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The Beginning of Linear Programming
(G. Dantzig, Linear Programming, Oper Res 50, 42-47, 2002)

► George Dantzig‘s talk on „Programming in a Linear Structure“ (meeting of the 
Econometric Society, Univ. of Wisconsin in Madison), 1948.

► Harold Hotelling objected „...but we all know the world is nonlinear“.
► John von Neumann defended the flustered young Dantzig, saying that „if one 

has an application that satiesfied the axioms of the model, then it can be 
used, otherwise not.“

► Hotelling was right: The world is highly nonlinear.
► But: Systems of linear inequalities allow an approximation of most kinds of 

nonlinear relations encountered in practical applications.

George Dantzig (1913-2005) Harold Hotelling (1895-1973) John von Neumann (1903-1957)
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Piecewise Linear (Affine) Approximation

► In one dimension, a nonlinear function
can be approximated by a sequence of 
piecewise linear functions (linear splines).

► The question is where to place the
interpolation nodes for a given 
nonlinear function.
► Equidistant interpolation.
► Adaptive interpolation.
► Adaptive approximation.

► This is a classical well-studied problem in
numerical analysis, see for instance the textbook:
► C. de Boor, A practical guide to splines, Springer, 1978.

► To apply these methods the function has to be
„nice“ (i.e., twice continuous differentiable)
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Piecewise Linear Approximation and Shortest Paths
(H. Imai, M. Iri, An optimal algorithm for approximating a piecewise linear function, J Inf Proc 9, 159-162, 1986)

► Assume a continuous function                        is given by a huge table of 
measurements, and linear interpolation between two measurements. 

► We want to replace it by an approximation                        using a smaller table.

► Weighted digraph                        with                           and
► Select parameters

► : cost per segment
► : cost for approximation error

► Define total cost per segment as

► A shortest path from     to     in      is the desired approximation.

1 2 3 4 5
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Piecewise Linear Approximation - An Ancient Idea

► The perhaps first mathematician who used 
piecewise linear approximation was 
Archimedes of Syracuse (287 BC-212 BC).

► He considered regular n-gons for an
approximative computation of     .

► With n = 96 Archimedes achieved the bounds

► Liu Hui (220-280): 192-gon and 3072-gon.
► Zu Chong-Zhi (429-500): 3*212 = 12288-gon.
► Jamshid Masud Al-Kashi (1380-1429): 3*228-gon.
► 1596 Ludolph van Ceulen computed the first 

35 digits of     using Archimedes method 
on a 262-gon. It took him 30 years of his life.

Archimedes, 1620
Domenico Fetti (1589-1624)source: wikipedia

Ludolph van Ceulen 
(1540-1610)

 

π

 

3.1408450 ≈ 3 10
71 < π < 3 10

70 ≈ 3.1428571

 

π
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xi

 

yi

The Incremental Method
(H. Markowitz, A. Manne, On the solution of discrete programming problems, Econometrica 25, 84-110, 1957)

► Idea: „Filling“ of intervals
► Variables:

►

►

► Constraints:

 

δ1

 

δ2

 

δ3

 

w1

 

w2

 

w3 

x

 

y

 

wi ≥δ i ≥ wi+1

 

x = x0 + (xi − xi−1)δii∈I∑
y = y0 + (yi − yi−1)δii∈I∑

 

δ1 =1

 

δ2 = 0.7

 

δ3 = 0

 

w1 =1

 

w2 =1

 

w3 = 0

 

wi ∈{0,1}

 

δ i ∈[0,1]



Piecewise Linear Approximation 8.10.2009 / 14:00-15:30Armin Fügenschuh 7

The Convex Combination Method
(G. Dantzig, On the significance of solving linear programming problems with some integer variables, Econometrica 28, 30-44, 1960)

► Idea: Selection of exactly one interval
► Variables:

►

►

► Constraints:

 

λ0

 

λ1

 

λ2

 

λ3

 

w1

 

w2

 

w3

 

λi ∈ [0,1]

