b d l d ERP t i t d d Relational databases developed.  ERP systems introduced.
 1984, major theoretical breakthrough in LP  

N Karmarkar “A new polynomial-time algorithm for linearN. Karmarkar, A new polynomial time algorithm for linear 
programming”, Combinatorica 4 (1984) 373-395 
(Interior Point Methods, front page New York Times)

The last ~30 years:  Remarkable progress
W h th titi l ith We now have three competitive algorithms:  
Primal & Dual Simplex, Barrier (interior points)
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Application of LP & MIP - I

Transportation-airlines Transportation-other
 Fleet assignment
 Crew scheduling
 Ground personnel scheduling

 Vehicle routing
 Freight vehicle scheduling and 

assignment

 Yield management 
 Fuel allocation
 Passenger mix

 Depot/warehouse location
 Freight vehicle packing
 Public transportation system g

 Booking control
 Maintenance scheduling
 Load balancing/freight packing

operation
 Rental car fleet management

Process industriesoad ba a g/ g pa g
 Airport traffic planning
 Gate scheduling/assignment
 Upset recover and management

 Plant production scheduling and 
logistics

 Capacity expansion planningUpset recover and management
 Pipeline transportation planning
 Gasoline and chemical blending
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Application of LP & MIP - II

Financial
P tf li l ti d ti i ti

Manufacturing
P d t i l i Portfolio selection and optimization

 Cash management
 Synthetic option development
 Lease analysis

 Product mix planning
 Blending
 Manufacturing scheduling 
 Inventory management

 Capital budgeting and rationing
 Bank financial planning
 Accounting allocations
 Securities industry surveillance

g
 Job scheduling
 Personnel scheduling
 Maintenance scheduling and planning
 Steel production schedulingSecurities industry surveillance

 Audit staff planning
 Assets/liabilities management
 Unit costing
 Financial valuation

Steel production scheduling
Coal Industry
 Coal sourcing/transportation logistics
 Coal blending

 Financial valuation
 Bank shift scheduling
 Consumer credit delinquency 

management
Ch k l i t

 Mining operations management
Forestry
 Forest land management
 Forest valuation models Check clearing systems

 Municipal bond bidding
 Stock exchange operations
 Debt financing

 Forest valuation models
 Planting and harvesting models
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Application of LP & MIP - III

Agriculture
P d ti l i

Oil and gas exploration and 
production Production planning

 Farm land management
 Agricultural pricing models
 Crop and product mix decision models

production
 Oil and gas production scheduling
 Natural gas transportation scheduling
Communications and

 Product distribution
Public utilities and natural 
resources
 Electric power distribution

Communications and 
computing
 Circuit board (VLSI) layout
 Logical circuit design
 Magnetic field design Electric power distribution

 Power generator scheduling
 Power tariff rate determination
 Natural gas distribution planning

l l

 Magnetic field design
 Complex computer graphics
 Curve fitting
 Virtual reality systems

C l Natural gas pipeline transportation
 Water resource management
 Alternative water supply evaluation
 Water reservoir management

 Computer system capacity planning
 Office automation
 Multiprocessor scheduling
 Telecommunications schedulingg

 Public water transportation models
 Mining excavation models

g
 Telephone operator scheduling
 Telemarketing site selection
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Application of LP & MIP - IV

Food processing Textile industry
 Food blending
 Recipe optimization 
 Food transportation logistics

 Pattern layout and cutting optimization 
 Production scheduling

Government and military
 Food manufacturing logistics and 

scheduling

Health care

y
 Post office scheduling and planning
 Military logistics
 Target assignment

 Hospital staff scheduling
 Hospital layout
 Health cost reimbursement

Target assignment
 Missile detection
 Manpower deployment

Miscellaneous applications
 Ambulance scheduling
 Radiation exposure models

Pulp and paper industry

Miscellaneous applications
 Advertising mix/media scheduling
 Pollution control models
 Sales region definitionPulp and paper industry

 Inventory planning
 Trim loss minimization
 Waste water recycling

 Sales region definition
 Sales force deployment

Martin
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 Waste water recycling
 Transportation planning
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Linear Program (LP)

Characteristics

i T
Objective 
 linear function

min Tc x

Feasible region
Ax a

 described by 
linear constraints Bx b

Variable domains 0x 
 real values
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Observation
1. Optimization algorithms for linear programs can solve the 

feasibility/membership problem for the associated polyhedron.y/ p p p y
2. With a membership algorithm for a polyhedron one can solve any 

linear optimization problem over the polyhedron.
(bi h bi i th i l d th d l )(binary search or combining the primal and the dual program)

3. An LP “min/max cTx, Ax=b, x�0” is often called “standard form.
Note though that each of the methods to be discussed has aNote, though, that each of the methods to be discussed has a 
slightly different “standard form”. They are all “trivially equivalent” 
in the sense that one form can be easily transformed into the 
other and there is a simple correspondence between feasible and 
optimal solutions.

