Combinatorial Optimization @ Work 2015

Optimization of Telecommunication Networks

Axel Werner, Fabio D'Andreagiovanni, Frank Pfeuffer, Jonad Pulaj

30 Sep 2015

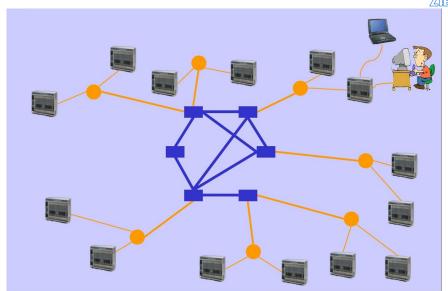
Overview

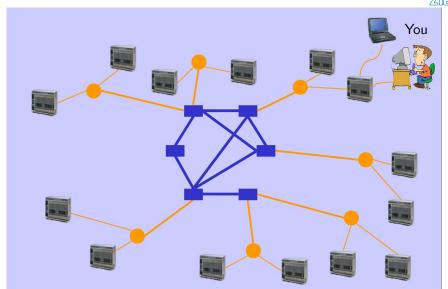
Introduction

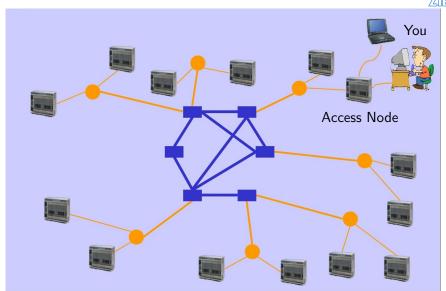
Network Layout Planning

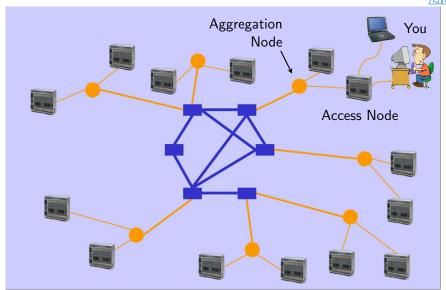
Network Dimensioning and Routing

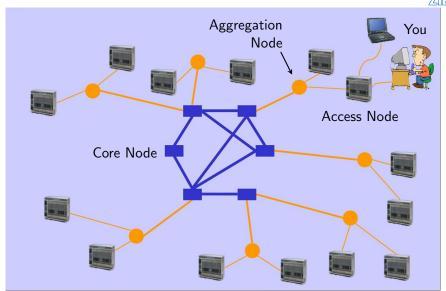
Further Topics

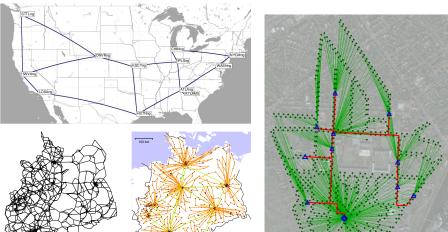












Optimization Problems in Telecommunications

- ► Network layout planning
 - ► How to connect customers to access nodes, access nodes to core nodes, and core nodes among themselves?
 - ► How to avoid network disruptions?

Optimization Problems in Telecommunications

- ► Network layout planning
 - ▶ How to connect customers to access nodes, access nodes to core nodes, and core nodes among themselves?
 - ▶ How to avoid network disruptions?
- ► Network dimensioning & routing
 - How much capacity to install where in the network?
 - How to route customer demands through the network?

Optimization Problems in Telecommunications

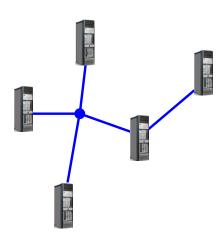
- ► Network layout planning
 - ▶ How to connect customers to access nodes, access nodes to core nodes, and core nodes among themselves?
 - ▶ How to avoid network disruptions?
- ► Network dimensioning & routing
 - How much capacity to install where in the network?
 - How to route customer demands through the network?
- Further stuff
 - Wavelength assignment
 - Virtual networks
 - Dynamic traffic
 - ▶ Wireless networks

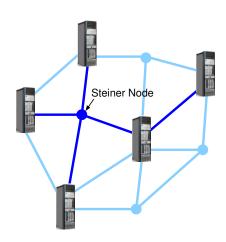
Introduction

Network Layout Planning

Network Dimensioning and Routing

Further Topics





Network Layout Planning: Steiner Trees

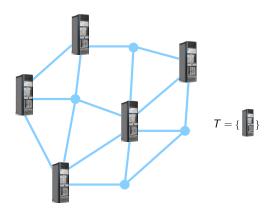
Definition

Given a graph G = (V, E) with terminals $T \subseteq V$

Network Layout Planning: Steiner Trees

Definition

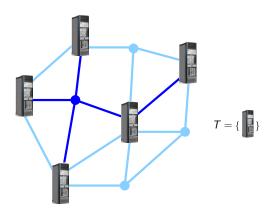
Given a graph G = (V, E) with terminals $T \subseteq V$



Network Layout Planning: Steiner Trees

Definition

Given a graph G = (V, E) with terminals $T \subseteq V$, a Steiner tree is a tree $S \subseteq E$ that connects all terminals in T.

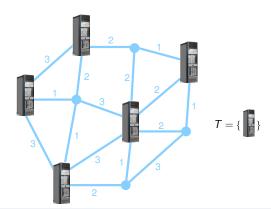


Definition (Minimum Steiner Tree Problem)

Given: G = (V, E), terminals $T \subseteq V$, edge weights c_e for all $e \in E$

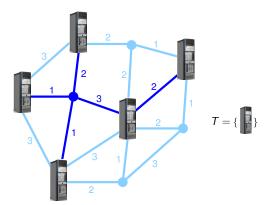
Definition (Minimum Steiner Tree Problem)

Given: G = (V, E), terminals $T \subseteq V$, edge weights c_e for all $e \in E$



Definition (Minimum Steiner Tree Problem)

Given: G = (V, E), terminals $T \subseteq V$, edge weights c_e for all $e \in E$ **Find:** Steiner tree $S \subseteq E$ of minimum total weight $c(S) = \sum_{e \in S} c_e$



Definition (Minimum Steiner Tree Problem)

Given: G = (V, E), terminals $T \subseteq V$, edge weights c_e for all $e \in E$ **Find:** Steiner tree $S \subseteq E$ of minimum total weight $c(S) = \sum_{e \in S} c_e$

Theorem (Garey & Johnson, 1979)

The Steiner Tree Problem is NP-complete.

Definition (Minimum Steiner Tree Problem)

Given: G = (V, E), terminals $T \subseteq V$, edge weights c_e for all $e \in E$ **Find:** Steiner tree $S \subseteq E$ of minimum total weight $c(S) = \sum_{e \in S} c_e$

Theorem (Garey & Johnson, 1979)

The Steiner Tree Problem is NP-complete.