 

wi ∈ {0,1}

 

wii∈I∑ =1

λ0 + λii∈I∑ =1

wi ≤ λi−1 + λi

 

x = x0λ0 + xiλii∈I∑
y = y0λ0 + yiλii∈I∑

 

x

 

y

 

λ0 = 0

 

λ1 = 0.3

 

λ2 = 0.7

 

λ3 = 0

 

w1 = 0

 

w2 =1

 

w3 = 0

 

xi

 

yi
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Special Ordered Sets (SOS2)
(E.M.L. Beale, J.J.H. Forrest, Global Optimization Using Special Ordered Sets, Math Prog 10, 52-69, 1976)

► Binary variables in the convex combination model were only introduced to 
model a logical relation:
► At most two lambda variables are nonzero.
► Nonzero lambda variables must be adjacent.

► Beale and Tomlin (1970) introduce SOS2 to handle this constraint implicitly in 
a branch-and-bound framework, without an explicit use of binary variables and 
constraints.

► Example:

► Modern modeling languages / MILP solvers offer SOS2 as a built-in feature.
► Example (Zimpl):

left branch right branch 

λ0 = 0.1

 

λ1 = 0

 

λ2 = 0.4

 

λ3 = 0

 

λ4 = 0.5

 

λ0 + λ1 + λ2 + λ3 + λ4 =1

 

λ0 + λ1 + λ2 =1,       λ3 = λ4 = 0

 

λ0 = λ1 = λ2 = 0,     λ3 + λ4 =1
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Dealing with Functions of Several Variables

► Sometimes multivariate functions can be reduced to a sequence of 
monovariate functions.

► Example:                 . 
► Here we can use an idea of John Napier from 1614:

„Mirifici logarithmorum canonis constructio“.
► Assume             . Then:

► Instead of one bivariate function we have to approximate three 
monovariate functions (by one of the methods discussed before):

John Napier (1550-1617)

 

z = xa  ⋅ yb

 

x,y > 0

 

z = xa  ⋅ yb

 

⇔   lnz = ln(xa  ⋅ yb ) = a ln x + bln y

 

˜ z = lnz
˜ x = ln x
˜ y = ln y
˜ z = a ˜ x + b˜ y 
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The Modelling Power of Conic Quadratic Programming
(A. Nemirovski, Lectures on Modern Convex Optimization, 2005)

► Some multivariate functions have a special structure that can be 
exploited for highly efficient approximations.

► A quadratic cone (also second order cone, coll. „ice-cream cone“) is 
the set described by

► Many other constraints can be transformed into a SOC:

where

► Further examples include the cone



 

x1
2 + x2

2 ++ xn −1
2 ≤ xn

 

a  ⋅ b ≥ c  ⇔  x2 + y2 ≤ z

 

x := 1
2 (a − b),  y := c,   z := 1

2 (a + b)

 

zTz ≤ xy,   x,y ≥ 0



Piecewise Linear Approximation 8.10.2009 / 14:00-15:30Armin Fügenschuh 11

Linear Approximations of Second Order Cones
(A. Ben-Tal, A. Nemirovski, On polyhedral approximations of the second-order cone, Math Oper Res 26, 193-205, 1998 &
F. Glineur, Polyhedral approximation of the second-order cone: computational experiments, Tech Rep, 2000)

► Pure SOCPs can be solved by nonlinear (interior point) methods.
► When also integer constraints are present, linear approximations of the SOC 

should be considered.
► Clearly one can approximate the SOC in the original space by linear cones 

(i.e., the unit disc by an n-gon).
► The error is
► For an accuracy of 10-4 we would need a 223-gon.
► A much better approximation is the following:

► Variables:

► Constraints:

► Accuracy is

 

ε = cos(π
n )−1 −1.

 

α i,βi  ∈  ] − ∞,∞[

 

α0 = x1

β0 = x2

α i+1 = cos( π
2i )α i + sin( π

2i )βi

βi+1 ≥ sin( π
2i )α i − cos( π

2i )βi

cos( π
2 I )α I + sin( π

2 I )βI = x3

 

x1
2 + x2

2 ≤ x3      <≈>

 

ε = cos( π
2n )−1 −1.
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Piecewise Linear Approximation of Multivariate Nonlinear Functions

► If the function does not fit in that catagories, one can apply a higher 
dimensional analogon of 1-d piecewise linear approximation.