Martin Grötschel 16



Algorithms for the solution of linear programsg p g

1. Fourier-Motzkin Elimination

2. The Primal Simplex Method

3 The Dual Simplex Method3. The Dual Simplex Method

4. The Ellipsoid Method

5. Interior-Point/Barrier Methods

6. Lagrangian Relaxation, Subgradient/Bundle Methods
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Algorithms for the solution of linear programsg p g

1. Fourier-Motzkin Elimination

2. The Primal Simplex Method

3 The Dual Simplex Method3. The Dual Simplex Method

4. The Ellipsoid Method

5. Interior-Point/Barrier Methods

6. Lagrangian Relaxation, Subgradient/Bundle Methods
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Fourier-Motzkin Elimination 
 Fourier, 1826/1827 
 Motzkin 1938 Motzkin, 1938
 Method: successive projection of a polyhedron in 

n-dimensional space into a vector space of dimension n-1 byp p y
elimination of one variable.

Projection on y: (0,y)

Martin
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Projection on x: (x,0)
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Fourier-Motzkin Elimination: an examplep

min/max + x1 + 3x2 

(1) - x2 <= 0(1)      x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + x1 <= 3(4) + x1       <  3
(5) + x1 + 2x2 <= 9

(4)

(1)
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Fourier-Motzkin Elimination: an example, 
call of PORTA (Polymake)a o O ( o y a )

DIM = 3

INEQUALITIES_SECTIONmin/max + x1 + 3x2 

(1)      - x2      <= 0
(2) - x1 - x2      <=-1
(3) - x1 +  x2      <= 3
(4) + 1 < 3

(1)      - x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + 1 < 3 (4) + x1            <= 3

(5) + x1 + 2x2      <= 9
(6) + x1 + 3x2 - x3 <= 0
(7) x1 3x2 + x3 <= 0

(4) + x1       <= 3
(5) + x1 + 2x2 <= 9

(7) - x1 - 3x2 + x3 <= 0

ELIMINATION ORDERELIMINATION_ORDER
1 0 0 
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Fourier-Motzkin Elimination: an examplep

DIM = 3DIM = 3

INEQUALITIES_SECTIONINEQUALITIES_SECTION

(1) (1) 2 0 (1)      - x2      <= 0
(2) - x1 - x2      <=-1
(3) - x1 +  x2      <= 3
(4) + 1 < 3

(1)   (1) - x2      <=  0
(2,4) (2) - x2      <=  2
(2,5) (3) + x2      <=  8
(2 6) (4) +2 2 3 < 1 (4) + x1            <= 3

(5) + x1 + 2x2      <= 9
(6) + x1 + 3x2 - x3 <= 0
(7) x1 3x2 + x3 <= 0

(2,6) (4) +2x2 - x3 <= -1
(3,4) (5) + x2      <=  6
(3,5) (6) + x2      <=  4
(3 6) (7) +4x2 - x3 <= 3 (7) - x1 - 3x2 + x3 <= 0

ELIMINATION ORDER

(3,6) (7) +4x2 - x3 <=  3
(7,4) (8) -3x2 + x3 <=  3
(7,5) (9) - x2 + x3 <=  9
(7 6) ELIMINATION_ORDER

1 0 0 
(7,6)
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Grötschel



Fourier-Motzkin Elimination: an examplep

(1,4) (  1) -x3 <=  -1DIM = 3
(1,7) (  2) -x3 <=   3
(2,4) (  3) -x3 <=   3
(2,7) (  4) -x3 <=  11

INEQUALITIES_SECTION

(1) (1) 2 0 (8,3) (  5) +x3 <=  27
(8,4) (  6) -x3 <=   3
(8,5) (  7) +x3 <=  21
(8 6) ( 8) + 3 < 15

(1)   (1) - x2      <=  0
(2,4) (2) - x2      <=  2
(2,5) (3) + x2      <=  8
(2 6) (4) +2 2 3 < 1 (8,6) (  8) +x3 <=  15

