SCIP – Solving Constraint Integer Programs

4 methodologies in optimization

An integrated method

SCIP: Solving Constraint Integer Programs

The Solving Process of SCIP
Outline

SCIP – Solving Constraint Integer Programs

4 methodologies in optimization

An integrated method

SCIP: Solving Constraint Integer Programs

The Solving Process of SCIP
Problem class

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad Ax \leq b \\
& \quad (x_I, x_C) \in \mathbb{Z}^I \times \mathbb{R}^C
\end{align*}
\]

- continuous and integer variables
- linear objective function
- linear constraints
Problem class

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad Ax \leq b \\
&(x_I, x_C) \in \mathbb{Z}^I \times \mathbb{R}^C
\end{align*}
\]

▷ continuous and integer variables
▷ linear objective function
▷ linear constraints

Methods

▷ LP relaxation
▷ cutting planes
▷ branch-and-bound

More details: Tobias Achterberg and Bob Bixby, Oct. 5
Satisfiability Solving: SAT

Problem class

\[\exists x \in \{0, 1\}^n \]

s.t. \[\bigvee_{i \in Y_k} x_i \lor \bigvee_{i \in N_k} \lnot x_i \text{ for } k = 1, \ldots, m, \]

\[Y_k, N_k \subseteq \{1, \ldots, n\} \]

▷ binary variables and their negation
▷ (linear) clauses
▷ feasible assignment?
Satisfiability Solving: SAT

Problem class

\[\exists x \in \{0, 1\}^n \]
\[\text{s.t. } \bigvee_{i \in \mathcal{Y}_k} x_i \lor \bigvee_{i \in \mathcal{N}_k} \neg x_i \text{ for } k = 1, \ldots, m, \]
\[\mathcal{Y}_k, \mathcal{N}_k \subseteq \{1, \ldots, n\} \]

▷ binary variables and their negation
▷ (linear) clauses
▷ feasible assignment?

Methods

▷ unit propagation

\[x_1 \lor x_3 \]
\[x_1 \lor x_2 \lor x_4 \]
\[\neg x_3 \]
Satisfiability Solving: SAT

Problem class

$$\exists x \in \{0, 1\}^n$$

s.t. $$\bigvee_{i \in Y_k} x_i \lor \bigvee_{i \in N_k} \neg x_i$$ for $$k = 1, \ldots, m,$$

$$Y_k, N_k \subseteq \{1, \ldots, n\}$$

▷ binary variables and their negation
▷ (linear) clauses
▷ feasible assignment?

Methods

▷ unit propagation

$$x_1 \lor x_3 \quad \Rightarrow \quad x_1 \lor x_2 \lor x_4$$

$$\neg x_3 \quad \Rightarrow \quad \neg x_3$$
Satisfiability Solving: SAT

Problem class

\[\exists x \in \{0, 1\}^n \]

s.t. \(\bigvee_{i \in \mathcal{Y}_k} x_i \lor \bigvee_{i \in \mathcal{N}_k} \neg x_i \) for \(k = 1, \ldots, m \),

\(\mathcal{Y}_k, \mathcal{N}_k \subseteq \{1, \ldots, n\} \)

▷ binary variables and their negation
▷ (linear) clauses
▷ feasible assignment?

Methods

▷ unit propagation

\[
\begin{align*}
& x_1 \lor x_3 \\
\rightarrow & x_1 \lor x_2 \lor x_4 \Rightarrow x_1 \lor x_2 \lor x_4 \Rightarrow \\
& \neg x_3 \\
& \neg x_3 \\
& \neg x_3
\end{align*}
\]
Satisfiability Solving: SAT

Problem class

\[\exists x \in \{0, 1\}^n \]
\[\text{s.t. } \bigvee_{i \in Y_k} x_i \lor \bigvee_{i \in N_k} \neg x_i \text{ for } k = 1, \ldots, m, \]
\[Y_k, N_k \subseteq \{1, \ldots, n\} \]

▷ binary variables and their negation
▷ (linear) clauses
▷ feasible assignment?