► Prerequisite: Introduce a triangulation (in 2-d) or, in general, a decomposition 
of the domain in simplices.
► Equidistant:

► Adaptive: 
► Delauney triangulation of the domain.
► Find the point with maximum error.
► Introduce a new node there.
► Compute a refined Delauney triangulation.
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► Idea: Selection of exactly one interval
► Variables:

►

►

► Constraints:

The Convex Combination Method in Higher Dimensions

 

λi ∈ [0,1]

 

wi ∈ {0,1}

 

wii∈I∑ =1

λ0 + λii∈I∑ =1

wi ≤ λi−1 + λi

 

x = x0λ0 + xiλii∈I∑
y = y0λ0 + yiλii∈I∑

 

x

 

y

triangle

 

wi ≤ λ j
j∈Ti

∑

 

λ4

 

λ11

 

λ23

 

T5

 

w5

 

= 0.4

 

= 0.2 

= 0.4

 

=1
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SOS Branching in Higher Dimensions
(A. Martin, M. Möller, S. Moritz, Mixed Integer Models for the Stationary Case of Gas Network Optimization, Math Prog B 105, 563-582, 2006)

► Similar to the 1-d case it is possible to remove the 
auxiliary binary variables and handle the SOS property 
within the branching.

 

λi
i∈  M
∑ =1
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The Incremental Method in Higher Dimensions
(D. Wilson, Polyhedral Methods for piecewise-linear functions, PhD Thesis, 1998)

► Idea: „Filling“ of triangles
► Variables:

►

►

► Constraints:

► Prerequisite: Ordering of the main
direction

 

δ i
1 ≥ wi ≥δ i+1

1 +δ i+1
2

 

x = x0
0 + (xi

1 − xi
0)δ i

1 + (xi
2 − xi

0)δ i
2[ ]i∈I

∑
y = y0

0 + (yi
1 − yi

0)δ i
1 + (yi

2 − yi
0)δ i

2[ ]i∈I∑

 

wi ∈{0,1}

 

δ i
1,δ i

2 ∈[0,1]

 

wi

 

xi
0

 

xi
1

 

xi
2

 

δ i
2

 

δ i
1

1

2
3

4

5

6 7
8
9
10

11

12

13

14

15
16
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A Sheet Metal Design Task

► Design of square-tube conduits
► Several square-shaped channels, surrounded by metal
► Given cross section areas
► Further engineering constraints
► Design goals

► Minimal material usage
► Minimal deflection
► Minimal torsion



Piecewise Linear Approximation 8.10.2009 / 14:00-15:30Armin Fügenschuh 17

A Linear Mixed-Integer Model
(A. Fügenschuh, M. Fügenschuh, Integer Linear Programming Models for Topology Optimization in Sheet Metal Design, Math Meth Oper Res 68, 313-331, 2008)

 

δi
t ∈ {0,1}

 

µi, j ∈ {0,1}

► Discretize the design envelope.
► Place channels on pixels and metal on the boundaries.
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An Nonlinear Nonconvex Model
(A. Fügenschuh, W. Hess, L. Schewe, A. Martin, S. Ulbrich, Verfeinerte Modelle zur Topologie- und Geometrie-Optimierung von Blechprofilen mit Kammern, 2nd Proc SFB 666, 17-28, 2008)

► Given areas

► Given total area

► Packing without
overlapping

► Boundary conditions

► Minimize total border length

 

mina + b + (ai + bi)i∑

 

ai ⋅ bi = Ai

 

a ⋅ b = Aii∑

 

xi + ai ≤ x j + M⋅ (1− χi, j
left )

x j + a j ≤ xi + M⋅ (1− χi, j
right )

yi + bi ≤ y j + M⋅ (1− χi, j
below )

y j + bj ≤ yi + M⋅ (1− χi, j
above)

χi, j
left + χi, j

right + χi, j
below + χi, j

above ≥1
 

Ai

 

ai
 

bi

 

(xi, yi)

