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Gas Networks

. Transmit natural gas to industry
and municipal utilities

. Passive elements:
I Pipelines
I Resistors

. Active elements:
I Valves
I Control valves
I Compressors

Open Grid Europe, Germany
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Validating Nominations

Given: . Detailed description of a gas network
. Nomination specifying amounts of gas flow at

entries and exits

Task: Find

1. settings for the active devices
(valves, control valves, compressors)

2. values for the physical parameters of the network
that comply with
. gas physics
. legal and technical limitations

human experience

simulation tool
We use mathematical optimization to integrate both steps!
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Using Optimization Rather Than Simulation

Simulation
. allows very accurate gas physics

models
. relies on human experience for

control for active devices
. is thus inappropriate to determine

infeasibility of a nomination

Optimization
. works on simplified models of gas

physics
. automatically finds settings for active

devices
. eventually proves infeasibility of an

infeasible nomination

Beware: Different solution spaces due to different modeling

Simulation A

Simulation B

Optimization A

Optimization B
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Model Components

Gas network is modeled as graph G = (V,A)

Model components:

. Flow conservation constraints at nodes

. Model for all kinds of arcs
I Pipes

→ nonlinear

I Resistors

→ nonlinear

I Shortcut
I Valves

→ discrete switching

I Control valves

→ discrete switching

I Compressors

→ discrete switching
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Model Components

Gas network is modeled as graph G = (V,A)

Model components:
. Flow conservation constraints at nodes
. Model for all kinds of arcs

I Pipes → nonlinear
I Resistors → nonlinear
I Shortcut
I Valves → discrete switching
I Control valves → discrete switching
I Compressors → discrete switching

Mixed-Integer Nonlinear Program
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Modeling of Pipelines

Weymouth equation

αij · qij · |qij | = p2
i − βijp2

j

with constants
αij diameter, length, temperature
βij height difference of vertices

qij

p2
i − p2

j

i j

qijpi pj
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Valves

One decision variable: xij ∈ {0, 1}

i j

qij

xij

pi pj

Two states:

Closed

xij = 0 ⇒ qij = 0

Open

xij = 1 ⇒ pi = pj
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Control Valve Constraints

Two variables: xbypass
ij + xactive

ij ≤ 1

i j

qij

xactive
ij , xbypass

ij

pi pj

Three states:

Closed

xbypass
ij = xactive

ij = 0 ⇒ qij = 0

Bypass

xbypass
ij = 1 ⇒ pi = pj

Active

xactive
ij = 1 ⇒ 0 ≤ ∆ ≤ pi − pj ≤ ∆
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Compressor Station

Compressor Station:
i j

qijpi pj

. Union of single compressor machines

. Closed and bypass state

. Each compressor machine has a
characteristic diagram

. Compressor station can operate in
different configurations

Modeling approaches:
. Convex hull of all configurations
. Binary variables per configuration

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Q

H
a
d

M1
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Subnetwork Operation Modes

. Complex subnetworks can be operated only in specific modes,
e.g. compressor plants

April 20, 2011
Zuse Institute Berlin
Dep. Optimization

Schematischer Stationsaufbau (neu)

PORZ_VS-S
(11p/s, 12p/s)

PORZ_VS-H
(5, 6)

PORZ_VS-H1
(5, 6)