Simple special cases:

- ▶ |T| = 2: Shortest Path Problem
- ightharpoonup T = V: Minimum Spanning Tree Problem

$$min c^T x$$

s.t.
$$x(\delta(U)) \ge 1$$
 $\forall U \subset V \text{ with } \emptyset \ne U \cap T \ne T$
 $x_e \in \{0,1\}$ $\forall e \in E$

Undirected Cut Formulation (Aneja 1980)

$$\begin{aligned} & \text{min} \quad c^T x \\ & \text{s.t.} \quad x(\delta(U)) \geq 1 \qquad \forall U \subset V \text{ with } \emptyset \neq U \cap T \neq T \\ & \quad x_e \in \{0,1\} \qquad \forall e \in E \end{aligned}$$

► |*E*| variables

$$\begin{array}{ll} \text{min} & c^T x \\ \text{s.t.} & x(\delta(U)) \geq 1 \qquad \forall U \subset V \text{ with } \emptyset \neq U \cap T \neq T \\ & x_e \in \{0,1\} \qquad \forall e \in E \end{array}$$

- ► |E| variables
- ▶ $\Theta(2^{|V|})$ constraints

$$\begin{array}{ll} \text{min} & c^T x \\ \text{s.t.} & x(\delta(U)) \geq 1 \qquad \forall U \subset V \text{ with } \emptyset \neq U \cap T \neq T \\ & x_e \in \{0,1\} \qquad \forall e \in E \end{array}$$

- ▶ |E| variables
- ▶ $\Theta(2^{|V|})$ constraints
 - → Cut constraints have to be separated!

$$\begin{array}{ll} \text{min} & c^T x \\ \text{s.t.} & x(\delta(U)) \geq 1 \qquad \forall U \subset V \text{ with } \emptyset \neq U \cap T \neq T \\ & x_e \in \{0,1\} \qquad \forall e \in E \end{array}$$

- ► |*E*| variables
- ▶ $\Theta(2^{|V|})$ constraints
 - → Cut constraints have to be separated!
- ► Separation problem is a minimum cut problem

$$\begin{array}{ll} \text{min} & c^T x \\ \text{s.t.} & x(\delta(U)) \geq 1 \qquad \forall U \subset V \text{ with } \emptyset \neq U \cap T \neq T \\ & x_e \in \{0,1\} \qquad \forall e \in E \end{array}$$

- ► |*E*| variables
- ▶ $\Theta(2^{|V|})$ constraints
 - → Cut constraints have to be separated!
- Separation problem is a minimum cut problem
 - → can be solved in polynomial time

Directed Cut Formulation:

Directed Cut Formulation:

From G = (V, E), terminals $T \subseteq V$, and edge weights c_e

▶ Construct digraph D = (V, A) with $A := \{(i, j), (j, i) \mid \{i, j\} \in E\}$.

Directed Cut Formulation:

- ► Construct digraph D = (V, A) with $A := \{(i, j), (j, i) \mid \{i, j\} \in E\}$.
- ▶ Choose arc weights $c_{(i,j)} := c_{\{i,j\}}$ for all $(i,j) \in A$.

Directed Cut Formulation:

- ► Construct digraph D = (V, A) with $A := \{(i, j), (j, i) \mid \{i, j\} \in E\}$.
- ▶ Choose arc weights $c_{(i,j)} := c_{\{i,j\}}$ for all $(i,j) \in A$.
- ▶ Choose a root $r \in T$ and (other) terminals $T' := T \setminus \{r\}$.

Directed Cut Formulation:

- ► Construct digraph D = (V, A) with $A := \{(i, j), (j, i) \mid \{i, j\} \in E\}$.
- ▶ Choose arc weights $c_{(i,j)} := c_{\{i,j\}}$ for all $(i,j) \in A$.
- ▶ Choose a root $r \in T$ and (other) terminals $T' := T \setminus \{r\}$.

$$\begin{array}{ll} \min & c^T x \\ \text{s.t.} & y(\delta^+(U)) \geq 1 & \forall U \subset V \text{ with } r \in U, U \cap T' \neq T' \\ & y_{(i,j)} + y_{(j,i)} \leq x_e & \forall e = \{i,j\} \in E \\ & y_{(i,j)} \in \{0,1\} & \forall (i,j) \in A \\ & x_e \in \{0,1\} & \forall e \in E \end{array}$$

Undirected vs. Directed Cut Formulation:

min
$$c^T x$$

$$x(\delta(U)) \ge 1 \qquad \forall U \subset V,$$

$$\emptyset \ne U \cap T \ne T$$

$$x_e \in \{0, 1\} \quad \forall e \in E$$

$$\begin{aligned} & \min \ c^T x \\ & y(\delta^+(U)) \geq 1 & \forall U \subset V, \\ & & r \in U, U \cap T' \neq T' \\ & y_{(i,j)} + y_{(j,i)} \leq x_e & \forall e = \{i,j\} \in E \\ & y_{(i,j)} \in \{0,1\} & \forall (i,j) \in A \\ & x_e \in \{0,1\} & \forall e \in E \end{aligned}$$

Undirected vs. Directed Cut Formulation:

$min c^T x$	
$x(\delta(U)) \geq 1$	$\forall U \subset V$,
	$\emptyset \neq U \cap T \neq T$
$x_e \ge 0$	$\forall e \in E$

$$\min c^{T} x$$

$$y(\delta^{+}(U)) \ge 1 \qquad \forall U \subset V,$$

$$r \in U, U \cap T' \ne T'$$

$$y_{(i,j)} + y_{(j,i)} \le x_{e} \qquad \forall e = \{i,j\} \in E$$

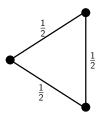
$$y_{(i,j)} \ge 0 \qquad \forall (i,j) \in A$$

$$x_{e} \ge 0 \qquad \forall e \in E$$

Undirected vs. Directed Cut Formulation:

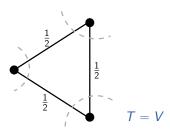
		$min c^T x$	
$min c^T x$		$y(\delta^+(U)) \geq 1$	$\forall U \subset V$,
$ imes (\delta(U)) \geq 1$	$\forall U \subset V$,		$r \in U, U \cap T' \neq T'$
	$\emptyset \neq U \cap T \neq T$	$y_{(i,j)} + y_{(j,i)} \le x_{e}$	$\forall e = \{i, j\} \in E$
$x_e \ge 0$	$orall e \in E$	$y_{(i,j)} \geq 0$	$\forall (i,j) \in A$
		$x_{\rm e} > 0$	$orall e \in E$

Undirected vs. Directed Cut Formulation:



$$T = V$$

Undirected vs. Directed Cut Formulation:



Undirected vs. Directed Cut Formulation:

$$\min c^{T}x$$

$$\min c^{T}x$$

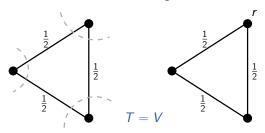
$$y(\delta^{+}(U)) \ge 1 \qquad \forall U \subset V,$$

$$x(\delta(U)) \ge 1 \qquad \forall U \cap T' \ne T'$$

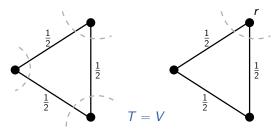
$$\emptyset \ne U \cap T \ne T \qquad y_{(i,j)} + y_{(j,i)} \le x_{e} \qquad \forall e = \{i,j\} \in E$$

$$x_{e} \ge 0 \qquad \forall e \in E \qquad y_{(i,j)} \ge 0 \qquad \forall (i,j) \in A$$

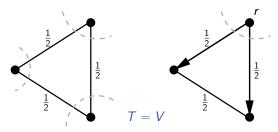
$$x_{e} \ge 0 \qquad \forall e \in E$$



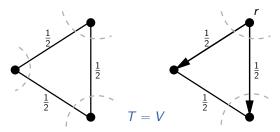
Undirected vs. Directed Cut Formulation:



Undirected vs. Directed Cut Formulation:



Undirected vs. Directed Cut Formulation:



Given a digraph D = (V, A) with root $r \in T$ and $T' := T \setminus \{r\}$.

▶ Introduce flow variables $f_{t,a} \in \{0,1\} \ \forall t \in T', a \in A$

Given a digraph D = (V, A) with root $r \in T$ and $T' := T \setminus \{r\}$.

- ▶ Introduce flow variables $f_{t,a} \in \{0,1\} \ \forall t \in T', a \in A$
- $f_{t,a} = 1 \iff \mathsf{path} \mathsf{\ from\ } r \mathsf{\ to\ } t \mathsf{\ runs\ through\ arc\ } a$

Given a digraph D = (V, A) with root $r \in T$ and $T' := T \setminus \{r\}$.

