
Zuse Institute Berlin Combinatorial Optimization at Work 2009

Exercise: Column Generation for Binpacking

This exercise shows how to implement a solver for the binpacking problem using a formulation
with exponentially many variables, each representing a feasible packing of a bin. Therefore, we
use a pricer which dynamically generates new variables with negative reduced costs and adds
them to the master problem. The pricer has to solve a combinatorial optimization problem
to generate a new variable (feasible packing) with negative reduced cost.

Problem description

The binpacking problem consists of the task to distribute a given set of items [n] := {1, . . . , n}
with nonnegative size si to a minimal number of bins, all of the same capacity κ. One possible
formulation is the following integer program:

min
∑
s∈S

xs

subject to
∑
s∈S

(λs)i xs ≥ 1 ∀i ∈ I

xs ∈ Z+ ∀s ∈ S

Here, the set S := {S ⊆ [n] |
∑

i:i∈S si ≤ κ} contains all feasible packing patterns.
Since S can be of exponential size, we will use a column generation approach to solve this

problem. We initialize the problem with a set of n variables representing packings of a single
item per bin.

Now, we have to iteratively search for variables representing “better” packings, i.e., a
packing pattern which reduces the overall costs. For a given solution y∗ of the (restricted)
dual linear program, we have to find a variable λS for which the reduced costs

cS −
∑
i∈S

y∗i < 0⇔
∑
i∈S

y∗i > 1

since all variables λS have an objective coefficient cS = 1.

Getting started

The binpacking project you already used in the previous exercise contains all necessary files
for this exercise. Amongst others, it contains:

src/reader bpa.{c,h} This reader parses the binpacking problem files and creates the ma-
ster set covering formulation. It is already implemented.

src/pricer binpacking{c,h} These files contain an almost completed version of the pricer
you have to implement.

1

The pricer

In the following we give a road map through this exercise.
(a) Formulate the pricing problem of the set covering formulation as a combinatorial optimi-

zation problem.

(b) Open the file COatWork-Binpacking/src/pricer binpacking.c and search for the call-
back method pricerRedcostBinpacking.

(c) Implement the missing parts of this method. These are indicated by TODO in the source
file. The following methods might help:

• SCIPpricerGetData(SCIP PRICER*) gives you the SCIP PRICERDATA* structure which
is defined at the beginning of pricer binpacking.c. The pricer data structure con-
sists of four members. This are:

– SCIP CONS** conss set covering constraints for the items
– SCIP Longint* weights size of the items
– int nweights number of weights (items) to be packed
– SCIP Real capacity capacity of the bins

• The dual solution of a (LP row corresponding to a) set covering constraint is given
by SCIPgetDualsolSetppc(SCIP*, SCIP CONS*).

• Use SCIPsolveKnapsackExactly() to solve the knapsack problem. This method is
located and documented in the constraint handler cons knapsack.h.
Note, that this method will resort the weights, profits, and items arrays.

• SCIPcreateVar() to create a new variable. Note, that the last four parameters of
this method are NULL in our case and the two SCIP Bool parameters should be set
to TRUE.

• SCIPaddPricedVar(SCIP*, SCIP VAR*, SCIP Real) passes a new variable to scip.

• SCIP RETCODE SCIPaddCoefSetppc(SCIP*, SCIP CONS*, SCIP VAR*) adds a va-
riable to set covering constraint.

• SCIPreleaseVar(SCIP*, SCIP VAR**) releases a variable.

Hints:
◦ The pricing score can always be set to 1.0.

Final test

Finally, you should compile and test your solution. For testing, open the binary at bin/binpacking
and read one of the smaller test instances which you find in the directory data/.

If everything works fine, you should run a automated test using the command make test
in the main directory of the project.

Good luck!

2