VA_219 VA_221

VA_193 VA_192 VA_198

VA_200

VA_194 VA_195 VA_199

VA_205

PI_798 VA_198O0003 80060012008

VA_192I

PI_799 VA_199O0004

VA_193O

PI_863

HEROS-H-S-FI

4

800600120010

. Choose one of the modes with a binary variable

. Couple this variable with the elements’ variables via inequalities

10
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Gas Network: H-Nord

. 661 nodes
I 32 entries
I 142 exits

. 498 pipes
9 resistors
33 valves
26 control valves
7 compressor stations

. 32 cycles

11



A sample solution

Entry
Exit

12



Gas Network: H-Süd

. 1662 nodes
I 47 entries
I 265 exits

. 1136 pipes
45 resistors
224 valves
78 control valves
29 compressor stations

. 175 cycles

13



Gas Network: L-Gas

. 4133 nodes
I 12 entries
I 1001 exits

. 3623 pipes
26 resistors
300 valves
118 control valves
12 compressor stations

. 259 cycles

14



In Practice: PowerNova

The issue: tracking of calorific values

. Nomination given in power, not (mass) flow

. Calorific values only known at entry nodes

. Bilinear equations for mixing of calorific values

The solution: Iterative approach1

. Guess (average) calorific values

. With fixed calorific values: compute target flow values

. Compute solution, minimizing a penalty term for exit demands

. With fixed flows: compute actual calorific values

. Update target flows and penalty weights in objective

1B. Geißler et al.: “Solving Power-Constrained Gas Transportation Problems using an MIP-based Alternating
Direction Method”, 2014, Optimization Online
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In Practice: Flow Commitments

The issue: Modeling a Stackelberg game

. TSO can use non-technical measures to change nomination (leaders)

. Shippers react to these measures with given preference (followers)

The solution: Bilevel Optimization

. Model game as Bilevel Optimization Problem

. Leader part is MIP

. Follower part is LP

. Equivalent reformulation as MIP (with complementarity) via KKT
optimality conditions

→ More details later in talk about PPPP!
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Belgium: an Instance from the Literature

. almost tree topology

. 20 vertices

. 29 pipes

17



GasLib: a Library of Gas Network Instances

. realistic benchmark instances

. detailed description of gas network
I 582 nodes
I 278 pipes, 8 resistors
I 54 active elements

. thousands of nominations

gaslib.zib.de

18



Outline

1 Nomination Validation

2 Booking Validation

3 PPPP

4 Navi

18



Virtual Trading Points, Entries, and Exits

VTP N1

N2N3

X1

X2

X3

capacity: transport gas from node to VTP,
booked independently for entries and exits
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Capacity Estimation

N1 N2

X1 X2
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Long pipeline with small capacity

What is the “capacity” of the whole network?

How much capacity can be booked at the nodes?
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At most 10 units of capacity may be booked at every node!

But up to 20 units could be transported.

⇒ Distinguish firm and interruptible capacity!
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Regulatory Authorities

. TSOs must market as much capacity as (technically) possible

. Denied requests for more capacity by shippers must be explained

. Need (proven) infeasibility of worst-case scenarios

. Solve Nomination Validation with global solver

21
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Booking and Nomination

Booking contracts for firm capacity at entry/exit (interval [l , u])
. additional constraints (bounds on group of entries)

Nomination use of capacity (value v ∈ [l , u])
. balanced (stationary model)

Example with two entries N1,N2 and exit X

. Booking
N1 [0, 5]

N2 [0, 4]

X [0, 5]

. Nomination 1
N1 3
N2 2
X 5

. Nomination 2
N1 0
N2 4
X 4

22



Booking Validation - The Problem

Given

. complete description of network
I pipes
I (control) valves
I compressor stations

. capacity contracts
I entry/exit nodes or zones
I valid for specific dates,

temperatures
I pairwise exclusion

. historical measurements
I hourly demand at exits
I temperature

Result

. for several
I contract dates
I reference temperatures

. compute
I feasibility probability
I (infeasible) nominations

23
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Approach

Ideally

. check feasibility for every realizable nomination

Actually

. generate many probable nominations
I estimate distributions for exit demands
I sample scenarios from distributions
I apply scenario reduction
I worst-case entry completions for each scenario

. check feasibility for each
I solve Nomination Validation
I compute in parallel

. aggregate results to estimate feasibility probability

24
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Historical Exit Demand
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Historical Exit Demand

. separate distribution estimations for
I temperature classes
I workday and weekend

27



Correlation of Exit Demand

. Multivariate Distribution Estimation
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Scenario Reduction
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MIP Model for Contract-Compliant Nominations

Pn ≥ 0 power at node n

xc ∈ {0, 1} use of contract c
Pc
n ≥ 0 power at node n from contract c

∑
n∈N

Pn =
∑
n∈X

Pn nomination is balanced

Pn =
∑
c3n

Pc
n different contracts contribute at one node

Lcxc ≤
∑
n∈c

Pc
n ≤ Ucxc only active when used

xc1 + xc2 ≤ 1 pairwise exclusion of contracts
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MIP Model for Contract-Compliant Nominations
Substitutable capacity

