
© 2015 IBM Corporation

Recent MILP advances  
CO@W2015

Domenico Salvagnin – CPLEX Optimization – IBM Italy
06/10/2015

© 2015 IBM Corporation‹#›

CPLEX TEAM

Andrea Lodi
MIP/MINLP

Andrea Tramontani
MIP

Bo Jensen
LP

Christian Bliek
Barrier/(MI)Q(C)P

Daniel Junglas
MIP

Domenico Salvagnin
MIP

Ed Klotz
Product Expert

Jonas Schweiger
MINLP

Kathleen Callaway
Documentation

Laszlo Ladanyi
MIP

Philippe Charman
QA

Pierre Bonami
MIP/MINLP

Roland Wunderling
LP/MIP

Ryan Kersh
Python

Xavier Nodet
Product Manager

© 2015 IBM Corporation‹#›

CPLEX Solver
▪ Problem types that can be solved:

− LP: linear programs

− QP: quadratic programs (convex objective)

− QCP: quadratically constrained programs (convex constraints)

− MIP: mixed integer linear programs

− MIQP: mixed integer quadratic programs

− MIQCP: mixed integer quadratically constrained programs

− MINLP: mixed integer nonconvex quadratic objective programs

▪ Continuous algorithms (LP, QP, QCP):

− primal simplex

− dual simplex

− barrier

© 2015 IBM Corporation‹#›

CPLEX Features

▪ Tools to improve solving MIP models:
− parameter tuning tool

• find settings that work best for your problem class
− polishing

• improve primal bound
− solution pool

• get multiple solutions out of a solve
− populate

• get more and diverse solutions
− rich callback API

• try your research ideas inside state-of-the-art environment

▪ Tools to analyze MIP model issues:
− FeasOpt (infeasible problems)

• find minimal relaxation of problem to make it feasible
− Conflict Refiner (infeasible problems)

• extract a minimal infeasible subproblem to show the issue
− Condition Number and MIP kappa (numerical issues)

• estimate the ill-conditioning and numerics of an LP/MIP solve

© 2015 IBM Corporation‹#›

CPLEX Everywhere
▪ Available on many platforms:

− Windows

− Linux

− Mac

− zOS/AIX/Solaris/Sparc/HPux

▪ Scalable to many scenarios:

− Sequential

− Shared-memory parallel

− Distributed-memory parallel

− Remote Object API

− Cloud

see Daniel’s talk

© 2015 IBM Corporation‹#›

CPLEX keeps getting better everyday ☺

0

12.5

25

37.5

50

0

175

350

525

700

9.0 10.0 11.0 12.1 12.2 12.3 12.4 12.5.1 12.6.2

© 2015 IBM Corporation‹#›

All the cool kids do MINLP these days…

…but this is supposed to be a MILP session!

(don’t worry, let’s just redefine “recent”…)

© 2015 IBM Corporation‹#›

Recent advances in MILP

1) Parallel cut loop

2) Local implied bound cuts

3) Lift-and-project cuts

© 2015 IBM Corporation‹#›

PARALLEL CUT LOOP
exploiting performance variability

at root node

© 2015 IBM Corporation‹#›

Performance Variability

▪ Performance variability is a well known phenomenon intrinsic to MIP:
− Danna (MIP Workshop, 2008)
− Koch et al. (Math. Prog. Comp., 2011)
− Achterberg and Wunderling (Facets of Comb. Optimization, 2013)
− Lodi and Tramontani (INFORMS 2013 Tutorial)
− Fischetti and Monaci (Op. Res., 2014)

▪ MIP Solvers contain various ingredients:
− Heuristics
− Cutting planes
− Criteria for branching variable selection
− ...

▪ Seemingly performance neutral changes (in the platform, in the code, or in the parameter
setting) may have a big impact
− on all those ingredients (separated cuts, heuristic solution found, picked variable to

branch on)
− and therefore on the whole solution process!

© 2015 IBM Corporation‹#›

▪ A natural source of performance variability is the choice of the initial LP basis

▪ Because of dual degeneracy, there may be tons of equivalent (but different!) optimal
solution/bases of the first LP relaxation

© 2015 IBM Corporation‹#›

▪ Equivalent (but different) optimal solution/bases may lead to different:
− cutting planes
− heuristic solutions
− ...

▪ Reoptimizing with different cutting planes amplifies the diversification

▪ The final root node could be very different in terms of:
− Fractional solution
− Dual and primal bounds
− Cuts active in the LP

▪ Branching rules will take different decisions
▪ Branch-and-cut will then amplify the diversification again

© 2015 IBM Corporation‹#›

Simulating Performance Variability: CPLEX random seed

▪ Use CPLEX random seed parameter CPXPARAM_RandomSeed to simulate a performance
neutral change in the environment (very convenient!)