Methods

▷ unit propagation
▷ tree search
▷ clause learning
Satisfiability Solving: SAT

Problem class

\[\exists x \in \{0, 1\}^n \]

s.t. \[\bigvee_{i \in Y_k} x_i \lor \bigvee_{i \in N_k} \neg x_i \quad \text{for } k = 1, \ldots, m, \]

\[Y_k, N_k \subseteq \{1, \ldots, n\} \]

▷ binary variables and their negation
▷ (linear) clauses
▷ feasible assignment?

Methods

▷ unit propagation
▷ tree search
▷ clause learning
▷ restarts

\[x_1 \lor x_3 \quad \Rightarrow \quad x_1 \lor x_2 \lor x_4 \quad \Rightarrow \quad \neg x_3 \]

\[x_1 \quad \Rightarrow \quad \neg x_3 \quad \Rightarrow \quad \neg x_3 \]
Constraint Programming: CP

Problem class

\[
\begin{align*}
\text{min} \quad & c(x) \\
\text{s.t.} \quad & x \in F_k \text{ for } k = 1, \ldots, m \\
(& x_l, x_r) \in \mathbb{Z}^l \times X
\end{align*}
\]

- arbitrary variable domains (usually finite: FD)
- arbitrary constraints
- arbitrary objective function

\[alldiff(x) \]

\[a \in \{x_1, x_2, x_3, x_4\} \]
Problem class

\[
\begin{align*}
\min \quad & c(x) \\
\text{s.t.} \quad & x \in F_k \text{ for } k = 1, \ldots, m \\
& (x_I, x_N) \in \mathbb{Z}^I \times X
\end{align*}
\]

▷ arbitrary variable domains
(usually finite: FD)
▷ arbitrary constraints
▷ arbitrary objective function

Methods

▷ constraint propagation
Problem class

\[
\begin{align*}
\min & \quad c(x) \\
\text{s.t.} & \quad x \in F_k \text{ for } k = 1, \ldots, m \\
& \quad (x_I, x_N) \in \mathbb{Z}^I \times X
\end{align*}
\]

- arbitrary variable domains (usually finite: FD)
- arbitrary constraints
- arbitrary objective function

Methods

- constraint propagation
- tree search
- conflict analysis/no-good learning
Mixed-Integer Nonlinear Programming: MINLP

Problem class

$$\min \; f(x)$$

subject to

$$g(x) \leq b$$

$$(x_I, x_C) \in \mathbb{Z}^I \times \mathbb{R}^C$$

- continuous and integer variables
- nonlinear objective function
- nonlinear constraint functions

More details: Ralf Lenz, Jesco Humpola, Pierre Bonami, Oct. 1 & 8
Mixed-Integer Nonlinear Programming: MINLP

Problem class

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad g(x) \leq b \\
& \quad (x_I, x_C) \in \mathbb{Z}^I \times \mathbb{R}^C
\end{align*}
\]

- continuous and integer variables
- nonlinear objective function
- nonlinear constraint functions

Methods

- outer approximation
- convex relaxation
- bound tightening

More details: Ralf Lenz, Jesco Humpola, Pierre Bonami, Oct. 1 & 8
Mixed-Integer Nonlinear Programming: MINLP

Problem class

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad g(x) \leq b \\
& \quad (x_I, x_C) \in \mathbb{Z}^I \times \mathbb{R}^C
\end{align*}
\]

- continuous and integer variables
- nonlinear objective function
- nonlinear constraint functions

Methods

- outer approximation
- convex relaxation
- bound tightening
- spatial branch-and-bound

More details: Ralf Lenz, Jesco Humpola, Pierre Bonami, Oct. 1 & 8
Outline

SCIP – Solving Constraint Integer Programs

4 methodologies in optimization

An integrated method

SCIP: Solving Constraint Integer Programs

The Solving Process of SCIP
Integrating CP, MIP, SAT, and MINLP

Search: in MIP

in SAT

in CP

in MINLP
Integrating CP, MIP, SAT, and MINLP

Search:
- in MIP
 + LP relaxation

- in SAT

- in CP

- in MINLP
Integrating CP, MIP, SAT, and MINLP

Search: in MIP
+ LP relaxation
+ cutting planes

in SAT

in CP

in MINLP
Integrating CP, MIP, SAT, and MINLP

Search: in MIP
+ LP relaxation
+ cutting planes

in SAT
+ clause learning

in CP

in MINLP
Integrating CP, MIP, SAT, and MINLP

Search:

- **in MIP**
 - LP relaxation
 - cutting planes

- **in SAT**
 - clause learning
 - restarts

- **in CP**

- **in MINLP**
Integrating CP, MIP, SAT, and MINLP

Search:

in MIP
+ LP relaxation
+ cutting planes

in SAT
+ clause learning
+ restarts

in CP
+ propagation

in MINLP
Integrating CP, MIP, SAT, and MINLP

Search: in MIP
+ LP relaxation
+ cutting planes

in SAT
+ clause learning
+ restarts

in CP
+ propagation
+ conflict analysis

in MINLP
Integrating CP, MIP, SAT, and MINLP

Search:
- **in MIP**
 - LP relaxation
 - cutting planes

- **in SAT**
 - clause learning
 - restarts

- **in CP**
 - propagation
 - conflict analysis

- **in MINLP**
 - outer approximation
Integrating CP, MIP, SAT, and MINLP

Search: in MIP
+ LP relaxation
+ cutting planes

in SAT
+ clause learning
+ restarts

in CP
+ propagation
+ conflict analysis

in MINLP
+ outer approximation
+ bound tightening
Integrating CP, MIP, SAT, and MINLP

Search: in MIP
+ LP relaxation
+ cutting planes

in SAT
+ clause learning
+ restarts

in CP
+ propagation
+ conflict analysis

in MINLP
+ outer approximation
+ bound tightening
+ spatial branching
Integrating CP, MIP, SAT, and MINLP

Search:

- in MIP
 - LP relaxation
 - cutting planes

- in SAT
 - clause learning
 - restarts

- in CP
 - propagation
 - conflict analysis

- in MINLP
 - outer approximation
 - bound tightening
 - spatial branching

High-level and low-level integration

▷ interaction of different algorithms
▷ combination of algorithmic techniques

e.g., Althaus, Bockmayr, Elf, Jünger, Kasper, Mehlhorn 2002; Hooker 2007; Achterberg 2007; Berthold, Heinz, Vigerske 2010; Vigerske 2013; ...
Constraint Integer Programming: CIP

Low-level integration of solving techniques into one algorithm

- CP+SAT+MIP [Achterberg 2007, 2009]
- +MINLP [Berthold, Heinz, Vigerske 2010; Vigerske 2013]
- implemented in the solver SCIP
Low-level integration of solving techniques into one algorithm

- CP+SAT+MIP [Achterberg 2007, 2009]
- +MINLP [Berthold, Heinz, Vigerske 2010; Vigerske 2013]
- implemented in the solver SCIP
Constraint Integer Programming: CIP

Low-level integration of solving techniques into one algorithm

- CP+SAT+MIP [Achterberg 2007, 2009]
- +MINLP [Berthold, Heinz, Vigerske 2010; Vigerske 2013]
- implemented in the solver SCIP
Constraint Integer Programming: CIP

Low-level integration of solving techniques into one algorithm

- CP+SAT+MIP [Achterberg 2007, 2009]
- +MINLP [Berthold, Heinz, Vigerske 2010; Vigerske 2013]
- implemented in the solver SCIP
Low-level integration of solving techniques into one algorithm

- CP + SAT + MIP [Achterberg 2007, 2009]
- +MINLP [Berthold, Heinz, Vigerske 2010; Vigerske 2013]
- implemented in the solver SCIP
Constraint Integer Programming: CIP

Low-level integration of solving techniques into one algorithm

- CP+SAT+MIP [Achterberg 2007, 2009]
- +MINLP [Berthold, Heinz, Vigerske 2010; Vigerske 2013]
- implemented in the solver SCIP

