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CPLEX Solver
▪ Problem types that can be solved: 

− LP:  linear programs 

− QP:  quadratic programs (convex objective) 

− QCP: quadratically constrained programs (convex constraints) 

− MIP: mixed integer linear programs 

− MIQP: mixed integer quadratic programs 

− MIQCP: mixed integer quadratically constrained programs 

− MINLP:           mixed integer nonconvex quadratic objective programs 

▪ Continuous algorithms (LP, QP, QCP): 

− primal simplex 

− dual simplex 

− barrier



© 2015 IBM Corporation‹#›

CPLEX Features

▪ Tools to improve solving MIP models: 
− parameter tuning tool 

• find settings that work best for your problem class 
− polishing 

• improve primal bound 
− solution pool 

• get multiple solutions out of a solve 
− populate 

• get more and diverse solutions 
− rich callback API 

• try your research ideas inside state-of-the-art environment 

▪ Tools to analyze MIP model issues: 
− FeasOpt (infeasible problems) 

• find minimal relaxation of problem to make it feasible 
− Conflict Refiner (infeasible problems) 

• extract a minimal infeasible subproblem to show the issue 
− Condition Number and MIP kappa (numerical issues) 

• estimate the ill-conditioning and numerics of an LP/MIP solve
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CPLEX Everywhere
▪ Available on many platforms: 

− Windows 

− Linux 

− Mac 

− zOS/AIX/Solaris/Sparc/HPux 

▪ Scalable to many scenarios: 

− Sequential 

− Shared-memory parallel 

− Distributed-memory parallel 

− Remote Object API 

− Cloud

see Daniel’s talk
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CPLEX keeps getting better everyday ☺
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All the cool kids do MINLP these days…

…but this is supposed to be a MILP session!

(don’t worry, let’s just redefine “recent”…)
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Recent advances in MILP

1) Parallel cut loop 

2) Local implied bound cuts 

3) Lift-and-project cuts
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PARALLEL CUT LOOP
exploiting performance variability 

at root node
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Performance Variability

▪ Performance variability is a well known phenomenon intrinsic to MIP: 
− Danna (MIP Workshop, 2008) 
− Koch et al. (Math. Prog. Comp., 2011) 
− Achterberg and Wunderling (Facets of Comb. Optimization, 2013) 
− Lodi and Tramontani (INFORMS 2013 Tutorial) 
− Fischetti and Monaci (Op. Res., 2014) 

▪ MIP Solvers contain various ingredients: 
− Heuristics 
− Cutting planes  
− Criteria for branching variable selection 
− ... 

▪ Seemingly performance neutral changes (in the platform, in the code, or in the parameter 
setting) may have a big impact 
− on all those ingredients (separated cuts, heuristic solution found, picked variable to 

branch on)  
− and therefore on the whole solution process!
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▪ A natural source of performance variability is the choice of the initial LP basis 

▪ Because of dual degeneracy, there may be tons of equivalent (but different!) optimal 
solution/bases of the first LP relaxation
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▪ Equivalent (but different) optimal solution/bases may lead to different: 
−  cutting planes 
−  heuristic solutions 
−  ...  

▪ Reoptimizing with different cutting planes amplifies the diversification 

▪ The final root node could be very different in terms of: 
− Fractional solution 
− Dual and primal bounds 
− Cuts active in the LP 

▪ Branching rules will take different decisions 
▪ Branch-and-cut will then amplify the diversification again
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Simulating Performance Variability: CPLEX random seed

▪ Use CPLEX random seed parameter CPXPARAM_RandomSeed to simulate a performance 
neutral change in the environment (very convenient!) 

▪ Compare:  
− Solver A: CPLEX 12.6.0 with random seed 1 
− Solver B: CPLEX 12.6.0 with random seed 2 

▪ Test set: 3224 models classified according to their difficulty: 
− [0, 10k]: all models but the ones for which the solvers provide an inconsistent answer 
− [T, 10k]: all models for which one of the solver takes at least T seconds 

▪ The comparison is fair because the difficulty of a given model is defined by all the compared 
solver: there is no bias against any of the compared solvers 

▪ Comparison: (shifted) geometric mean of computing times
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3084 models 
(75% affected)

1877 models 
(91% affected)

1112 models 
(95% affected)

572 models 
(98% affected)

218 models 
(100% affected)

▪ 91% of the models in [1,10k] affected:  
– the random seed is effective to simulate performance variability. 