▪ Compare:
− Solver A: CPLEX 12.6.0 with random seed 1
− Solver B: CPLEX 12.6.0 with random seed 2

▪ Test set: 3224 models classified according to their difficulty:
− [0, 10k]: all models but the ones for which the solvers provide an inconsistent answer
− [T, 10k]: all models for which one of the solver takes at least T seconds

▪ The comparison is fair because the difficulty of a given model is defined by all the compared
solver: there is no bias against any of the compared solvers

▪ Comparison: (shifted) geometric mean of computing times

© 2015 IBM Corporation‹#›

3084 models
(75% affected)

1877 models
(91% affected)

1112 models
(95% affected)

572 models
(98% affected)

218 models
(100% affected)

▪ 91% of the models in [1,10k] affected:
– the random seed is effective to simulate performance variability.

▪ ~200 models in [1k,10k] cannot measure performance difference of less than 10%:
– Small test sets are less robust to outliers,
– Harder models are typically the ones exhibiting the larger variability.

0.00

0.20

0.40

0.60

0.80

1.00

>0s >1s >10s >100s >1000s

0.92
0.981.001.001.00 1.001.001.001.001.00

seed 1
seed 2

© 2015 IBM Corporation‹#›

Can we take advantage of that?

0.00

0.20

0.40

0.60

0.80

1.00

>0s >1s >10s >100s >1000s

0.63

0.75
0.80

0.86
0.91 0.92

0.981.001.001.00 1.001.001.001.001.00

seed 1
seed 2
lucky

VIRTUAL BEST

ROCKS!!!

© 2015 IBM Corporation‹#›

Main Concept

Preprocessing + LP solve

Parallel Branch-and-Cut

Cut Loop #1 Cut Loop #2 Cut Loop #K…

© 2015 IBM Corporation‹#›

Implementation within CPLEX 12.5.1

• Forget about large K (we just use K = 2)

• multi-threading is not for free

• we also want to apply other methods at the root node

• more cuts typically means better dual bound, but better dual bound does not

mean less time to solve...
• Create diversification in the parallel cut loop by changing

• the basis

• the random seed

• other parameters

• Be conservative with the cuts:

• share cuts between the two cut loops

• but be clever when selecting the cuts to be shared!

© 2015 IBM Corporation‹#›

Preprocessing + LP solve

Cut Loop #1

Shake

Cut Loop #2

Parallel Branch-and-Cut

© 2015 IBM Corporation‹#›

Parallel cut loop results (CPLEX 12.5.1)

0.00

0.20

0.40

0.60

0.80

1.00

>1s >10s >100s

0.980.980.98 0.970.980.99
0.86

0.920.95 0.940.960.98 0.950.970.98

seed 1
seed 2
seed 3
seed 4
seed 5

~1864 models ~1089 models ~565 models

1.02x 1.04x 1.05x
All Models

0.00

0.20

0.40

0.60

0.80

1.00

>1s >10s >100s

0.960.960.97 0.950.970.97

0.80
0.880.91 0.910.940.96 0.920.960.97

seed 1
seed 2
seed 3
seed 4
seed 5

~1100 models ~686 models ~372 models

1.04x 1.06x 1.09x
Affected
Models

© 2015 IBM Corporation‹#›

LOCAL IMPLIED
BOUND CUTS

© 2015 IBM Corporation‹#›

Implications and implied bound cuts

Discovered during presolve and probing

© 2015 IBM Corporation‹#›

▪ Global implied bound cuts:
− Globally valid implications
− Globally valid bounds on implied non-binary variables
− Separated at the root node and at branch-and-bound nodes

▪ Local implied bound cuts (new in CPLEX 12.6.1):
− Globally valid implications
− Locally valid bounds on implied non-binary variables
− Separated at branch-and-bound nodes only

▪ New parameter CPXPARAM_MIP_Cuts_LocalImplied to control local implied bound
cuts:
− -1 = disabled
− 0 = automatic (let CPLEX choose, currently equivalent to -1)
− 1 = moderate: separated at starts of new dives, under conservative restrictions
− 2 = aggressive: separated at starts of new dives, more often
− 3 = very aggressive: potentially separated at every node

© 2015 IBM Corporation‹#›

▪ Enabling	 moderate	 separation	 of	 local	 implied	 bound	 cuts:	
− 1-‐2%	 degradation	 (neutral?)	 on	 our	 test	 bed	

▪ Key	 points	 to	 be	 investigated:	
− Cut	 strength	 versus	 cut	 applicability	

• Local	 cuts	 are	 stronger,	 but	 global	 cuts	 applies	 to	 the	 whole	 tree	
− Interaction	 with	 other	 cut	 types	
− Cut	 filtering	 and	 cut	 selection	

• Local	 cuts	 are	 violated	 more	 often	 than	 global	 cuts:	 special	 filtering	 rules?	