Problem class

- continuous and integer variables
- linear objective function
- arbitrary constraints
- condition: after fixing all integers, CIP can be solved as an LP or NLP
Constraint Integer Programming: CIP

Low-level integration of solving techniques into one algorithm

- CP+SAT+MIP [Achterberg 2007, 2009]
- +MINLP [Berthold, Heinz, Vigerske 2010; Vigerske 2013]
- implemented in the solver SCIP

Problem class

- continuous and integer variables
- linear objective function
- arbitrary constraints
- condition: after fixing all integers, CIP can be solved as an LP or NLP
Example: Pseudoboollean Optimization

The AND constraint

▷ $y = \prod_{i \in J} x_i$
▷ $y \in \{0, 1\}$: resultant
▷ $x_i \in \{0, 1\}$: operand variables
Example: Pseudoboolean Optimization

The AND constraint

\[y = \prod_{i \in J} x_i \]
\[y \in \{0, 1\}: \text{resultant} \]
\[x_i \in \{0, 1\}: \text{operand variables} \]

Propagation rules

\[\exists i: x_i = 0 \Rightarrow y = 0 \]
Example: Pseudoboolean Optimization

The AND constraint

\[y = \prod_{i \in J} x_i \]
\[y \in \{0, 1\}: \text{resultant} \]
\[x_i \in \{0, 1\}: \text{operand variables} \]

Propagation rules

\[\exists i : x_i = 0 \Rightarrow y = 0 \]
\[x_i = 1 \ \forall i \in J \Rightarrow y = 1 \]
Example: Pseudoboollean Optimization

The AND constraint

\(y = \prod_{i \in J} x_i \)

\(y \in \{0, 1\} \): resultant

\(x_i \in \{0, 1\} \): operand variables

Propagation rules

\(\exists i : x_i = 0 \Rightarrow y = 0 \)

\(x_i = 1 \ \forall i \in J \Rightarrow y = 1 \)

\(y = 1 \Rightarrow x_i = 1 \ \forall i \in J \)
Example: Pseudoboolean Optimization

The AND constraint

\[y = \prod_{i \in J} x_i \]

- \(y \in \{0, 1\} \): resultant
- \(x_i \in \{0, 1\} \): operand variables

Propagation rules

- \(\exists i : x_i = 0 \Rightarrow y = 0 \)
- \(x_i = 1 \ \forall i \in J \Rightarrow y = 1 \)
- \(y = 1 \Rightarrow x_i = 1 \ \forall i \in J \)
- \(y = 0 \land \exists k : x_i = 1 \ \forall i \in J \setminus \{k\} \Rightarrow x_k = 0 \)
Linearization of $y = x_1 \land \cdots \land x_n$

\[\sum_{i=1}^{n} x_i - y \leq n - 1 \]

\[\sum_{i=1}^{n} x_i - ny \geq 0 \]

- 2 constraints
- contains fractional vertices ●

- $n + 1$ constraints
- only integer vertices ●
Algorithms

Only propagation

- **good**: fast subproblem processing
- **bad**: LP relaxation has no knowledge about the nonlinear structure

SCIP can implement all strategies

default: propagation + weak linearization + separation
Algorithms

Only propagation

- **good**: fast subproblem processing
- **bad**: LP relaxation has no knowledge about the nonlinear structure

Only relaxation – put the complete linearization into the LP

- **good**: LP relaxation contains complete problem
- **bad**: can blow up the LP
Algorithms

Only propagation

- **good**: fast subproblem processing
- **bad**: LP relaxation has no knowledge about the nonlinear structure

Only relaxation – put the complete linearization into the LP

- **good**: LP relaxation contains complete problem
- **bad**: can blow up the LP

Only separation – generate the linearization as they are needed

- **good**: the LP only is fed with the import constraint (cuts)
- **bad**: LP relaxation has partial knowledge about the nonlinearities
Algorithms

Only propagation

- **good:** fast subproblem processing
- **bad:** LP relaxation has no knowledge about the nonlinear structure

Only relaxation – put the complete linearization into the LP

- **good:** LP relaxation contains complete problem
- **bad:** can blow up the LP

Only separation – generate the linearization as they are needed

- **good:** the LP only is fed with the import constraint (cuts)
- **bad:** LP relaxation has partial knowledge about the nonlinearities

SCIP can implement all strategies
default: propagation + weak linearization + separation
SCIP – Solving Constraint Integer Programs

4 methodologies in optimization

An integrated method

SCIP: Solving Constraint Integer Programs

The Solving Process of SCIP
Why use SCIP?

