

CPLEX Optimization – IBM Germany 2015-10-06

Using computing resources with IBM ILOG CPLEX CO@W2015

- Hardware resources
 - -Multiple cores/threads
 - -Multiple machines
 - -No machines
- Software resources
 - -Interfacing with CPLEX
 - -Interacting with Python

Using more than one core/thread to solve a problem

Sequential branch and bound

Search tree

Pseudo code:

1.

Sequential branch and bound

Sequential branch and bound

IBM. Ö

Sequential branch and bound

while !T.is_empty
n = T.get_next()
n.solve()
if not (n.is_integer()
n.is_infeasible())
<pre>j = n.fractional_index()</pre>
<pre>v = n.fractional_value(j)</pre>
T.create(n + "x[j] <= floor(v)")
T.create(n + "x[j] >= ceil(v)")


```
while !T.is_empty
  T.lock()
  n = T.get_next()
  T.unlock()
  n.solve()
  if not (n.is_integer() ||
          n.is infeasible())
    j = n.fractional_index()
    v = n.fractional_value(j)
    T.lock()
    T.create(n + "x[j] <= floor(v)")</pre>
    T.create(n + "x[j] >= ceil(v)")
    T.unlock()
```


Thread 1

Thread 2

Not deterministic!

Not deterministic! Thread 1 Thread 2 T.lock() T.lock() T.get_next() T.unlock() solve Thread 2 solves — instead of and **m** not even created T.loc Node selection dictates to continue under and T.cre T.crea T.unlock() T.get_next() T.unlock()

Issues with non-determinism

- opportunistic behavior of OS scheduler
- very minor side effects (cache misses, page swaps, ...) can change order of threads

	gmu-35-40	
Time	Iterations	Nodes
21.31	2236199	444838
18.46	2060789	322282
4.62	253871	51778
31.55	3300767	509641
11.89	1238162	177236
79.50	7212334	1307340
21.10	2955104	595939
16.27	1953450	401507
13.61	1410170	261508
17.10	1948228	410949

This is a problem in practice:

	iis-pima-cov	
Time	Iterations	Nodes
62.92	1678290	17744
139.72	5475373	47428
84.39	2075243	26460
80.37	2766163	22016
71.25	1753092	17513
69.18	1615592	21636
117.43	3002680	40299
72.41	1704471	21301
124.01	4863607	42298
191.31	7898071	71043

	glass4	
Time	Iterations	Nodes
41.60	6577338	340192
70.57	11800428	637471
29.30	4075955	304913
34.31	6026804	208466
160.12	29207354	1082067
244.62	35189917	1893985
54.40	8700758	512053
74.64	11307243	698508
47.19	8600157	389436
54.42	8275014	544172

Issues with non-determinism

- opportunistic behavior of OS scheduler
- very minor side effects (cache misses, page swaps, ...) can change order of threads

This is a problem in practice:

gmu-35-40		
Time	Iterations	Nodes
4.62	253871	51778
79.50	7212334	1307340

	iis-pima-cov	
Time	Iterations	Nodes
62.92	1678290	17744
191.31	7898071	71043

	glass4	
Time	Iterations	Nodes
29.30	4075955	304913
244.62	35189917	1893985

- → results are not repeatable
- debugging becomes painful
- benchmarking is complicated
- assessment of algorithmic changes is difficult
 "Is my new cut really helpful or is this just a random change?"

→ We need a solver that operates in a <u>deterministic</u> way!

opportunistic OS scheduler, cache misses, swaps, ...