(8,7) (  9) +x3 <=  21
(9,3) ( 10) +x3 <=  17
(9 4) ( 11) +x3 <= 17

(2,6) (4) +2x2 - x3 <= -1
(3,4) (5) + x2      <=  6
(3,5) (6) + x2      <=  4
(3 6) (7) +4x2 - x3 <= 3 (9,4) ( 11) +x3 <=  17

(9,5) ( 12) +x3 <=  15
(9,6) ( 13) +x3 <=  13
(9 7) ( 14)+3x3 <= 39

(3,6) (7) +4x2 - x3 <=  3
(7,4) (8) -3x2 + x3 <=  3
(7,5) (9) - x2 + x3 <=  9
(7 6) (9,7) ( 14)+3x3 <=  39

min = 1 <= x3 <= 13 = max

(7,6)

ELIMINATION_ORDER
0 1 0

Martin
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Fourier-Motzkin Elimination: an examplep

min/max + x1 + 3x2 

(1) - x2 <= 0
max

(1)      x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + x1 <= 3(4) + x1       <  3
(5) + x1 + 2x2 <= 9

(4)

(1)
min

Martin
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Fourier-Motzkin Elimination 
FME is a wonderful constructive proof method.
Elimination of all variables of a given inequality system directly yieldsElimination of all variables of a given inequality system directly yields 
the Farkas Lemma:

has a solution orAx b has a solution or 
0, 0 has a solutionT T

Ax b
y A y b



 
but not both.

FME is computationally lousy.

Martin
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Algorithms for the solution of linear programsg p g

1. Fourier-Motzkin Elimination

2. The Primal Simplex Method

3 The Dual Simplex Method3. The Dual Simplex Method

4. The Ellipsoid Method

5. Interior-Point/Barrier Methods

6. Lagrangian Relaxation, Subgradient/Bundle Methods

Martin Grötschel 27



The Primal Simplex Methodp
Dantzig, 1947: primal Simplex Method
Dantzig 1953: revised Simplex MethodDantzig, 1953: revised Simplex Method
….
Underlying Idea: Find a vertex of the set of feasible LP solutionsy g
(polyhedron) and move to a better neighbouring vertex, if possible
(Fourier‘s idea 1826/27).

Martin
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The Simplex Method:
an examplea a p

min/max + x1 + 3x2 

(1) - x2 <= 0(1)      x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + x1 <= 3(4) + x1       <  3
(5) + x1 + 2x2 <= 9

(4)

(1)
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Grötschel

29



The Simplex Method:
an examplea a p

min/max + x1 + 3x2 

(1) - x2 <= 0(1)      x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + x1 <= 3(4) + x1       <  3
(5) + x1 + 2x2 <= 9

(4)

(1)
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Hirsch Conjecturej
If P is a polytope of dimension n with m facets then every 
vertex of P can be reached from any other vertex of P on a pathvertex of P can be reached from any other vertex of P on a path 
of length at most m-n.

In the example before: m=5, n=2 and m-n=3, 
2 or 3 steps are needed, and the conjecture holds (precisely).

At present, not even a polynomial bound on the path length is 
kknown.
Disproof:
Santos Francisco (2011) "A counterexample to the HirschSantos, Francisco (2011), A counterexample to the Hirsch 
conjecture", Annals of Mathematics 176 (1): 383–412, 
arXiv:1006.2814, doi:10.4007/annals.2012.176.1.7, MR 2925387

Martin
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Computationally important idea of the
Simplex MethodS p od

Let a (m,n)-Matrix A with full row rank m, an m-vector b and( , ) ,
an n-vector c with m<n be given. For every vertex y of the
polyhedron of feasible solutions of the LP,

A B N

there is a non-singular (m,m)-submatrix B (called basis)

A = B N

there is a non singular (m,m) submatrix B (called basis) 
of A representing the vertex y (basic solution) as follows

Many computational consequences:
Update formulas reduced cost calculations

Martin
Grötschel
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Update-formulas, reduced cost calculations, 
number of non-zeros of a vertex,… 



Numerical trouble often 
has geometric reasonsas g o aso s

Where are 
the points of intersection 

(vertices, basic solutions)?(vertices, basic solutions)?
What you can‘t see with your eyes,
causes also numerical difficulties.causes also numerical difficulties.