- ▶ Introduce flow variables $f_{t,a} \in \{0,1\} \ \forall t \in T', a \in A$
- $f_{t,a} = 1 \iff$ path from r to t runs through arc a
- ► (Multicommodity) flow formulation:

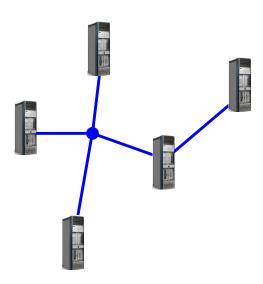
min
$$c^T x$$

$$\text{s.t.} \quad \sum_{a \in \delta^+(v)} f_{t,a} - \sum_{a \in \delta^-(v)} f_{t,a} = \begin{cases} 1, & v = r \\ 0, & \text{else} \end{cases} \quad \forall v \in V, t \in T', v \neq t$$

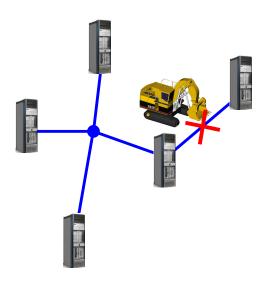
$$f_{s,(i,j)} + f_{t,(j,i)} \leq x_e \qquad \qquad \forall s, t \in T', e = \{i,j\} \in E$$

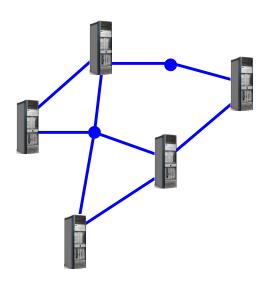
$$f_{t,a} \in \{0,1\} \qquad \qquad \forall t \in T', a \in A$$

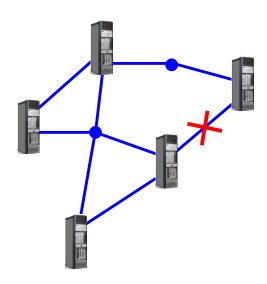
$$x_e \in \{0,1\} \qquad \qquad \forall e \in E$$











Definition (Edge-Survivable Network Design Problem)

Given: G = (V, E), terminals $T \subseteq V$, edge weights c_e for all $e \in E$

Definition (Edge-Survivable Network Design Problem)

Given: G = (V, E), terminals $T \subseteq V$, edge weights c_e for all $e \in E$

Find: Minimum cost subgraph containing all $v \in T$

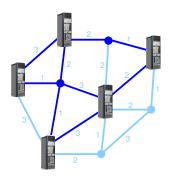
that has at least two edge-disjoint s-t-paths for all $s,t\in T$

Definition (Edge-Survivable Network Design Problem)

Given: G = (V, E), terminals $T \subseteq V$, edge weights c_e for all $e \in E$

Find: Minimum cost subgraph containing all $v \in T$

that has at least two edge-disjoint s-t-paths for all $s,t\in T$



Definition (Edge-Survivable Network Design Problem)

Given: G = (V, E), terminals $T \subseteq V$, edge weights c_e for all $e \in E$

Find: Minimum cost subgraph containing all $v \in T$ that has at least two edge-disjoint s-t-paths for all $s, t \in T$

► IP formulation using cuts (directed/undirected)

Definition (Edge-Survivable Network Design Problem)

Given: G = (V, E), terminals $T \subseteq V$, edge weights c_e for all $e \in E$ **Find:** Minimum cost subgraph containing all $v \in T$ that has at least two edge-disjoint s-t-paths for all s, $t \in T$

- ► IP formulation using cuts (directed/undirected)
- ▶ IP formulation using flows:

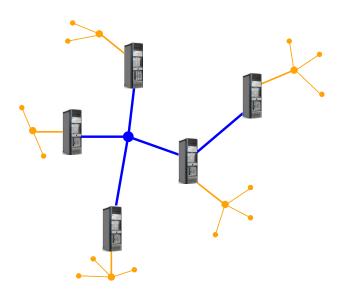
$$\begin{aligned} & \text{min} \quad c^T x \\ & \text{s.t.} \quad \sum_{a \in \delta^+(v)} f_{st,a} - \sum_{a \in \delta^-(v)} f_{st,a} = \begin{cases} 1, & v = s \\ 0, & \text{else} \end{cases} & \forall s, t \in T, v \neq t \\ & f_{st,(i,j)} + f_{st,(j,i)} \leq x_e & \forall s, t \in T, e = \{i,j\} \in E \\ & f_{st,a} \in \{0,1\} & \forall s, t \in T, a \in A \\ & x_e \in \{0,1\} & \forall e \in E \end{aligned}$$

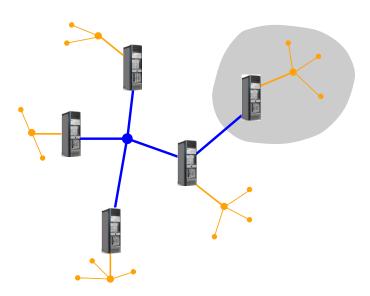
Definition (Edge-Survivable Network Design Problem)

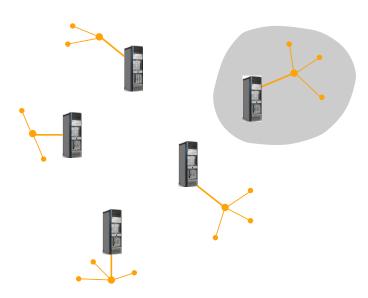
Given: G = (V, E), terminals $T \subseteq V$, edge weights c_e for all $e \in E$ **Find:** Minimum cost subgraph containing all $v \in T$ that has at least two edge-disjoint s-t-paths for all s, $t \in T$

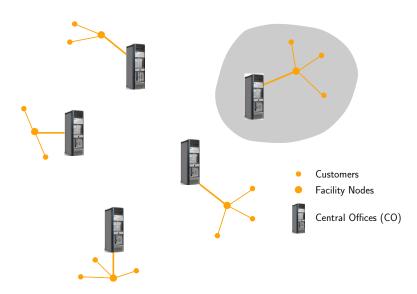
- ► IP formulation using cuts (directed/undirected)
- ▶ IP formulation using flows:

$$\begin{aligned} & \text{min} \quad c^T x \\ & \text{s.t.} \quad \sum_{a \in \delta^+(v)} f_{st,a} - \sum_{a \in \delta^-(v)} f_{st,a} = \begin{cases} 2, & v = s \\ 0, & \text{else} \end{cases} & \forall s, t \in T, v \neq t \\ & f_{st,(i,j)} + f_{st,(j,i)} \leq x_e & \forall s, t \in T, e = \{i,j\} \in E \\ & f_{st,a} \in \{0,1\} & \forall s, t \in T, a \in A \\ & x_e \in \{0,1\} & \forall e \in E \end{aligned}$$



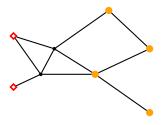






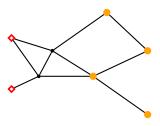
Definition (Connected Facility Location Problem)

Given: G = (V, E), edge costs c_e for all $e \in E$;



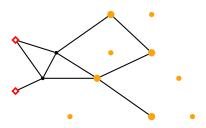
Definition (Connected Facility Location Problem)

Given: G = (V, E), edge costs c_e for all $e \in E$; facilities $F \subseteq V$, opening costs c_v for all $v \in F$;



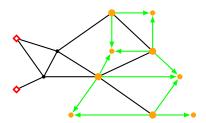
Definition (Connected Facility Location Problem)

Given: G = (V, E), edge costs c_e for all $e \in E$; facilities $F \subseteq V$, opening costs c_v for all $v \in F$; customers C $(C \cap V = \emptyset)$,



Definition (Connected Facility Location Problem)

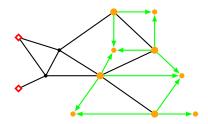
Given: G = (V, E), edge costs c_e for all $e \in E$; facilities $F \subseteq V$, opening costs c_v for all $v \in F$; customers C ($C \cap V = \emptyset$), assignment arcs $A \subseteq F \times C$, arc costs c_a for all $a \in A$