 \rightarrow order in which lock is granted to threads is not deterministic

deterministic make this order deterministic:

- use deterministic time → same in any run
- grant lock to first thread to arrive in **deterministic time**

opportunistic OS scheduler, cache misses, swaps, ... \rightarrow order in which lock is granted to threads is not deterministic

deterministic make this order deterministic:

- use **deterministic time** → same in any run
- grant lock to first thread to arrive in **deterministic time**

Kendo

"Kendo: Efficient Deterministic Multithreading in Software" http://people.csail.mit.edu/mareko/asplos073-olszewski.pdf → use number of retired store instructions as time (x86)

opportunistic OS scheduler, cache misses, swaps, ... \rightarrow order in which lock is granted to threads is not deterministic

deterministic make this order deterministic:

- use deterministic time → same in any run
- grant lock to first thread to arrive in deterministic time

Kendo

"Kendo: Efficient Deterministic Multithreading in Software" http://people.csail.mit.edu/mareko/asplos073-olszewski.pdf → use number of retired store instructions as time (x86)

CPLEX

deterministic time = number of array accesses

- works the same on all hardware
- explicit instrumentation of source code

for (int i = 0; i < n; ++i)
 x[i] = y[i] * 0.5;
DETCLOCK_INDEX_ARRAY (2 * i);</pre>

- Deterministic threading is not for free
 - settle for a particular path through the search tree
 - increases wait/idle times in locks

	gmu-35-40	
Time	Iterations	Nodes
4.62	253871	51778
79.50	7212334	1307340
38.48	4124364	737994

	iis-pima-cov	
Time	Iterations	Nodes
62.92	1678290	17744
191.31	7898071	71043
72.84	1382605	20449

	glass4	
Time	Iterations	Nodes
29.30	4075955	304913
244.62	35189917	1893985
91.68	11737409	528160

- > Deterministic threading is not for free
 - settle for a particular path through the search tree
 - increases wait/idle times in locks

- > Deterministic threading is not for free
 - settle for a particular path through the search tree
 - increases wait/idle times in locks
- > Deterministic threading is unrelated to performance variability
 - parallel cut loop is still meaningful
- > CPLEX extensions of Kendo framework allow efficient parallel cutloop
 - opportunistic code, but results are deterministic
- > All parallel algorithms in CPLEX are available as opportunistc/deterministic
 - select at runtime with a parameter

Using more than one machine to solve a problem

CPLEX implements distributed parallel MIP solving

- one master process to coordinate the search
- several worker processes to perform the heavy lifting
- usually one master/worker per machine (can configure otherwise)
- communication only between master and workers

CPLEX implements distributed parallel MIP solving

- one master process to coordinate the search
- several worker processes to perform the heavy lifting
- usually one master/worker per machine (can configure otherwise)
- communication only between master and workers
- 3 different ways of communication:
 - $ssh \rightarrow master starts workers via ssh$
 - \rightarrow communication via pipes
 - $TCP/IP \rightarrow$ workers run a server-like process to which master connects
 - \rightarrow communication via sockets
 - MPI \rightarrow all processes run within an MPI communicator
 - \rightarrow communication via MPI functions

CPLEX implements distributed parallel MIP solving

- one master process to coordinate the search
- several worker processes to perform the heavy lifting
- usually one master/worker per machine (can configure otherwise)
- communication only between master and workers
- 3 different ways of communication:
 - $ssh \rightarrow master starts workers via ssh$
 - \rightarrow communication via pipes
 - $TCP/IP \rightarrow$ workers run a server-like process to which master connects
 - \rightarrow communication via sockets
 - MPI \rightarrow all processes run within an MPI communicator
 - \rightarrow communication via MPI functions
- 2 phases:
 - 1. "rampup" \rightarrow create an initial set of open nodes
 - 2. "tree search" \rightarrow perform distributed parallel b&b

Phase I: rampup

1. master runs presolve to create a root node

Phase I: rampup

- 1. master runs presolve to create a root node
- 2. master sends root to workers

32

Phase I: rampup

- 1. master runs presolve to create a root node
- 2. master sends root to workers

- 3. each worker starts b&b with different parameters
- $\rightarrow\,$ each worker produces a different tree

- 1. master runs presolve to create a root node
- 2. master sends root to workers

- 3. each worker starts b&b with different parameters
- \rightarrow each worker produces a different tree

- 4. master eventually
 - stops workers

33

- selects a winner
- collects open nodes from winner
- \rightarrow list of "supernodes"

presolve

MIP

Phase II: tree search

5. master starts with list of supernodes

_	_

- 5. master starts with list of supernodes
- 6. master sends a supernode to each worker

Phase II: tree search

- 5. master starts with list of supernodes
- 6. master sends a supernode to each worker

7. workers solve supernode as MIP

Phase II: tree search

- 5. master starts with list of supernodes
- 6. master sends a supernode to each worker

7. workers solve supernode as MIP

- 8. Master can
 - send new supernodes (if idle)
 - grab nodes to produce new supernodes
 - pause supernode (exchange)

Variants/improvements

1. exchange information (incumbents, bound tightenings, ...)