 

a

 

b

 

χi, j
left =1

 

xi + ai ≤ a,   yi + bi ≤ b
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Exercise

► Try the various linearization techniques for this problem
► Basic model: template.zpl
► Contains everything but width*height = Area
► Data set: conduit6.dat
► Interpolation of log function: log-approx <lb> <ub> <error>
► Compute sin/cos values for SOC: trigonometrics <n>
► Solve problem with SCIP
► Write solution to file (wr sol my.sol)
► Visualisation tool: makesvg <my.sol>
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Free Flight Routes

► Past/present: air traffic network (ATN)
► Future: free flight
► Main obstacles: 

► Restricted airspaces
► Weather (wind, temp.)
► Overflight costs
► ETOPS
► ...
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A Free Flight Model Based on ODE

► Equations of motion

► Minimize fuel consumption:

 

dx1

dt
(t) = v1(t) + w1(x1(t),x2(t),t)

dx2

dt
(t) = v2(t) + w2(x1(t),x2(t),t)

t time
x(t) position of aircraft at time t
v(t) aircraft velocity at time t
w(x(t),t) wind velocity at time t in x(t)

 

dx
dt

(t)

 

w(x(t),t)

 

min v(t) 2 dt
t= 0

T

∫

 

v(t)

 

v(t) 2

 

v(t)

 

x(t)
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A Free Flight Model Based on ODE

► Equations of motion

► Minimize fuel consumption:

 

dx1

dt
(t) = v1(t) + w1(x1(t),x2(t),t)

dx2

dt
(t) = v2(t) + w2(x1(t),x2(t),t)

t time, t0 := 0, tn+1 := tn + Δt
x(t) position of aircraft at time t
v(t) aircraft velocity at time t
w(x(t),t) wind velocity at time t in x(t)

 

dx
dt

(t)

 

w(x(t),t)

 

min v(t) 2 dt
t= 0

T

∫

 

v(t)

 

v(t) 2

 

v(t)

 

x(t)

 

x1(t + ∆t) = x1(t) + ∆t ⋅ (v1(t) + w1(x1(t), x2(t),t))

x2(t + ∆t) = x2(t) + ∆t ⋅ (v2(t) + w2(x1(t), x2(t),t))

 

x1(t + ∆t) − x1(t)
∆t

= v1(t) + w1(x1(t), x2(t),t)

x2(t + ∆t) − x2(t)
∆t

= v2(t) + w2(x1(t), x2(t),t)

 

x1(tn +1) = x1(tn ) + ∆t ⋅ (v1(tn ) + w1(x1(tn ),x2(tn ),tn ))

x2(tn +1) = x2(tn ) + ∆t ⋅ (v2(tn ) + w2(x1(tn ),x2(tn ),tn ))

 

x1(tn +1) = x1(tn ) + ∆t ⋅ (v1(tn ) + w1
n (x1(tn ),x2(tn )))

x2(tn +1) = x2(tn ) + ∆t ⋅ (v2(tn ) + w2
n (x1(tn ),x2(tn )))

 

min αk ⋅ vn
k

k=1

K

∑
n= 0

N

∑ ⋅ ∆t

 

min v(tn ) 2

n= 0

N

∑ ⋅ ∆t
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Wind

► 2-d vectorfield
► 2 nonlinear functions in 2-d 
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Piecewise Linear Approximation of a 2-D Nonlinear Function

► Contour lines
► Interpolation (equidistant)
► Interpolation (adaptive)

50 50168
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Free Flight: Results

►Incremental method in 2-d (CPlex10)
►Equidist. 1: 891 sec.
►Equidist. 2: 40 sec.
►Adaptive: 5 sec.

►Restricted air-space
►Blue area forbidden 
from t = 0 to t = 5
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Free Flight: Restricted Airspaces

►Incremental method in 2-d (CPlex10)
►Equidist. 1: 6600 sec.
►Equidist. 2: 238 sec.
►Adaptive: 78 sec.