Definition (Connected Facility Location Problem)

Given: G = (V, E), edge costs c_e for all $e \in E$; facilities $F \subseteq V$, opening costs c_v for all $v \in F$; customers C $(C \cap V = \emptyset)$, assignment arcs $A \subseteq F \times C$, arc costs c_a for all $a \in A$

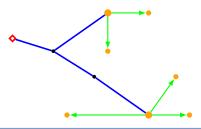
Find: Subset F' of opened facilities, assignment in $D := (F' \cup C, A')$ where $A' := A \cap (F' \times C)$, and a Steiner tree with respect to terminals F', such that the total cost is minimized



Definition (Connected Facility Location Problem)

Given: G = (V, E), edge costs c_e for all $e \in E$; facilities $F \subseteq V$, opening costs c_v for all $v \in F$; customers C ($C \cap V = \emptyset$), assignment arcs $A \subseteq F \times C$, arc costs c_a for all $a \in A$

Find: Subset F' of opened facilities, assignment in $D := (F' \cup C, A')$ where $A' := A \cap (F' \times C)$, and a Steiner tree with respect to terminals F', such that the total cost is minimized



► Connectivity using undirected cuts:

$$\begin{aligned} & \min \quad \sum_{v \in F} c_v y_v + \sum_{(v,j) \in A} c_{vj} x_{vj} + \sum_{e \in E} c_e x_e \\ & \text{s.t.} \quad x(\delta(U)) \geq y_v \qquad \forall v \in F, v \in U \subset V \\ & \quad x_{vj} \leq y_v \qquad \forall v \in F, (v,j) \in A \\ & \quad \sum_{(v,j) \in A} x_{vj} = 1 \qquad \forall j \in C \\ & \quad y_v \in \{0,1\} \qquad \forall v \in F \\ & \quad x_{vj} \in \{0,1\} \qquad \forall (v,j) \in A \\ & \quad x_e \in \{0,1\} \qquad \forall e \in E \end{aligned}$$

► Connectivity using undirected cuts:

$$\begin{aligned} & \min \quad \sum_{v \in F} c_v y_v + \sum_{(v,j) \in A} c_{vj} x_{vj} + \sum_{e \in E} c_e x_e \\ & \text{s.t.} \quad x(\delta(U)) \geq y_v \qquad \forall v \in F, v \in U \subset V \\ & \quad x_{vj} \leq y_v \qquad \forall v \in F, (v,j) \in A \\ & \quad \sum_{(v,j) \in A} x_{vj} = 1 \qquad \forall j \in C \\ & \quad y_v \in \{0,1\} \qquad \forall v \in F \\ & \quad x_{vj} \in \{0,1\} \qquad \forall (v,j) \in A \\ & \quad x_e \in \{0,1\} \qquad \forall e \in E \end{aligned}$$

▶ Variants and improvements: directed cuts, customer cuts, flow, ...

Connectivity using undirected cuts:

$$\begin{aligned} & \text{min} & & \sum_{v \in F} c_v y_v + \sum_{(v,j) \in A} c_{vj} x_{vj} + \sum_{e \in E} c_e x_e \\ & \text{s.t.} & & x(\delta(U)) \geq y_v & \forall v \in F, v \in U \subset V \\ & & & x_{vj} \leq y_v & \forall v \in F, (v,j) \in A \\ & & \sum_{(v,j) \in A} x_{vj} = 1 & \forall j \in C \\ & & & y_v \in \{0,1\} & \forall v \in F \\ & & & x_{vj} \in \{0,1\} & \forall (v,j) \in A \\ & & & x_e \in \{0,1\} & \forall e \in E \end{aligned}$$

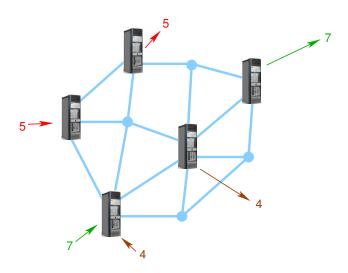
- ▶ Variants and improvements: directed cuts, customer cuts, flow, ...
- Extensions: different types of facilities, coverage requirements, customer demands, capacities, ...

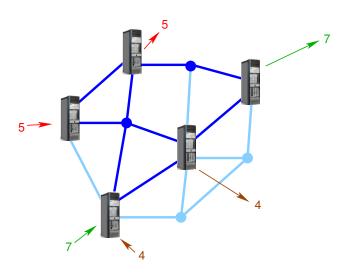
Introduction

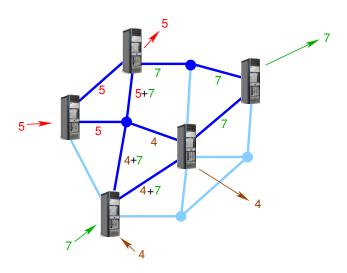
Network Layout Planning

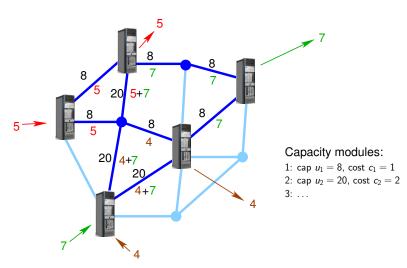
Network Dimensioning and Routing

Further Topics



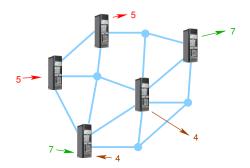






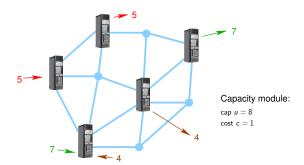
Definition (Capacitated Network Design Problem)

Given: G = (V, E), commodities $K \subseteq V \times V$, demands d_{st} for all $(s, t) \in K$,



Definition (Capacitated Network Design Problem)

Given: G = (V, E), commodities $K \subseteq V \times V$, demands d_{st} for all $(s, t) \in K$, module capacity $u \in \mathbb{R}_+$, and module cost $c \in \mathbb{R}_+$

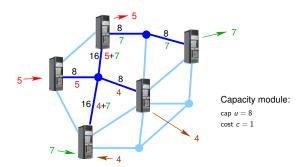


Definition (Capacitated Network Design Problem)

Given: G = (V, E), commodities $K \subseteq V \times V$, demands d_{st} for all

 $(s,t)\in \mathcal{K}$, module capacity $u\in\mathbb{R}_+$, and module cost $c\in\mathbb{R}_+$

Find: Find edge capacities as multiples of u of minimum cost and a routing of all demands that does not exceed the capacities



Definition (Capacitated Network Design Problem)

Given: G = (V, E), commodities $K \subseteq V \times V$, demands d_{st} for all $(s, t) \in K$, module capacity $u \in \mathbb{R}_+$, and module cost $c \in \mathbb{R}_+$

Find: Find edge capacities as multiples of u of minimum cost and a routing of all demands that does not exceed the capacities

▶ IP formulation using flows (D = (V, A) directed graph over G):

$$\begin{aligned} & \min \quad \sum_{e \in E} c \ y_e \\ & \text{s.t.} \quad \sum_{a \in \delta^+(v)} f_{st,a} - \sum_{a \in \delta^-(v)} f_{st,a} = \begin{cases} 1, & v = s \\ 0, & \text{else} \end{cases} & \forall (s,t) \in K, v \neq t \\ & \max \Big(\sum_{(s,t) \in K} d_{st} f_{st,(i,j)}, \sum_{(s,t) \in K} d_{st} f_{st,(j,i)} \Big) \leq u \ y_e & \forall e = \{i,j\} \in E \\ & f_{st,a} \in \{0,1\} & \forall (s,t) \in K, a \in A \\ & y_e \in \mathbb{Z}_+ & \forall e \in E \end{aligned}$$

Definition (Capacitated Network Design Problem)