Variants/improvements

1. exchange information (incumbents, bound tightenings, ...)

2. in rampup, start some workers with special settings

- > aggressive heuristics \rightarrow quickly find good solutions
- \rightarrow aggressive cuts \rightarrow quickly improve dual bound
- ≻ ...

Variants/improvements

≻ ...

40

- 1. exchange information (incumbents, bound tightenings, ...)
- 2. in rampup, start some workers with special settings
 - > aggressive heuristics \rightarrow quickly find good solutions
 - > aggressive cuts \rightarrow quickly improve dual bound
- 3. never stop the rampup phase \rightarrow exploit performance variability

performance that any user will experience will vary depending upon many factors, including considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve results similar to those stated here.

Solving a problem without a machine

- model too hard
- only need to solve once in a while
- ...
- \rightarrow solve in the cloud

- model too hard
- only need to solve once in a while

- model too hard
- only need to solve once in a while

- model too hard
- only need to solve once in a while

Two ways to access CPLEX in the cloud

1. Dropsolve

www.ibm.com/software/analytics/docloud dropsolve-oaas.docloud.ibmcloud.com/software/analytics/docloud

Two ways to access CPLEX in the cloud

1. Dropsolve

www.ibm.com/software/analytics/docloud

dropsolve-oaas.docloud.ibmcloud.com/software/analytics/docloud

Two ways to access CPLEX in the cloud

1. Dropsolve

www.ibm.com/software/analytics/docloud dropsolve-oaas.docloud.ibmcloud.com/software/analytics/docloud

Two ways to access CPLEX in the cloud

1. Dropsolve

www.ibm.com/software/analytics/docloud

dropsolve-oaas.docloud.ibmcloud.com/software/analytics/docloud

Oil-blending.lp Sport-scheduling.dat Warehouse-plan.da Sport-scheduling.mod Warehouse-plan.mo	problems to discover the simplicity and power of DropSolve.	.lp	OPL project	OPL project
Drop a problem here to solve		Oil-blending.lp	Sport-scheduling.dat Sport-scheduling.mod	Warehouse-plan.dat Warehouse-plan.mo
	Drop	a problem here to sol	ve	

Two ways to access CPLEX in the cloud 2. REST API

https://developer.ibm.com/docloud/
https://developer.ibm.com/docloud/docs/welcome/

Access the solve service via its REST API

Two ways to access CPLEX in the cloud 2. REST API

https://developer.ibm.com/docloud/ https://developer.ibm.com/docloud/docs/welcome/

Access the solve service via its REST API

• ready-to-use clients provided for Java[™] and Python, e.g.

• With any HTTP client (cURL, ...)

IBM Analytics

CPLEX in the cloud

Sign up for a free trial

www.ibm.com/software/analytics/docloud

https://developer.ibm.com/docloud/

free CPLEX community edition

Exploiting existing software resources

IBM Analytics

Interfacing with CPLEX

55

Optimization Programming Language (OPL)

- write models in a more descriptive form
- write models in a more compact form
- faster prototyping, easier maintenance
- easier access to data (Excel, database, ...)