Algorithms for the solution of linear programsg p g

1. Fourier-Motzkin Elimination

2. The Primal Simplex Method

3 The Dual Simplex Method3. The Dual Simplex Method

4. The Ellipsoid Method

5. Interior-Point/Barrier Methods

6. Lagrangian Relaxation, Subgradient/Bundle Methods
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The Dual Simplex Methodp
Dantzig, 1947: primal Simplex Method
Dantzig 1953: revised Simplex MethodDantzig, 1953: revised Simplex Method
Lemke, 1954; Beale, 1954: dual Simplex Method

Martin
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Optimizers‘ dream: Duality theoremsp y

The Duality Theorem of Linear Programmingy g g

T Tmax Tc x
Ax b

min T

T T

y b
y A c

=

0
Ax b
x

 0

y A c
y
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Optimizers‘ dream: Duality theoremsp y

Max-Flow Min-Cut  Theorem
The value of a maximal (s t) flow in a capacitated network is equal to theThe value of a maximal (s,t)-flow in a capacitated network is equal to the
minimal capacity of an (s,t)-cut.

The Duality Theorem of Linear Programmingy g g

T Tmax Tc x
Ax b

min T

T T

y b
y A c

=

0
Ax b
x

 0

y A c
y
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Optimizers‘ dream: Duality theorems
for integer programmingg p g g

The Max-Flow Min-Cut Theorem
does not hold if several source-sink relations are givendoes not hold if several source sink relations are given
(multicommodity flow).

The Duality Theorem of Linear Programming
does not hold if integrality conditions are addeddoes not hold if integrality conditions are added

Important technique:

Use polyhedral theory
t bt i “ ”

max Tc x min Ty b≤
to obtain “= ”.

0
Ax b

 0

T Ty A c


<<
0

n

x
x


Z

0
m

y
y


Z
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Dual Simplex Methodp
The Dual Simplex Method is the (Primal) Simplex Method 
applied to the dual of a given linear program.pp g p g

Surprise in the mid-nineties:
The Dual Simplex Method is faster than the Primal in practice.
One key: Goldfarb’s steepest edge pivoting rule!

A wonderful observation for the cutting plane methods of integer 
programming!programming!

Ask Bob Bixby for a detailed explanation!Ask Bob Bixby for a detailed explanation!

Martin
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Algorithms for the solution of linear programsg p g

1. Fourier-Motzkin Elimination

2. The Primal Simplex Method

3 The Dual Simplex Method3. The Dual Simplex Method

4. The Ellipsoid Method

5. Interior-Point/Barrier Methods

6. Lagrangian Relaxation, Subgradient/Bundle Methods
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The Ellipsoid Methodp
 Shor, 1970 - 1979
 Yudin & Nemirovskii 1976Yudin & Nemirovskii, 1976
 Khachiyan, 1979
 M. Grötschel, L. Lovász, A. Schrijver, , , j ,

Geometric Algorithms and Combinatorial Optimization
Algorithms and Combinatorics 2, Springer, 1988

This book can be downloaded from my homepage!
 http://www.zib.de/groetschel/pubnew/paper/groetschellovaszschrijver1988.pdfg g j
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The Ellipsoid Method: an examplep p

Martin
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InitializationInitialization

Stopping criterion
F ibilit h kFeasibility check
Cutting plane

choicechoice

The
EllipsoidUpdate Ellipsoid 
Method

Update
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May 1980, New York Times, Nov. 7, 1979y , , ,
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May 1980
National Association of Science Writers
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Algorithms for the solution of linear programsg p g

1. Fourier-Motzkin Elimination

2. The Primal Simplex Method

3 The Dual Simplex Method3. The Dual Simplex Method

4. The Ellipsoid Method

5. Interior-Point/Barrier Methods

6. Lagrangian Relaxation, Subgradient/Bundle Methods
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Interior-Point Methods: an examplep

Often also called
Barrier Methods

Why?

central path

(4)

interior Point
(1)

min

interior Point
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The Karmarkar Algorithmg
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Milestones for 
Interior Point Methods (IPMs)o o ods ( s)
 1984 Projective IPM: Karmarkar – efficient in practice!?
 1989 O(n3L) for IPMs: Renegar – best complexity 1989 O(n3L) for IPMs: Renegar – best complexity
 1989 Primal–Dual IPMs: Kojima ... – dominant since then
 1989 Self Concordant Barrier: Nesterov Nemirovskii 1989 Self-Concordant Barrier: Nesterov–Nemirovskii