▪ ~200 models in [1k,10k] cannot measure performance difference of less than 10%: 
– Small test sets are less robust to outliers, 
– Harder models are typically the ones exhibiting the larger variability. 
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Can we take advantage of that? 
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Main Concept

Preprocessing + LP solve

Parallel Branch-and-Cut

Cut Loop #1 Cut Loop #2 Cut Loop #K…
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Implementation within CPLEX 12.5.1

• Forget about large K (we just use K = 2) 

• multi-threading is not for free 

• we also want to apply other methods at the root node 

• more cuts typically means better dual bound, but better dual bound does not 

mean less time to solve... 
• Create diversification in the parallel cut loop by changing 

•  the basis 

•  the random seed  

•  other parameters 

• Be conservative with the cuts:  

• share cuts between the two cut loops 

• but be clever when selecting the cuts to be shared!
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Preprocessing + LP solve

Cut Loop #1

Shake

Cut Loop #2

Parallel Branch-and-Cut
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Parallel cut loop results (CPLEX 12.5.1)
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LOCAL IMPLIED 
BOUND CUTS



© 2015 IBM Corporation‹#›

Implications and implied bound cuts

Discovered during presolve and probing
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▪ Global implied bound cuts: 
− Globally valid implications 
− Globally valid bounds on implied non-binary variables 
− Separated at the root node and at branch-and-bound nodes 

▪ Local implied bound cuts (new in CPLEX 12.6.1): 
− Globally valid implications 
− Locally valid bounds on implied non-binary variables 
− Separated at branch-and-bound nodes only 

▪ New parameter CPXPARAM_MIP_Cuts_LocalImplied to control local implied bound 
cuts: 
− -1 = disabled 
−   0 = automatic (let CPLEX choose, currently equivalent to -1) 
−   1 = moderate: separated at starts of new dives, under conservative restrictions 
−   2 = aggressive: separated at starts of new dives, more often 
−   3 = very aggressive: potentially separated at every node
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▪ Enabling	
  moderate	
  separation	
  of	
  local	
  implied	
  bound	
  cuts:	
  
− 1-­‐2%	
  degradation	
  (neutral?)	
  on	
  our	
  test	
  bed	
  

▪ Key	
  points	
  to	
  be	
  investigated:	
  
− Cut	
  strength	
  versus	
  cut	
  applicability	
  

• Local	
  cuts	
  are	
  stronger,	
  but	
  global	
  cuts	
  applies	
  to	
  the	
  whole	
  tree	
  
− Interaction	
  with	
  other	
  cut	
  types	
  
− Cut	
  filtering	
  and	
  cut	
  selection	
  

• Local	
  cuts	
  are	
  violated	
  more	
  often	
  than	
  global	
  cuts:	
  special	
  filtering	
  rules?	
  

▪ Disabled	
  by	
  default,	
  but	
  fundamental	
  in	
  some	
  cases	
  (e.g.,	
  to	
  handle	
  “big-­‐M	
  constraints”)
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MIQP models from classification problems (Brooks, OR 2011):  

Key points:  
• Implications are the core of the problem 
• Very large bounds on α and w make any global cut completely ineffective.
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Did you notice something odd in the previous model? 

• Are these linear constraints? 

• No, they are indicator constraints: 

• Advanced modeling feature natively supported by the CPLEX solver 

• Not just a modeling convenience 

• More numerically robust than their big-M counterpart and possibly more 

efficient as well
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▪ Bounds	
  Li	
  are	
  just	
  too	
  big	
  and	
  global	
  implied	
  bound	
  cuts	
  are	
  totally	
  ineffective	
  

▪ Local	
  implied	
  bound	
  cuts:	
  
− Two	
  levels	
  of	
  branching	
  immediately	
  yield	
  reasonable	
  local	
  bounds	
  on	
  α	
  and	
  ωj	
  

variables	
  
− Local	
  bounds	
  Li	
  on	
  si	
  variables	
  become	
  tight	
  

− Local	
  implied	
  bound	
  cuts	
  are	
  effective
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Results on classification models

Timeouts
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A: CPLEX 12.6.1 default 
B: CPLEX 12.6.1 + aggressive local implied bound cuts
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LIFT & PROJECT CUTS
CGLP magic
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CGLP basics

P0

P1
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cut valid for P0

cut valid for P1

• All violated inequalities make the CGLP unbounded. 
• By construction can only distinguish between violated and not-violated 

inequalities… 
• Normalization is crucial!!! 
• Twice the size of the original LP…

maximize violation
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Lift and Project Cuts à la Pierre (Math. Prog. Comp., 2012)

duality

Same size and 
structure of original 

problem

Automatically 
works on the 
support of x*
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Lift and Project Cuts in CPLEX 12.5.1

▪ Pierre‘s CGLP to separate rank-1 cuts only. Advantages:	
  
– Tends to produce cleaner and sparser cuts	
  
– Enforces the separation of low-rank inequalities (not a big surprise)	
  
– Breaks the correlation between optimization and separation	
  

▪ Plus some tricks:	
  
– Heuristic reduction of CGLP to	
  

• Speed up the separation	
  
• Get rid of constraints you don‘t want to use to produce the cut	
  

– Clever selection of the disjunctions to use	
  

▪ Not explored but worthy to mention:	
  
– Rank-1 heuristics: Dash and Goycoolea (Math. Prog. Comp., 2010)	
  
– Relax-and-cut: Fischetti and S. (Math. Prog. Comp., 2011)
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L&P results (CPLEX 12.5.1)
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Questions?
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