Given: G = (V, E), commodities $K \subseteq V \times V$, demands d_{st} for all $(s, t) \in K$, module capacity $u \in \mathbb{R}_+$, and module cost $c \in \mathbb{R}_+$

Find: Find edge capacities as multiples of u of minimum cost and a routing of all demands that does not exceed the capacities

▶ IP formulation using flows (D = (V, A) directed graph over G):

$$\begin{aligned} & \min \quad \sum_{e \in E} c \ y_e \\ & \text{s.t.} \quad \sum_{a \in \delta^+(v)} f_{\mathsf{st},a} - \sum_{a \in \delta^-(v)} f_{\mathsf{st},a} = \begin{cases} 1, & v = s \\ 0, & \mathsf{else} \end{cases} & \forall (s,t) \in K, v \neq t \\ & \max \Big(\sum_{(s,t) \in K} d_{\mathsf{st}} f_{\mathsf{st},(i,j)}, \sum_{(s,t) \in K} d_{\mathsf{st}} f_{\mathsf{st},(j,i)} \Big) \leq u \ y_e & \forall e = \{i,j\} \in E \\ & f_{\mathsf{st},a} \in \{0,1\} \quad \Rightarrow \quad \mathsf{Routing} & \forall (s,t) \in K, a \in A \\ & y_e \in \mathbb{Z}_+ & \forall e \in E \end{aligned}$$

Telecommunication networks usually have to meet various technical requirements in practice...

► Routing along unique paths (OSPF) or along multiple paths (MPLS)

- ► Routing along unique paths (OSPF) or along multiple paths (MPLS)
 - → unsplittable or splittable flow

- ► Routing along unique paths (OSPF) or along multiple paths (MPLS)
 - → unsplittable or splittable flow
- Routing along shortest paths

- ► Routing along unique paths (OSPF) or along multiple paths (MPLS)
 - → unsplittable or splittable flow
- Routing along shortest paths
 - → models can be extended

- Routing along unique paths (OSPF) or along multiple paths (MPLS)
 - → unsplittable or splittable flow
- Routing along shortest paths
 - → models can be extended
- Connections might be directed

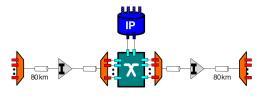
- Routing along unique paths (OSPF) or along multiple paths (MPLS)
 - → unsplittable or splittable flow
- Routing along shortest paths
 - → models can be extended
- Connections might be directed
 - → arc modules instead of edge modules

- Routing along unique paths (OSPF) or along multiple paths (MPLS)
 - → unsplittable or splittable flow
- Routing along shortest paths
 - → models can be extended
- Connections might be directed
 - → arc modules instead of edge modules
- Survivability of node failures or only in certain parts of the network

- ► Routing along unique paths (OSPF) or along multiple paths (MPLS)
 - → unsplittable or splittable flow
- Routing along shortest paths
 - → models can be extended
- Connections might be directed
 - → arc modules instead of edge modules
- Survivability of node failures or only in certain parts of the network
- Multilayer networks

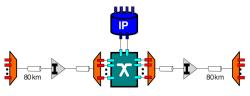
IP-over-WDM

(*Internet Protocol/Wavelength Division Multiplexing)



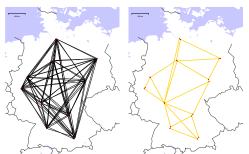
IP-over-WDM

(*Internet Protocol/Wavelength Division Multiplexing)



IP layer

logical links between IP routers data encoded and routed as IP packets



WDM layer

fiber connections between optical devices

IP packets transmitted as optical signals

$$\begin{aligned} & \min & \sum_{i \in V} E_P y_i + E_S x_i + E_L z_i + E_F w_i + \sum_{e \in E} E_e z_e \\ & \sum_{\{i,j\} \in L} f_{i,j}^s - f_{j,i}^s = \begin{cases} \sum_{t \in T(s)} d_{(s,t)}, & i = s \\ -d_{(s,i)}, & i \in T(s) \\ 0, & \text{otherwise} \end{cases} & \forall i \in V, s \in V \\ & \sum_{s \in V} f_{i,j}^s + f_{j,i}^s \le c \, y_{\{i,j\}} & \forall \{i,j\} \in L \end{cases} \\ & \sum_{s \in V} f_{i,j}^s + f_{j,i}^s \le c \, y_{\{i,j\}} & v = i \\ -y_{\{i,v\}}, & v \in J(i) \\ 0, & \text{otherwise} \end{cases} & \forall v \in V, i \in V \\ & \sum_{i \in V} g_{u,v}^i + g_{v,u}^i \le M \, z_{\{u,v\}} & \forall \{u,v\} \in E \end{cases} \\ & \sum_{\{i,j\} \in L} y_{\{i,j\}} = y_i & \forall i \in V \\ & y_i \le M_P \, x_i & \forall i \in V \\ & z_i \le (M_L - 1/M_F) w_i + 1 & \forall i \in V \\ & w_i \le M_F & \forall i \in V \end{cases}$$

 $g, w, x, y, z \in \mathbb{Z}_+$

$$\min \qquad \sum_{i \in V} E_P y_i + E_S x_i + E_L z_i + E_F w_i + \sum_{e \in E} E_e z_e$$

routing & dimensioning IP layer

$$\begin{split} \sum_{\{i,j\}\in L} f_{i,j}^s - f_{j,i}^s &= \begin{cases} \sum_{t\in T(s)} d_{(s,t)}, & i=s\\ -d_{(s,i)}, & i\in T(s)\\ 0, & \text{otherwise} \end{cases} \\ \sum_{s\in V} f_{i,j}^s + f_{j,i}^s &\leq c\, y_{\{i,j\}} \end{cases} \qquad \forall i\in V,\, s\in V$$

$$\sum_{\{u,v\}\in E} g_{v,u}^{i} - g_{u,v}^{i} = \begin{cases} \sum\limits_{j\in J(i)} y_{\{i,j\}}, & v=i \\ -y_{\{i,v\}}, & v\in J(i) \\ 0, & \text{otherwise} \end{cases} \qquad \forall v\in V, \ i\in V$$

$$\sum_{i\in V} g_{u,v}^{i} + g_{v,u}^{i} \leq M z_{\{u,v\}} \qquad \forall \{u,v\}\in E$$

$$\sum_{\{i,j\}\in L} y_{\{i,j\}} = y_{i} \qquad \forall i\in V$$

$$y_{i} \leq M_{P} x_{i} \qquad \forall i\in V$$

$$z_{i} \leq M_{S} z_{i} \qquad \forall i\in V$$

$$z_{i} \leq (M_{L} - 1/M_{F})w_{i} + 1 \qquad \forall i\in V$$

$$w_{i} \leq M_{F} \qquad \forall i\in V$$

$$f \geq 0$$

$$g_{i}, w, x, y, z \in \mathbb{Z}_{+}$$

$$\min \qquad \sum_{i \in V} E_P y_i + E_S x_i + E_L z_i + E_F w_i + \sum_{e \in E} E_e z_e$$

routing & dimensioning IP layer

$$\begin{split} \sum_{\{i,j\}\in L} f_{i,j}^s - f_{j,i}^s &= \begin{cases} \sum_{t\in T(s)} d(s,t), & i=s\\ -d(s,i), & i\in T(s)\\ 0, & \text{otherwise} \end{cases} \\ \sum_{s\in V} f_{i,j}^s + f_{j,i}^s &\leq c\, y_{\{i,j\}} \end{split}$$

$$\forall \{i, j\} \in L$$

 $\forall i \in V, s \in V$

routing & dimensioning WDM layer

$$\sum_{\{u,v\}\in E} g_{v,u}^{j} - g_{u,v}^{i} = \begin{cases} \sum_{j\in J(i)} y_{\{i,j\}}, & v=i \\ -y_{\{i,v\}}, & v\in J(i) \\ 0, & \text{otherwise} \end{cases} \quad \forall v\in V, \ i\in V$$