– extensions to smooth convex optimozation
 1992 Semi-Definite Optimization (SDO) and Second Order 1992 Semi Definite Optimization (SDO) and Second Order 

Conic Optimization (SOCO): Alizadeh, Nesterov–Nemirovskii
–new applications, approximations, softwarepp pp

 1998 Robust LO: Ben Tal–Nemirovskii
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Complexity of Self-Regular IPMsp y g
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Algorithms for the solution of linear programsg p g

1. Fourier-Motzkin Elimination

2. The Primal Simplex Method

3 The Dual Simplex Method3. The Dual Simplex Method

4. The Ellipsoid Method

5. Interior-Point/Barrier Methods

6. Lagrangian Relaxation, Subgradient/Bundle Methods
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Lagrangean Relaxation & 
Non-differentiable Optimizationp
Approach for very large scale and structured LPs
Methods:Methods:
 subgradient
 bundle
 bundle trust region

or any other nondifferentiable NLP method that looksy
promissing
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Lagrangian Relaxationg g
Turning an LP into a nonlinear nondifferentiable optimization problem

min Tc x


   T T

max ( )

( ) : min ( )

f

f c x Ax b

min c x
Ax b

 


( ) : min ( )
x Q

f c x Ax b

0
Dx d

x



:Q
0x 
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Algorithms for
nonlinear nondifferential programmingp g g

1i i i ix x s d  1

subgradient (instead of gradient)
or element of subdifferential (bundle)

i i i i

i

x x s d
d



 


       or element of -subdifferential (bundle)

steplengthis




Martin
Grötschel

56



Bundle Method
(Kiwiel [1990], Helmberg [2000])( [ ], g [ ])

Max


  T T( ) : min ( )
x X

f c x b Ax 

X polyhedral (piecewise linear)

x X

     T T( ) ( )f c x b Ax

1
ff̂

  ( ) ( )


ˆ ( ) : min ( )k J

f f
 

f
  

2
1

ˆ ˆargmax ( ) k
k k k

uf   

 kJ
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12 3
 1 argmax ( )

2k k kf


   



Quadratic SubproblemQ p

2u
 

2ˆ ˆmax ( )
2
k

k k
uf   (1)



 

 

 

 

2ˆmax
2

s.t. ( ), for all

kk

k

uv

v f J

(2)

   s.t. ( ),  for all kv f J

2

   
 

  
 

  



1ˆmax ( ) ( )
2

t 1
k kkJ J

f b Ax
u(3)








 




  

s.t. 1

0 1,      for all 
kJ

kJ

Ralf Borndörfer 58





Primal Approximationpp

1

z
1kf




  1
1ˆ ( )

k

k k
J

b Ax
u  


  

k̂f

1kf 



  1

k

k
J

x x 




Theorem

T( ) ( )k k kf c x b Ax     
f

Theorem
1k 

0 ( )kb Ax k   

 ( )k k Nx converges to a point    : ,x x Ax b x X
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Where Bundle Wins
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Computational Results for a (Duty Scheduling) 
Set Partitioning Model g

Duty Scheduling Problem Ivu41:
Coordinate Ascent: Fast, low quality

Subgradient: (Theoretical) ConvergenceDuty Scheduling Problem Ivu41:
• 870 500 col
• 3 570 rows
• 10.5 non-zeroes per col

Subgradient: (Theoretical) Convergence
Volume: Primal approximation

Bundle+AS: Conv. + primal approx.
Dual Simplex: Primal+dual optimalp p

Barrier: Primal+dual optimal

450

400

300

350

250
0 20 40 60 80 100
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Algorithms for the solution of linear programsg p g

1. Fourier-Motzkin Elimination

2. The Primal Simplex Method

3 The Dual Simplex Method3. The Dual Simplex Method

4. The Ellipsoid Method

5. Interior-Point/Barrier Methods

6. Lagrangian Relaxation, Subgradient/Bundle Methods
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Algorithms for the solution of linear programsg p g

1. Fourier-Motzkin Elimination

2. The Primal Simplex Method

3 The Dual Simplex Method3. The Dual Simplex Method

4. The Ellipsoid Method

5. Interior-Point/Barrier Methods

6. Lagrangian Relaxation, Subgradient/Bundle Methods

Conclusions
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ZIB Instances

Variables Constraints Non-zeros Description

1 12,471,400 5,887,041 49,877,768 Group Channel Routing on a 
3D Grid Graph
(Chip-Bus-Routing) ( p g)