 $\sum x_{ijk} \le 1$ for i in I

- scriptable
- model editor
- IDE support (eclipse based)

El ▼ □					
🗟 OPL Projects 🛛 🏇 Debug	□ 🔄 ▽ 🗖 🗖	BECP.mod 🛙			
 ▼	lem for CO@Work 2015)	<pre>1 range Periods = 120; // Periods that make up the game. 2 int nplayers = 7; // Number of players on field 3 4 range Positions = 03; // The different positions 5 int G = 0; int D = 1; 6 int M = 2; int S = 3;</pre>			
 Problem browser ☎ M= Var Solution with objective 17.333 	iables • Breakpoints • •	<pre>int Formation[Positions] = [1, 2, 3, 1]; // The formation for</pre>			
Name	Value	14 };			
 ✓ Data (11) a avg 11.667 D 1 ^m Formation [1 2 3 1] G 0 game_length 20 m M 2 nplayers 7 ^s Periods 20 ◊ Players { ^s S 3 ✓ Pocision variables (3) ^m eplus [0.33333 0 0 0 0 0 0 0 0 0 8.333: ^m x [[[0 0 1 0] [0 0 0 1] [0 0 0 0] [0 1)		<pre>15 [Player] Players = { 16 <"Josh", {5, M}>, <"Simon", {5}>, <"Jordy", {5}>, 17 <"Chris", {M, D}>, <"Andy", {M}>, <"Richie", {M, D}>, 18 <"Tritto", {D}>, <"Guy", {D}>, <"Nell", {M}>, 19>, 10>, 10>, 10>, 10>, 10>, 10>, 10>, 10</pre>			
		45 } Problems ⊠	▽ □ □		
		Description Resource Path Location	Туре		
		Writable Insert 39:45-1346	00:00:	:00:11	

📑 💌 🛛 🕲 🌰	E	CP.mod প্ল		Q Quick Acces	s	
Projects 🛙	\$ 1	range Pe	eriods = 120: // Periods that make up the game.			
▼ 🕮 ECP (Equitable	c 2	int npla	ayers = 7; // Number of players on field			
🔻 🖾 Run Configura	ati 3					
🔻 🚺 Run (defauli	t) 4	range Po	Positions = 03; // The different positions			
🔀 ECP.mod :	c 5	int G =	0; int D = 1;			
	6	int M =	2; int S = 3;			
Service Problem browser	- 2 /	int Form	ration[Desitions] = [1, 2, 2, 1], // The formation for			
	0	INC FOR	[action[Positions] = [1, 2, 3, 1]; // The formation for			
Solution with object	ti 10		// which we optimize			
Name	_ 11	⊖tunle Pl	aver { // Players we need to schedule			
🔻 💑 Data (11)	12	stri	ing name:			
.₀ avg	13	{int	t} play;			
• D	14	};				
Formation	15	{Player]	Players = {			
• game length	16	<"Jos	ı", {S, M}>, <"Simon", {S}>, <"Jordy", {S}>,			
• M	17	<"Chri	⊥s", {M, D}>, <"Andy", {M}>, <"Richie", {M, D}>,			
nplayers	18	<"Trif	.to", {D}>, <"Guy", {D}>, <"Neil", {M}>,			
✓ [₽] Periods	19	<"Just	:in", {M}>, <"Steve", {D}>, <"Cory", {G}>			
Players	20	};	(a - cond/Derieds) * polycons (cond/Discons);			
+* Positions	21	TLOAT A	/g = card(Periods) * nplayers / card(Players);			
	Le 23	// Decis	tion variables			
eminus	24	dvar flo	http://www.inscellaversj.			
📑 eplus	25	dvar flo	at + eninus [Plavers]:			
⊡ ° ×	26	dvar boo	lean x[Periods][player in Players][p in Positions] in 0((p in player.play) ? 1 : 0);			
	27					
	28	minimize	e sum(p in Players) (eplus[p] + eminus[p]);			
	29					
	30	⊖subject	to {			
	31	// Eac	ch player can play at most one position			
	32	e toral	(player in Players)			
	33	e tora	III (period in Periods)			
	35	50	m(p in Positions) x[period][ptayer][p] <= 1;	~		
	36	// Հու	crect number of players for each position			
	37	⊖ foral	(p in Positions) forall (period in Periods)	ocation Type		
	38	sur	n (player in Players : p in player.play)			
	- 39)	<pre>([period][player][p] == Formation[p];</pre>			
	40					
	41	// Cal	iculates minutes above/below average	00:00:	00:1	
	42	⊖ foral	(player in Players) {			
	43	sum	(p in player.play) sum (period in Periods) x[period][player][p] - avg == eplus[player] - eminus[player];			
	44	۲. ۲				
	45	3				