$$\sum_{i \in V} g_{u,v}^i + g_{v,u}^i \le M z_{\{u,v\}}$$

$$\forall \{u,v\} \in E$$

$$\sum_{\{i,j\} \in L} y_{\{i,j\}} = y_i$$

$$\forall i \in V$$

$$y_i \leq M_P x_i$$

$$\forall i \in V$$

$$x_i \leq M_S z_i$$

$$\forall i \in V$$

$$z_i \leq (M_L - 1/M_F)w_i + 1$$

$$\forall i \in V$$

$$w_i \leq M_F$$

$$\forall i \in V$$

$$\forall i \in V$$

$$\mathbf{f} \geq 0$$

$$g,w,x,y,z\in\mathbb{Z}_+$$

$$\min \qquad \sum_{i \in V} E_P y_i + E_S x_i + E_L z_i + E_F w_i + \sum_{e \in E} E_e z_e$$

routing & dimensioning IP layer

$$\begin{split} \sum_{\{i,j\} \in L} f_{i,j}^s - f_{j,i}^s &= \begin{cases} \sum\limits_{t \in \mathcal{T}(s)} d_{(s,t)}, & i = s \\ -d_{(s,i)}, & i \in \mathcal{T}(s) \\ 0, & \text{otherwise} \end{cases} \\ \sum_{s \in V} f_{i,j}^s + f_{j,i}^s &\leq c \, y_{\{i,j\}} \end{split}$$

herwise
$$orall \{i,j\} \in L$$

routing & dimensioning WDM layer

$$\sum_{\{u,v\}\in E} g_{v,u}^{i} - g_{u,v}^{i} = \begin{cases} \sum_{j\in J(i)} y_{\{i,j\}}, & v=i\\ -y_{\{i,v\}}, & v\in J(i)\\ 0, & \text{otherwise} \end{cases}$$

$$\sum_{i \in V} g_{u,v}^i + g_{v,u}^i \le M z_{\{u,v\}}$$

$$\forall \{u,v\} \in E$$

 $\forall i \in V, s \in V$

$$\sum_{\{i,j\} \in L} y_{\{i,j\}} = y_i$$

$$\forall i \in V$$

counting hardware

$$\begin{aligned} y_i &\leq M_P \, x_i & \forall i \in V \\ x_i &\leq M_S \, z_i & \forall i \in V \\ z_i &\leq (M_L - 1/M_F) w_i + 1 & \forall i \in V \\ w_i &\leq M_F & \forall i \in V \end{aligned}$$

$$\mathbf{f} \geq 0$$

$$g, w, x, y, z \in \mathbb{Z}_+$$

Overview

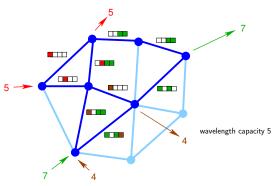
Introduction

Network Layout Planning

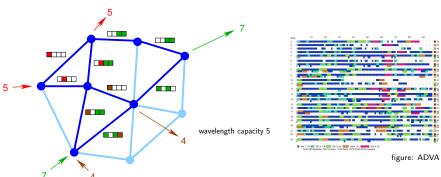
Network Dimensioning and Routing

Further Topics

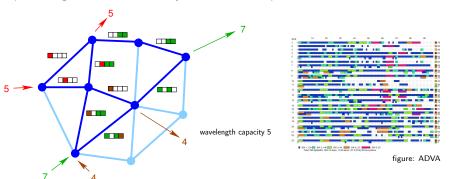
Optical signals on a WDM system are multiplexed



Optical signals on a WDM system are multiplexed



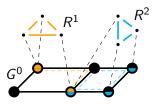
Optical signals on a WDM system are multiplexed



→ Wavelength Assignment Problem: For each optical link, find an assignment of optical connections using this link to 96 color slots!

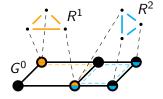
Further Topics: Virtual Networks

Virtual network requests instead of demands:



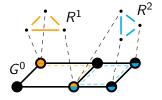
Further Topics: Virtual Networks

Virtual network requests instead of demands:



Virtual Network Embedding Problem: Given a substrate network G^0 and network requests R^1, \ldots, R^n , find an optimal embedding of as many requests as possible into G^0 !

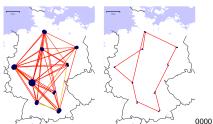
Virtual network requests instead of demands:



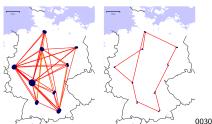
Virtual Network Embedding Problem: Given a substrate network G^0 and network requests R^1, \ldots, R^n , find an optimal embedding of as many requests as possible into G^0 !

- Requests are dynamically changing over time
 - reoptimization necessary
 - online problem

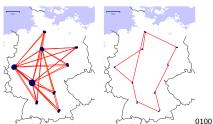
Network demands fluctuate:



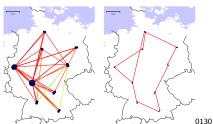
Network demands fluctuate:



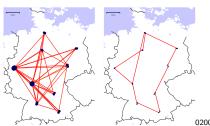
Network demands fluctuate:



Network demands fluctuate:

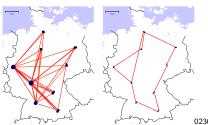


Network demands fluctuate:



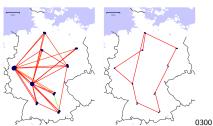
Network demands fluctuate:

89 3 2 2 2 Mo, 30th Mo, 6th Mo, 13th Mo, 20th



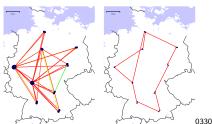
Network demands fluctuate:

89 3 2 2 2 Mo, 30th Mo, 6th Mo, 13th Mo, 20th

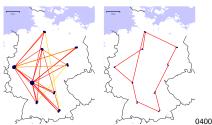


Network demands fluctuate:

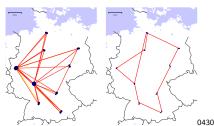
8 3 3 Mo, 30th Mo, 6th Mo, 13th Mo, 20th



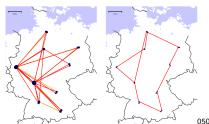
Network demands fluctuate:



Network demands fluctuate:



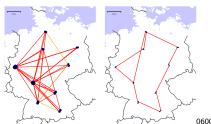
Network demands fluctuate:



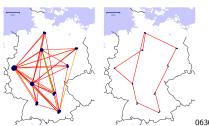
Network demands fluctuate:



Network demands fluctuate:

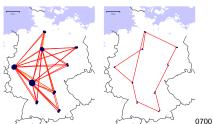


Network demands fluctuate:



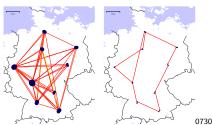
Network demands fluctuate:

89 3 2 2 2 Mo, 30th Mo, 6th Mo, 13th Mo, 20th

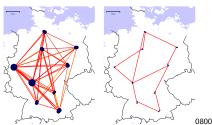


Network demands fluctuate:

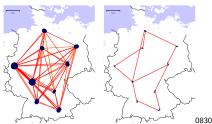
89 3 2 2 2 Mo, 30th Mo, 6th Mo, 13th Mo, 20th



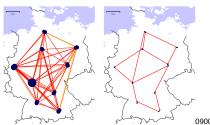
Network demands fluctuate:



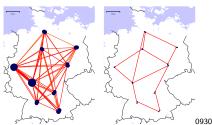
Network demands fluctuate:



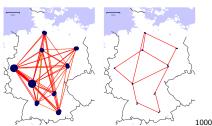
Network demands fluctuate:



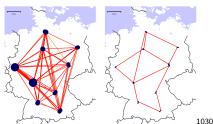
Network demands fluctuate:



Network demands fluctuate:

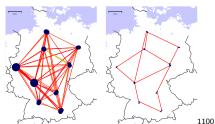


Network demands fluctuate:

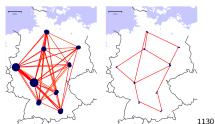


Network demands fluctuate:

8 3 4 4 4 Mo, 30th Mo, 6th Mo, 13th Mo, 20th

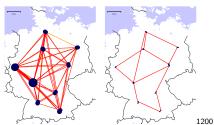


Network demands fluctuate:

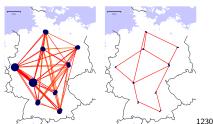


Network demands fluctuate:

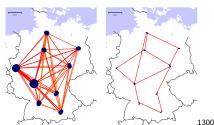
89 3 2 2 2 Mo, 30th Mo, 6th Mo, 13th Mo, 20th



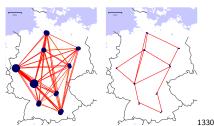
Network demands fluctuate:



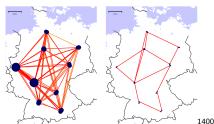
Network demands fluctuate:



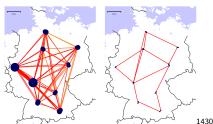
Network demands fluctuate:



Network demands fluctuate:

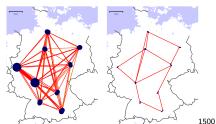


Network demands fluctuate:

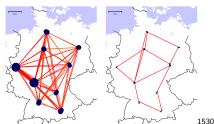


Network demands fluctuate:

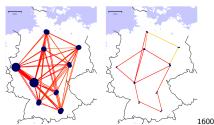
8 3 3 Mo, 30th Mo, 6th Mo, 13th Mo, 20th



Network demands fluctuate:

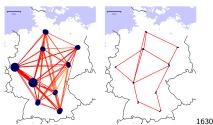


Network demands fluctuate:

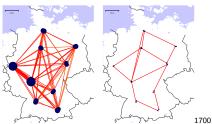


Network demands fluctuate:

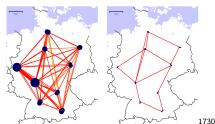
89 3 2 2 2 Mo, 30th Mo, 6th Mo, 13th Mo, 20th



Network demands fluctuate:

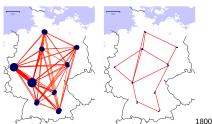


Network demands fluctuate:

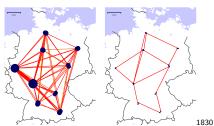


Network demands fluctuate:

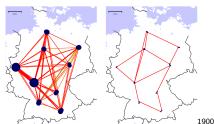
8 3 3 Mo, 30th Mo, 6th Mo, 13th Mo, 20th



Network demands fluctuate:

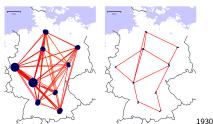


Network demands fluctuate:



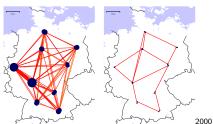
Network demands fluctuate:

89 3 2 2 2 Mo, 30th Mo, 6th Mo, 13th Mo, 20th



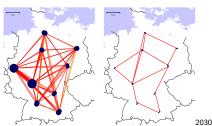
Network demands fluctuate:

8 3 3 Mo, 30th Mo, 6th Mo, 13th Mo, 20th

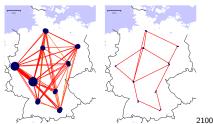


Network demands fluctuate:

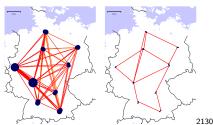
8 3 3 Mo, 30th Mo, 6th Mo, 13th Mo, 20th



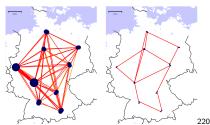
Network demands fluctuate:



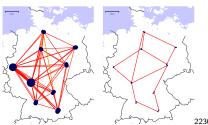
Network demands fluctuate:



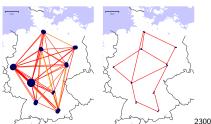
Network demands fluctuate:



Network demands fluctuate:

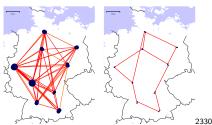


Network demands fluctuate:



Network demands fluctuate:

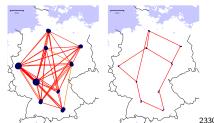
8 3 4 4 4 Mo, 30th Mo, 6th Mo, 13th Mo, 20th



Network demands fluctuate:

8 3 4 4 3 Mo, 30th Mo, 6th Mo, 13th Mo, 20th

 Networks should adapt dynamically to work efficiently, reduce energy consumption etc.

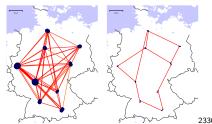


Dynamic Network Design Problem: Find optimal networks for each time interval!

Network demands fluctuate:

89 8 3 4 4 3 Mo, 30th Mo, 6th Mo, 13th Mo, 20th

 Networks should adapt dynamically to work efficiently, reduce energy consumption etc.

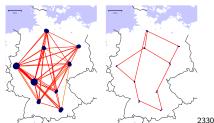


→ Dynamic Network Design Problem: Find networks for each time interval that are globally optimal!

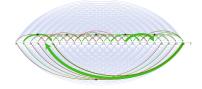
Network demands fluctuate:

8 3 4 4 3 Mo, 30th Mo, 6th Mo, 13th Mo, 20th

 Networks should adapt dynamically to work efficiently, reduce energy consumption etc.



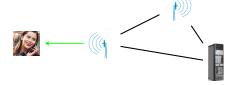
→ Dynamic Network Design Problem: Find networks for each time interval that are globally optimal!



Further Topics: Wireless Networks

Links can also be wireless:

Links can also be wireless:



→ Signal-to-interference ratio (SIR) has to be high enough for every user:

$$rac{a_{jb}p_b}{\sum\limits_{eta\in B\setminus\{b\}}a_{jeta}p_eta+N}\geq \delta$$

Links can also be wireless:

→ Signal-to-interference ratio (SIR) has to be high enough for every user:

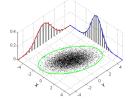
$$\frac{\textit{a}_{\textit{jb}}\textit{p}_{\textit{b}}}{\sum\limits_{\beta \in \textit{B} \backslash \{\textit{b}\}} \textit{a}_{\textit{j}\beta}\textit{p}_{\beta} + \textit{N}} \geq \delta$$

→ SIR constraints:

$$a_{jb}p_b - \delta \sum_{\beta \in B \setminus \{b\}} a_{j\beta}p_\beta + M(1 - z_j^k) \ge \delta N \qquad \forall j \in C, \ b \in B$$

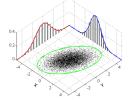
Further Topics: Robustness

Input data might deviate from given (nominal) values



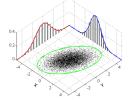
Examples: demand values, fading coefficients, cost values, ...

Further Topics: Robustness

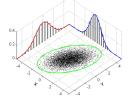


- Examples: demand values, fading coefficients, cost values, ...
- ► Solutions must still be feasible if some parameters change "slightly"!

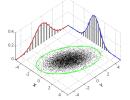
Further Topics: Robustness



- Examples: demand values, fading coefficients, cost values, ...
- Solutions must still be feasible if some parameters change "slightly"!
- Robust counterpart of the respective model



- Examples: demand values, fading coefficients, cost values, ...
- ► Solutions must still be feasible if some parameters change "slightly"!
- Robust counterpart of the respective model
 - feasible set enlarged according to the robustness scheme
 - → trade-off between conservativism (too large feasible set) and inflexibility (too small feasible set)



- Examples: demand values, fading coefficients, cost values, ...
- ► Solutions must still be feasible if some parameters change "slightly"!
- Robust counterpart of the respective model
 - ▶ feasible set enlarged according to the robustness scheme
 - → trade-off between conservativism (too large feasible set) and inflexibility (too small feasible set)
 - robustification blows up the model, making it harder to solve
 - → make sure the model size stays polynomial

Large networks are usually not built overnight...