2 37,709,944 9,049,868 146,280,582 Group Channel Routing on a 
3D Grid Graph
(diff t d l i f ibl )(different model, infeasible)

3 29,128,799 19,731,970 104,422,573 Steiner-Tree-Packing on a 3D 
Grid Graphp

4 37,423 7,433,543 69,004,977 Integrated WLAN 
Transmitter Selection andTransmitter Selection and 
Channel Assignment

5 9,253,265 9,808 349,424,637 Duty Scheduling with base 
constraints



LP/MIP survey/ y
Robert E. Bixby, Solving Real-World Linear Programs:
A Decade and More of Progress. g
Operations Research 50 (2002)3-15.

Newest results at CO@W next weekNewest results at CO@W next week
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Which LP solvers are used in practice?p
Preview summary
 Fourier Motzkin: hopeless Fourier-Motzkin: hopeless
 Ellipsoid Method: total failure
 primal Simplex Method: good primal Simplex Method: good
 dual Simplex Method: better than primal

Ba ie Method fo la ge LPs f eq entl best Barrier Method: for large LPs frequently best
 Subgradient Methods: only useful for extremely large scale

 For LP relaxations of IPs: dual Simplex Method

 Who would have predicted that from theoretical insights?

Martin
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Mixed Integer Program (MIP)g g ( )

Characteristics

Objective function
 linear functionea u ct o

Feasible regiong
 described by 
linear constraints

Variable domains
 real or integer 
values

in reality all numbers are rational
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Mixed Integer Program (MIP)g g ( )

Characteristics min Tc x
Objective function
 linear function

Ax a (IP, 
MIPea u ct o

Feasible region
0

Bx b LMIP, 
MILPg

 described by 
linear constraints

0
some

x
x


Z

MILP,
0/1-LP,

)
Variable domains  

some

some 0 1
jx

x





Z ...)

 real or integer 
values

i lit ll b ti l

 some 0,1jx 
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George Dantzig and Ralph Gomoryg g p y

„founding fathers“„founding fathers

~1950
l

~1960

Martin
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70

linear programming integer programming



George Dantzig and Ralph Gomoryg g p y
ISMP Atlanta 2000

the fathers of 
Linear Programming       and       Integer Programming
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Dantzig and Bixbyg y

George Dantzig and 
Bob Bixby
at the International Symposium 
on Mathematical Programming,on Mathematical Programming,
Atlanta, August 2000
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MIP-Solving technologiesg g
1. Branch and Bound
2 Cutting Planes2. Cutting Planes
3. Column Generation
4. Primal and Dual Heuristics
5. Constraint Programming Ideas
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MIP Solver Techniquesq
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The importance of LP in IP solving 
(slide from Bill Cook)( )

Best current tour length 7,515,772,212 was 
found on May 24, 2013, by Keld Helsgaun

# of variables = 1,813,961,044,405 = 1,8 trillion

Martin
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Final comments
 Theoretical versus experimental mathematics:

algorithm engineeringalgorithm engineering
 Further challenges:
 Parallelization for simplex algorithm (for super computers)Parallelization for simplex algorithm (for super computers)
 Parallelization for MIP-solver (for super computers)
 Warm start for barrier method Warm start for barrier method
 Finding a basis for barrier
 Coping with a changing computational environment Coping with a changing computational environment
 Coping with huge data and new data environments
 Reproducibility Reproducibility
 Solving multi-objective LPs and MIPs
 Solving MINLPs Solving MINLPs
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Multiobjective optimization
Travel Time vs. Line Costs in Potsdama s Cos s o sda

e
el

in
g

Ti
m

Co
st

s

ot
al

 T
ra

ve

Li
ne

 C

To

Optimization Overview 78

Weight parameter  (log. scale)



German backbone gas pipeline systemg p p y
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Aspects of Gas Transportationp p

The OGE problem It consists of:p
is a:
• Stochastic • Stochastic Part

• Mixed
• Integer
• Non • Mixed Integer PartNon
• Linear
• Constraint

P • Non-Linear Part• Program Non Linear Part

C t i t I t• Constraint Integer
Programming Part
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Linear and Mixed Integer Optimization: 
The Solution Methods — Just a Glimpse 

M ti G öt h lMartin Grötschel
CO@W Berlin 
28.09.2015

Thanks for your attention
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