ZUSE INSTITUTE BERLIN COMBINATORIAL OPTIMIZATION AT WORK 2009

Exercise: Column Generation for Binpacking

This exercise shows how to implement a solver for the binpacking problem using a formulation
with exponentially many variables, each representing a feasible packing of a bin. Therefore, we
use a pricer which dynamically generates new variables with negative reduced costs and adds
them to the master problem. The pricer has to solve a combinatorial optimization problem
to generate a new variable (feasible packing) with negative reduced cost.

Problem description

The binpacking problem consists of the task to distribute a given set of items [n]| := {1,...,n}
with nonnegative size s; to a minimal number of bins, all of the same capacity k. One possible
formulation is the following integer program:

min E Ts

seS

subject to Z()\s)i% >1 Viel
seS
rs € 7T VseS

Here, the set S :={S C [n] | >_,.;cg5i < £} contains all feasible packing patterns.

Since S can be of exponential size, we will use a column generation approach to solve this
problem. We initialize the problem with a set of n variables representing packings of a single
item per bin.

Now, we have to iteratively search for variables representing “better” packings, i.e., a
packing pattern which reduces the overall costs. For a given solution y* of the (restricted)
dual linear program, we have to find a variable Ag for which the reduced costs

cS—Zy;‘<O<:>Zy;‘>1
i€S i€S

since all variables Ag have an objective coefficient cg = 1.

Getting started

The binpacking project you already used in the previous exercise contains all necessary files
for this exercise. Amongst others, it contains:

src/reader_bpa.{c,h} This reader parses the binpacking problem files and creates the ma-
ster set covering formulation. It is already implemented.

src/pricer_binpacking{c,h} These files contain an almost completed version of the pricer
you have to implement.

The pricer

In the following we give a road map through this exercise.
(a) Formulate the pricing problem of the set covering formulation as a combinatorial optimi-
zation problem.

(b) Open the file COatWork-Binpacking/src/pricer_binpacking.c and search for the call-
back method pricerRedcostBinpacking.

(c¢) Implement the missing parts of this method. These are indicated by TODO in the source
file. The following methods might help:

e SCIPpricerGetData(SCIP_PRICER*) gives you the SCIP_PRICERDATA* structure which
is defined at the beginning of pricer_binpacking.c. The pricer data structure con-
sists of four members. This are:

— SCIP_CONS** conss set covering constraints for the items
— SCIP_Longint* weights size of the items

— int nweights number of weights (items) to be packed

— SCIP_Real capacity capacity of the bins

e The dual solution of a (LP row corresponding to a) set covering constraint is given
by SCIPgetDualsolSetppc(SCIP*, SCIP_CONS*).

e Use SCIPsolveKnapsackExactly() to solve the knapsack problem. This method is
located and documented in the constraint handler cons_knapsack.h.
Note, that this method will resort the weights, profits, and items arrays.

e SCIPcreateVar() to create a new variable. Note, that the last four parameters of
this method are NULL in our case and the two SCIP_Bool parameters should be set
to TRUE.

e SCIPaddPricedVar (SCIP*, SCIP_VAR*, SCIP_Real) passes a new variable to SCIP.

e SCIP_RETCODE SCIPaddCoefSetppc(SCIP*, SCIP_CONS*, SCIP_VAR*) adds a va-
riable to set covering constraint.

e SCIPreleaseVar (SCIP*, SCIP_VAR#*x*) releases a variable.

Hints:

o The pricing score can always be set to 1.0.

Final test

Finally, you should compile and test your solution. For testing, open the binary at bin/binpacking
and read one of the smaller test instances which you find in the directory data/.

If everything works fine, you should run a automated test using the command make test
in the main directory of the project.

Good luck!