SCIP: Solving Constraint Integer Programs . . .

▷ provides a full-scale MIP and MINLP solver
Why use SCIP?

SCIP: Solving Constraint Integer Programs . . .

▷ provides a full-scale MIP and MINLP solver
▷ can solve general CIPs:
 - constraint-based design

![Diagram of SCIP components](image-url)
Why use SCIP?

SCIP: Solving Constraint Integer Programs . . .

▷ provides a full-scale MIP and MINLP solver

▷ can solve general CIPs:
 ▷ constraint-based design

▷ can be extended:
 ▷ plugin-based design
Why use SCIP?

SCIP: Solving Constraint Integer Programs . . .

- provides a full-scale MIP and MINLP solver
- can solve general CIPs: constraint-based design
- can be extended: plugin-based design
Why use SCIP?

SCIP: Solving Constraint Integer Programs . . .

▷ provides a full-scale MIP and MINLP solver

▷ can solve general CIPs: constraint-based design

▷ can be extended: plugin-based design
Why use SCIP?

SCIP: Solving Constraint Integer Programs . . .

▷ provides a full-scale MIP and MINLP solver

▷ can solve general CIPs:
 constraint-based design

▷ can be extended:
 plugin-based design

▷ supports column generation and branch-cut-and-price
Why use SCIP?

SCIP: Solving Constraint Integer Programs . . .

▷ provides a full-scale MIP and MINLP solver

▷ can solve general CIPs:
 constraint-based design

▷ can be extended:
 plugin-based design

▷ supports column generation
 and branch-cut-and-price

▷ is free for academic research
Why use SCIP?

SCIP: Solving Constraint Integer Programs . . .

- provides a full-scale MIP and MINLP solver
- can solve general CIPs: constraint-based design
- can be extended: plugin-based design
- supports column generation and branch-cut-and-price
- is free for academic research
- is open: available in source code
Plugin-based design

SCIP core

- branching tree
- variables
- conflict analysis
- solution pool
- cut pool
- statistics
- clique table
- implication graph
- ...

Plugins interact with the framework through a very detailed interface. SCIP knows for each plugin type:

- the number of available plugins
- priority defining the calling order (usually)

SCIP does not know any structure behind a plugin. ⇒ plugins are black boxes for the SCIP core. Very flexible branch-and-bound based search algorithm.
Plugin-based design

SCIP core
- branching tree
- variables
- conflict analysis
- solution pool
- cut pool
- statistics
- clique table
- implication graph
- ...

Plugins
- external callback objects
- interact with the framework through a very detailed interface
Plugin-based design

SCIP core

▷ branching tree
▷ variables
▷ conflict analysis
▷ solution pool
▷ cut pool
▷ statistics
▷ clique table
▷ implication graph
▷ . . .

Plugins

▷ external callback objects
▷ interact with the framework through a very detailed interface
▷ SCIP knows for each plugin type:
 ▷ the number of available plugins
 ▷ priority defining the calling order (usually)
▷ SCIP does not know any structure behind a plugin
⇒ plugins are black boxes for the SCIP core
Plugin-based design

SCIP core
- branching tree
- variables
- conflict analysis
- solution pool
- cut pool
- statistics
- clique table
- implication graph
- ...