 \rightarrow Multiperiod planning for a time horizon T (usually several years)

- \rightarrow Multiperiod planning for a time horizon T (usually several years)
- → Time-expanded models:

- \rightarrow Multiperiod planning for a time horizon T (usually several years)
- → Time-expanded models:
 - ▶ Discretization of the planning horizon: $\{1, ..., T\}$

- \rightarrow Multiperiod planning for a time horizon T (usually several years)
- → Time-expanded models:
 - ▶ Discretization of the planning horizon: $\{1, ..., T\}$
 - One copy of the network planning model for each time step

- → Multiperiod planning for a time horizon T (usually several years)
- → Time-expanded models:
 - ▶ Discretization of the planning horizon: $\{1, ..., T\}$
 - One copy of the network planning model for each time step
 - ► Coupling constraints: $y_a^t = \sum_{\tau=1}^{t-1} \tilde{y}_a^{\tau}, \quad y_a^t \leq y_a^{t-1}$, etc.

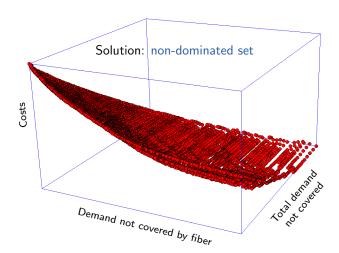
- → Multiperiod planning for a time horizon T (usually several years)
- → Time-expanded models:
 - ▶ Discretization of the planning horizon: $\{1, ..., T\}$
 - One copy of the network planning model for each time step
 - ► Coupling constraints: $y_a^t = \sum_{\tau=1}^{t-1} \tilde{y}_a^{\tau}$, $y_a^t \le y_a^{t-1}$, etc.
 - Objective can include cost changes (due to inflation, technological development, etc.), operational costs, projected revenue

$$\begin{aligned} & \min \quad \sum_{(i,j) \in A_{rc}} c_{ij} x_{ij} + \sum_{l=1}^k \sum_{(i,j) \in \mathcal{A}^l} c_{ij}^l x_{ij}^l + \sum_{l=1}^k \sum_{i \in F^l} c_i^l y_i^l \\ & \max \quad \sum_{j \in C} d_j z_j^1 \\ & \max \quad \sum_{l=1}^k \sum_{j \in C} d_j z_j^\ell \\ & \sum_{i=1}^k z_j^l \leq 1 \qquad \forall j \in C \\ & \sum_{i \in F^l_j} x_{ij}^l = z_j^l \qquad \forall j \in C, \ l = 1, \dots, k \\ & x_i^l \leq y_i^l \qquad \forall j \in C, \ i \in F^l_j, \ l = 1, \dots, k \\ & x(\delta^-(W)) \geq y_i^l \qquad \forall W \subseteq V \setminus C, \ i \in F^l \cap W, \ l = 1, \dots, k \\ & x_a, y_i^l, z_j^l \in \{0, 1\} \quad \forall a \in A_c, \ i \in F^l, \ j \in C, \ l = 1, \dots, k \\ & x_{ii}^l \in \{0, 1\} \quad \forall i \in F^l, \ j \in C, \ l = 1, \dots, k \end{aligned}$$

$$\begin{aligned} & \min \quad \sum_{(i,j) \in A_{rc}} c_{ij} x_{ij} + \sum_{l=1}^k \sum_{(i,j) \in A^l} c_{ij}^l x_{ij}^l + \sum_{l=1}^k \sum_{i \in F^l} c_i^l y_i^l & \text{(total cost)} \\ & \max \quad \sum_{j \in C} d_j z_j^1 \\ & \max \quad \sum_{l=1}^k \sum_{j \in C} d_j z_j^\ell & \\ & \sum_{l=1}^k z_j^l \leq 1 & \forall j \in C \\ & \sum_{i \in F_j^l} x_{ij}^l = z_j^l & \forall j \in C, \ l = 1, \dots, k \\ & x_{ij}^l \leq y_i^l & \forall j \in C, \ i \in F_j^l, \ l = 1, \dots, k \\ & x(\delta^-(W)) \geq y_i^l & \forall W \subseteq V \setminus C, \ i \in F^l \cap W, \ l = 1, \dots, k \\ & x_a, y_i^l, z_j^l \in \{0, 1\} & \forall a \in A_c, \ i \in F^l, \ j \in C, \ l = 1, \dots, k \\ & x_{ii}^l \in \{0, 1\} & \forall i \in F_i^l, \ j \in C, \ l = 1, \dots, k \end{aligned}$$

$$\begin{aligned} & \min \quad \sum_{(i,j) \in A_{rc}} c_{ij} x_{ij} + \sum_{l=1}^k \sum_{(i,j) \in A^l} c_{ij}^l x_{ij}^l + \sum_{l=1}^k \sum_{i \in F^l} c_i^l y_i^l \qquad \text{(total cost)} \\ & \max \quad \sum_{j \in C} d_j z_j^1 \qquad \qquad \text{(coverage with preferred technology)} \\ & \max \quad \sum_{l=1}^k \sum_{j \in C} d_j z_j^\ell \qquad \qquad \\ & \sum_{l=1}^k z_j^l \leq 1 \qquad \forall j \in C \\ & \sum_{l=1}^k z_j^l \leq 1 \qquad \forall j \in C, \ l = 1, \dots, k \\ & \sum_{i \in F_j^l} x_{ij}^l \leq y_i^l \qquad \forall j \in C, \ l = 1, \dots, k \\ & \times (\delta^-(W)) \geq y_i^l \qquad \forall W \subseteq V \setminus C, \ i \in F^l \cap W, \ l = 1, \dots, k \\ & x_a, y_i^l, z_j^l \in \{0,1\} \quad \forall a \in A_c, \ i \in F^l, \ j \in C, \ l = 1, \dots, k \end{aligned}$$

$$\begin{aligned} & \min \quad \sum_{(i,j) \in A_{rc}} c_{ij} x_{ij} + \sum_{l=1}^k \sum_{(i,j) \in A^l} c_{ij}^l x_{ij}^l + \sum_{l=1}^k \sum_{i \in F^l} c_i^l y_i^l \qquad \text{(total cost)} \\ & \max \quad \sum_{j \in C} d_j z_j^1 \qquad \qquad \text{(coverage with preferred technology)} \\ & \max \quad \sum_{l=1}^k \sum_{j \in C} d_j z_j^\ell \qquad \qquad \text{(total coverage)} \\ & \sum_{i=1}^k z_j^l \leq 1 \qquad \forall j \in C \\ & \sum_{l=1}^k x_{ij}^l = z_j^l \qquad \forall j \in C, \ l = 1, \dots, k \\ & x_{ij}^l \leq y_i^l \qquad \forall j \in C, \ i \in F_j^l, \ l = 1, \dots, k \\ & \times (\delta^-(W)) \geq y_i^l \qquad \forall W \subseteq V \setminus C, \ i \in F^l \cap W, \ l = 1, \dots, k \\ & x_a, y_i^l, z_j^l \in \{0,1\} \quad \forall a \in A_c, \ i \in F^l, \ j \in C, \ l = 1, \dots, k \end{aligned}$$



EXERCISES

EXERCISES

On the CO @ Work website:

- Exercise Sheet
- ZIMPL file for capacitated network design
- ▶ Some instances that can be read with the ZIMPL example
 - → Create new ones to play with and try out models!

EXERCISES

On the CO @ Work website:

- Exercise Sheet
- ZIMPL file for capacitated network design
- Some instances that can be read with the ZIMPL example
 - → Create new ones to play with and try out models!

HAVE FUN!

Get Together

Restaurant Cum Laude, Platz der Märzrevolution, 10117 Berlin

in the building of Humboldt University close to S+U Bhf Friedrichstraße

Meeting Point after this lecture in front of the ZIB lecture hall.