. some contracts c ∈ Cs are classified substitutable

. predicted behavior according to historical data

Nonsubstitutable capacity

. other contracts c ∈ Cns are classified nonsubstitutable

. adversial behavior assumed

Pn =
∑
c∈Cs

Pc
n +

∑
c∈Cns

Pc
n distinguish between contracts

Sn =
∑
c∈Cs

Pc
n substitute value from statistical scenario

31
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Entry Order
. entry supply hard to predict (nonsubstitutable)
. assume extreme behavior

. entries are filled up in order of (random) preference

N3 N1 N4 N5 N2

. encode entry order in objective function

max 5PN3 + 4PN1 + 3PN3 + 2PN5 + PN2

32
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Evaluation

Booking
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The Shipper’s View - Virtual Trading Point

VTP

5050 50

5050 150

50

100

200

100

200

200

. Shippers nominate capacity on entry and exit nodes for the next gas day
w.r.t. their contractually fixed bookings (upper and lower bounds).

. Changes are “always” possible by renominations.
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The Shipper’s View - Virtual Trading Point
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Non-Technical Network Control Measures

TSOs basically sell two different types of capacities:
Firm capacities TSO guarantees transport

Interruptible capacities Best effort but no guarantee

Basic Non-Technical Network Control Measures of the TSO
. In- or decrease amount of gas at certain entries or exits using legal

contracts with shippers or other TSO’s.
. Shifts in nominations at market area interconnection points.
. In- or decrease gas flows by buying so-called control energy.

Final demand vector of gas flow is the result of a process of adjustments
by the TSO and possible reactions of shippers in terms of renominations.
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A Look into the Future

Source: German Advisory Counsil on Global Change (WBGU).
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How to Extend the Capacity of a Network

The ”natural” way: Physical Extension

. Deployment of new pipes to increase capacity

. Very costly (approximately 1 million euro per km)

. Takes a very long time

The ”smart” way: Extension by Non-Technical Measures

. Design new capacity types and contracts

. Giving the TSO more flexibility and possibilities to act

. Allowing a better distribution of the gas in- and outflow

. Avoiding extreme situations
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A New Contract Type

1

1

1

3
2

x : demand values
x : pressure induced “capacity” bounds
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A new capacity type: fDZK

. New capacity type: fixed dynamically allocable capacity (fDZK)

. Sold in contracts to gas power plants (power plant product)

. Equivalent to firm capacity (supply is guaranteed), BUT

. TSO can restrict power station to be supplied by fixed fallback entry

. Usage: Restriction holds for the next gas day (6 a.m. to 6 a.m.)
but has to be announced at 3 p.m. the day before

t06 12 18 24 06 12 18 24 0615

next gas day

day 0 day 1 day 2

decision about restriction
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Problem Statement

Decide about the restrictions to fallback entries
. for all power stations with a fDZK contract,

. in a nondiscriminatory manner,

. while enabling safe network operation,

. until 3 p.m. the day before the restriction shall become operative.

Remark: No specification of the technical network operation needed.

t06 12 18 24 06 12 18 24 0615

next gas day

day 0 day 1 day 2

decision about restriction
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Base Decision On ...
Network topology
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Definitions and Notation

. Gas Network
I G = (V ,E ) a gas network, entries V+ ⊆ V and exits V− ⊆ V
I K ⊆ V− gas power stations with fDZK contract

. Demand Vector
I d : V+ ∪ V− → R a map from entry and exit nodes to flow values
I D set of all demand vectors

. Scenario
I S : {1, . . . , 40} → D a map from time to demand vectors

. Prognosis
I (S,Pr) with
I S := {S1,S2, . . . ,Sn} a finite set of scenarios
I Pr : S → [0, 1] a probability distribution on S
I pi := Pr(Si ) for all Si ∈ S with pi ∈ [0, 1] and

∑n
i=1 pi = 1
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Problem Statement Revisited

Decide about the restrictions to fallback entries
. for all power stations with a fDZK contract,
. in a nondiscriminatory manner,
. while enabling safe network operation,
. until 3 p.m. the day before the restriction shall become operative.