Plugins
- external callback objects
- interact with the framework through a very detailed interface
- SCIP knows for each plugin type:
 - the number of available plugins
 - priority defining the calling order (usually)
- SCIP does not know any structure behind a plugin
 ⇒ plugins are black boxes for the SCIP core

⇒ Very flexible branch-and-bound based search algorithm
Types of Plugins

- **Constraint handler**: assures feasibility, strengthens formulation
- **Separator**: adds cuts, improves dual bound
- **Pricer**: allows dynamic generation of variables
- **Heuristic**: searches solutions, improves primal bound
- **Branching rule**: how to divide the problem?
- **Node selection**: which subproblem should be regarded next?
- **Presolver**: simplifies the problem in advance, strengthens structure
- **Propagator**: simplifies problem, improves dual bound locally
- **Reader**: reads problems from different formats
- **Event handler**: catches events (e.g., bound changes, new solutions)
- **Display**: allows modification of output
- . . .
A closer look: branching rules
A closer look: branching rules
What does SCIP know about branching rules?

- SCIP knows the number of available branching rules.
- Each branching rule has a priority.
- SCIP calls the branching rule in decreasing order of priority.
- The interface defines the possible results of a call:
 - branched
 - reduced domains
 - added constraints
 - detected cutoff
 - did not run
SCIP – Solving Constraint Integer Programs

4 methodologies in optimization

An integrated method

SCIP: Solving Constraint Integer Programs

The Solving Process of SCIP
Operational Stages

- **Init**
- **Problem**
- **Transforming**
- **Presolving**
- **Solving**
- **Free Transform**
- **Free Solve**

- Basic data structures are allocated and initialized.
- User includes required plugins (or just takes default plugins).
Basic data structures are allocated and initialized.

User includes required plugins (or just takes default plugins).
User creates and modifies the original problem instance.
Problem creation is usually done in file readers.
Transformation

- Creates a working copy of the original problem.
Original and Transformed Problem

- Original CIP
 - Original variables
 - Original constraints

- Transformed CIP
 - Transformed variables
 - Transformed constraints

- Data is copied into separate memory area
- Presolving and solving operate on transformed problem
- Original data can only be modified in problem modification stage
Presolving

Task

- reduce size of model by removing irrelevant information
- strengthen LP relaxation by exploiting integrality information
- make the LP relaxation numerically more stable
- extract useful information

Primal Reductions:
- based on feasibility reasoning
- no feasible solution is cut off

Dual Reductions:
- consider objective function
- at least one optimal solution remains
Node Selection

Task

- improve primal bound
- keep comp. effort small
- improve global dual bound

Techniques

- **basic rules**
 - depth first search (DFS) → early feasible solutions
 - best bound search (BBS) → improve dual bound
 - best estimate search (BES) → improve primal bound

- **combinations**
 - BBS or BES with plunging
 - hybrid BES/BBS
 - interleaved BES/BBS
Flow Chart SCIP

Presolving

Stop

Node selection

Conflict analysis

Processing

Branching

Primal heuristics

Domain propagation

Solve LP

Pricing

Cuts

Enforce constraints
LP Solving

- LP solver is a black box
- interface to different LP solvers: SoPlex, CPLEX, XPress, Gurobi, CLP, ...
- primal/dual simplex
- barrier with/without crossover

- double-check feasibility
- check condition number
- address numerical troubles by changing parameters: scaling, tolerances, solving from scratch, other simplex
Flow Chart SCIP

Presolving

Stop

Node selection

Domain propagation

Solve LP

Pricing

Cuts

Enforce constraints

Processing

Primal heuristics

Branching

Conflicts analysis
Flow Chart SCIP

Presolving → Stop

Node selection → Conflict analysis

Processing → Primal heuristics

Branching

Solve LP → Pricing → Cuts

Domain propagation → Enforce constraints
Conflict Analysis

Task
- Analyze infeasibility
- Derive valid constraints
- Help to prune other nodes

Techniques
- Analyze:
 - Propagation conflicts
 - Infeasible LPs
 - Bound-exceeding LPs
 - Strong branching conflicts
- Detection:
 - Cut in conflict graph
 - LP: Dual ray heuristic
- Use conflicts:
 - Only for propagation
 - As cutting planes
Summary

Take-away messages

▷ optimization paradigms: CP, SAT, MIP, MINLP
▷ CIP: an algorithmic, solution-driven integration
▷ SCIP: a flexible tool for computational research in optimization

Next

The most powerful plugin: constraint handlers