▪ Disabled	 by	 default,	 but	 fundamental	 in	 some	 cases	 (e.g.,	 to	 handle	 “big-‐M	 constraints”)

© 2015 IBM Corporation‹#›

MIQP models from classification problems (Brooks, OR 2011):  

Key points:
• Implications are the core of the problem
• Very large bounds on α and w make any global cut completely ineffective.

© 2015 IBM Corporation‹#›

Did you notice something odd in the previous model?

• Are these linear constraints?

• No, they are indicator constraints:

• Advanced modeling feature natively supported by the CPLEX solver

• Not just a modeling convenience

• More numerically robust than their big-M counterpart and possibly more

efficient as well

© 2015 IBM Corporation‹#›

▪ Bounds	 Li	 are	 just	 too	 big	 and	 global	 implied	 bound	 cuts	 are	 totally	 ineffective	

▪ Local	 implied	 bound	 cuts:	
− Two	 levels	 of	 branching	 immediately	 yield	 reasonable	 local	 bounds	 on	 α	 and	 ωj	

variables	
− Local	 bounds	 Li	 on	 si	 variables	 become	 tight	

− Local	 implied	 bound	 cuts	 are	 effective

© 2015 IBM Corporation‹#›

Results on classification models

Timeouts

0 6 11 17 22

A B

Solved by both

Solved by any

0 900 1800 2700 3600

A B

4.8x

5.8x

A: CPLEX 12.6.1 default
B: CPLEX 12.6.1 + aggressive local implied bound cuts

© 2015 IBM Corporation‹#›

LIFT & PROJECT CUTS
CGLP magic

© 2015 IBM Corporation‹#›

CGLP basics

P0

P1

© 2015 IBM Corporation‹#›

cut valid for P0

cut valid for P1

• All violated inequalities make the CGLP unbounded.
• By construction can only distinguish between violated and not-violated

inequalities…
• Normalization is crucial!!!
• Twice the size of the original LP…

maximize violation

© 2015 IBM Corporation‹#›

Lift and Project Cuts à la Pierre (Math. Prog. Comp., 2012)

duality

Same size and
structure of original

problem

Automatically
works on the
support of x*

© 2015 IBM Corporation‹#›

Lift and Project Cuts in CPLEX 12.5.1

▪ Pierre‘s CGLP to separate rank-1 cuts only. Advantages:	
– Tends to produce cleaner and sparser cuts	
– Enforces the separation of low-rank inequalities (not a big surprise)	
– Breaks the correlation between optimization and separation	

▪ Plus some tricks:	
– Heuristic reduction of CGLP to	

• Speed up the separation	
• Get rid of constraints you don‘t want to use to produce the cut	

– Clever selection of the disjunctions to use	

▪ Not explored but worthy to mention:	
– Rank-1 heuristics: Dash and Goycoolea (Math. Prog. Comp., 2010)	
– Relax-and-cut: Fischetti and S. (Math. Prog. Comp., 2011)

© 2015 IBM Corporation‹#›

L&P results (CPLEX 12.5.1)

0.00

0.20

0.40

0.60

0.80

1.00

>1s >10s >100s

0.920.950.98
0.920.960.98

0.86
0.920.95 0.930.970.99

0.87
0.930.95

seed 1
seed 2
seed 3
seed 4
seed 5

~1864 models ~1089 models ~565 models

1.03x 1.05x 1.10x
All Models

0.00

0.20

0.40

0.60

0.80

1.00

>1s >10s >100s

0.870.920.95
0.880.930.96

0.79
0.860.91 0.88

0.950.98

0.80
0.870.91

seed 1
seed 2
seed 3
seed 4
seed 5

~948 models ~617 models ~362 models

1.06x 1.10x 1.16x
Affected
Models

© 2015 IBM Corporation‹#›

Questions?

© 2015 IBM Corporation‹#›

Legal Disclaimer
• © IBM Corporation 2015. All Rights Reserved.
• The information contained in this publication is provided for informational purposes only. While efforts were made to verify the completeness and

accuracy of the information contained in this publication, it is provided AS IS without warranty of any kind, express or implied. In addition, this
information is based on IBM’s current product plans and strategy, which are subject to change by IBM without notice. IBM shall not be responsible for
any damages arising out of the use of, or otherwise related to, this publication or any other materials. Nothing contained in this publication is
intended to, nor shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and
conditions of the applicable license agreement governing the use of IBM software.

• References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates.
Product release dates and/or capabilities referenced in this presentation may change at any time at IBM’s sole discretion based on market
opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way. Nothing contained in
these materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific sales,
revenue growth or other results.

• Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or
performance that any user will experience will vary depending upon many factors, including considerations such as the amount of multiprogramming
in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an
individual user will achieve results similar to those stated here.

• Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.
• Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
• Other company, product, or service names may be trademarks or service marks of others.