docplex

Most recent addition

- https://pypi.python.org/pypi/docplex
- <u>pure</u> Python modeling API (<u>no</u> native code)
- open source (pypi, github)
- prepared to connect to local or cloud CPLEX
- \rightarrow write your model in Python
- \rightarrow hook up with the whole Python software ecosystem

docplex

Most recent addition

- https://pypi.python.org/pypi/docplex
- <u>pure</u> Python modeling API (<u>no</u> native code)
- open source (pypi, github)
- prepared to connect to local or cloud CPLEX
- \rightarrow write your model in Python
- \rightarrow hook up with the whole Python software ecosystem

For example

- Equitable Coach Problem
- list of players from the internet (web service)
- graphical display of solution

 \rightarrow use iPython/Jupyter notebook and Python libraries

		_	
			~
		V	(R)

Legal Disclaimer

- © IBM Corporation 2015. All Rights Reserved.
- The information contained in this publication is provided for informational purposes only. While efforts were made to verify the completeness and accuracy of the information contained in this publication, it is provided AS IS without warranty of any kind, express or implied. In addition, this information is based on IBM's current product plans and strategy, which are subject to change by IBM without notice. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, this publication or any other materials. Nothing contained in this publication is intended to, nor shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software.
- References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities referenced in this presentation may change at any time at IBM's sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature availability in any way. Nothing contained in these materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific sales, revenue growth or other results.
- If the text contains performance statistics or references to benchmarks, insert the following language; otherwise delete: Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any user will experience will vary depending upon many factors, including considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve results similar to those stated here.
- If the text includes any customer examples, please confirm we have prior written approval from such customer and insert the following language; otherwise delete: All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics may vary by customer.
- Please review text for proper trademark attribution of IBM products. At first use, each product name must be the full name and include appropriate trademark symbols (e.g., IBM Lotus® Sametime® Unyte[™]). Subsequent references can drop "IBM" but should include the proper branding (e.g., Lotus Sametime Gateway, or WebSphere Application Server). Please refer to http://www.ibm.com/legal/copytrade.shtml for guidance on which trademarks require the ® or [™] symbol. Do not use abbreviations for IBM product names in your presentation. All product names must be used as adjectives rather than nouns. Please list all of the trademarks that you use in your presentation as follows; delete any not included in your presentation. IBM, the IBM logo, Lotus, Lotus Notes, Notes, Domino, Quickr, Sametime, WebSphere, UC2, PartnerWorld and Lotusphere are trademarks of International Business Machines Corporation in the United States, other countries, or both. Unyte is a trademark of WebDialogs, Inc., in the United States, other countries, or both.
- If you reference Adobe® in the text, please mark the first use and include the following; otherwise delete: Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.
- If you reference Java[™] in the text, please mark the first use and include the following; otherwise delete: Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
- If you reference Microsoft® and/or Windows® in the text, please mark the first use and include the following, as applicable; otherwise delete: Microsoft and Windows are trademarks of Microsoft Corporation in the United States, other countries, or both.
- If you reference Intel® and/or any of the following Intel products in the text, please mark the first use and include those that you use as follows; otherwise delete: Intel, Intel Centrino, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
- If you reference UNIX® in the text, please mark the first use and include the following; otherwise delete: UNIX is a registered trademark of The Open Group in the United States and other countries.
- If you reference Linux® in your presentation, please mark the first use and include the following; otherwise delete: Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. Other company, product, or service names may be trademarks or service marks of others.
- If the text/graphics include screenshots, no actual IBM employee names may be used (even your own), if your screenshots include fictitious company names (e.g., Renovations, Zeta Bank, Acme) please update and insert the following; otherwise delete: All references to [insert fictitious company name] refer to a fictitious company and are used for illustration purposes only.