Remark: No specification of the technical network operation needed.

t06 12 18 24 06 12 18 24 0615

next gas day

day 0 day 1 day 2

decision about restriction
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Definition: Safe Network Operation

. (V ,E ) be a gas network,

. (S,Pr) be a prognosis,

. K ∈ 2K be a subset of gas power stations,

. A ∈ A be the initial state of the network,

. f : (G ,A,S, 2K)→ {0, 1} be an oracle indicating if network G with
initial state A can be controlled over the next 40 hours by restricting
powerplants K and assuming scenario S ,

. and ε be a tolerance parameter with 0 ≤ ε < 1.

A subset of powerplants K ∈ 2K admits a safe network operation if
restricting them to their fallback entries satisfies

n∑
i=1

pi · f (G ,A, Si ,K ) ≥ 1− ε,

i.e, it can be operated with probability (1− ε) assuming prognosis (S,Pr).
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Mathematical Problem Formulation

Given a gas network G = (V ,E ) together with power stations K ⊆ V−,
an initial network state A ∈ A, a prognosis (S,Pr), and tolerance value ε.

The fDZK Problem is to decide if there exists K ∈ 2K admitting a safe
network operation

The fDZK Optimization Problem is to find a smallest subset of power
stations K ∈ 2K w.r.t the cardinality admitting a safe network operation,
i.e.,

min
K∈2K

|K |

s.t.
n∑

i=1

pi · f (G ,A,Si ,K ) ≥ 1− ε.

Remark: The crucial part of this definition is the oracle function f .
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Mathematical Solution Approach

p1 p2 pn

Bookings and Nominations

Historical Demands

Forecasted Temperature

Weekday/Weekend

Forecasted Renewables

. . .

Prognosis-Generation-Tool

S1 S2 . . . Sn

Game S1 Game S2 . . . Game SnGas Flow Evaluation

Analyze TSO’s Behaviour in GamesResult

Fix
R
estrictions

48



Generating a Prognosis

We need to determine a reasonable prognosis capturing the uncertainty of
tomorrow’s demands in order to determine a reasonable solution.

p1 p2 pn

Bookings and Nominations

Historical Demands

Forecasted Temperature

Weekday/Weekend

Forecasted Renewables

. . .

Prognosis-Generation-Tool

S1 S2 . . . Sn
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A Game Of Contracts

By using contracts (e.g. fDZK) the TSO can change the demand vectors
within a scenario. Depending on the type of contract he can
. either increase the amount of flow on some entries (e.g. fDZK) or exits
. or decrease the amount of flow (e.g. interruptible capacity).

But we have to take the reactions of the shippers into account:
. Decrease flow on some entry or increase flow on some exit

(If flow balance is increased by TSO’s action).
. Increase flow on some entry or decrease flow on some exit

(If flow balance is decreased by TSO’s action).

Idea: Model this process as game between TSO and the so-called
“shipper’s union” (SU) as the antagonist.
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First Variation
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Second Variation
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Mathematical Solution Approach
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Gas Flow Evaluation

. Goal: Given a concrete demand vector, decide a network can safely be
operated during the next 40 hours

. No need for explicit control of network elements

. Idea: Representation of macroscopic gas flows

I How is the gas distributed in the network?
I Are there areas with a high/low amount of gas?

. Needed: A very fast solving model to check many demand situations.

. Plan: Design a coarse, fast solving LP model!

Pipes: Discretize and approximate Euler PDEs.
Compressors: Model as single element with max pressure difference.
Valves: Decide about discrete decisions heuristically.

Optional: Include discrete decisions into game.
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Mathematical Solution Approach
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Outline

1 Nomination Validation

2 Booking Validation

3 PPPP

4 Navi
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What is a Navigation System to us?

Typical Navi Instructions

. Turn left in 400 metres.

. In 300 metres keep left.

. Follow the street for 1.4 kilometres.

. . . .
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What is a Navigation System for a Dispatcher?

Typical Navi Instructions

. ????????????????

. ????????????????

. ????????????????

. . . .
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A First ”Idea”

. Text to be added
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A Second ”Idea”

. Text to be added
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