Piecewise Linear Approximation 8.10.2009 / 14:00-15:30Armin Fügenschuh 27

Free Flight: Resticted Airspaces

►Incremental method in 2-d (CPlex10)
►Equidist. 1: 36579 sec.
►Equidist. 2: 900 sec.
►Adaptive: 618 sec.
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Free Flight: Overflight Costs
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Free Flight: Overflight Costs
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Free Flight: Overflight Costs
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Some Facts about Paper and Recycling
(sources: Valkama, 2007 & Wikipedia)

► Newspapers, journals, books, packing material, hygienic articles,... 
are all made of paper and carton.

► Per year Germany consumes 21 million tons of paper and carton. 
That is, every person consumes ~250kg paper/year.

► Paper is one of the best-recycled products: 15.5 millions tons are 
reused.

► An increasing rate of today 67% of the fibers come from these 
sources.
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Steps in the Recovered Paper Production
(Valkama, 2007)

► Recycling fibres from waste paper consists of several steps:
► Manual removal of contaminent materials.
► Hackle paper into small pieces.
► Resolve pieces in water and obtain pulp.
► Clean the pulp from paper clips, plastic materials, and stickies.
► De-ink the pulp.
► The recovered paper suspension (fibres) is layed on grids and dried.
► New paper rolls can now be produced.

► Too many stickies reduce the quality of the recovered paper, and can 
even break the rolls during production.

► Estimated production loss due to stickies: 265 mill. €.
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Sticky Sorting in Practice

► Sorters (screeners, separators) 
come in various types and sizes.

► Differences:
► Capacity (amount of pulp per time).
► Sieves (size, slot type and width).
► Max. admissible operating pressure.

feed

accept

reject
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The Plug Flow Model

► Each sorter has one inflow feed, 
and two outflows, accept and reject.

► Mass is conserved:                                .
► Several components (~12) are in the pulp flow; 

we restrict here to two, fibers and stickies.

► The separation efficiency for component     is                    .

► The total mass reject loss (the reject rate) is                   .

► Kubát and Steenberg developed in the
1950‘s the plug flow model. According to
their model the coupling                   holds
for each   . Parameters       depend on the 
sorter and the component. They are 
obtained by measurements.

feed accept

reject
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From Single Sorters to Systems of Sorters

► The sticky-sorter facility consists of 
3-5 sorters and pipelines.

► Several examples of such systems 
are known: 
► feed forward, 
► partial cascade, and 
► full cascade.

► The pulp flow is sent through 
pipelines from one sorter to the 
next.

► The amount per commodity in the 
total inflow is known.

► The system has a total accept and a 
total reject.

► Goal: maximize stickies in total 
reject and fibers in total accept. 
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A Nonlinear Mathematical Model (NLP)

► Sets: pipes    , sorters    , components     .
► Parameters 

► Component             inflow mass:                .
► Pipe from accept/reject of sorter     to inflow of     ?
► Gain/loss per unit of     in total accept/reject:
► Sorter‘s beta parameter vector:

► Variables
► Mass flow of    into/out of sorter   :
► Mass flow to total accept/reject:
► Reject rate of sorter   :

► Constraints
► Mass conservation:
► Plug flow:
► Network topology:

► Objective:
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Including the Topology

► There are many ways to connect the sorters.

► Topological decisions can be taken into the model.
► Instead of parameters           and           we introduce a binary 

variables.
► Expressions                       and                       then are also 

nonlinear.
► They have to be linearized again.
► See also Floudas (1987, 1995), Nath, Motard (1981), Nishida, 

Stephanopoulos, Westerberg (1981), Friedler, Tarjan, Huang, Fan 
(1993), Grossmann, Caballero, Yeomans (1999), and many more.

#sorters #topologies

1 1

2 8

3 318

4 26,688

5 3,750,240
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Linearizing the Topology Constraints

► Remember:
► Introduce new variables                         for potential 

mass flowing from accept/reject of sorter      to the 
input of sorter     .

► Constraints
► Mass flow only in pipes (     a sufficiently large constant):

► Exactly one pipe is selected:

► Coupling of mass and potential mass:
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Computational Results

► Objective: maximize stickies within reject.
► Additional constraint: fiber-loss (i.e., fibers in reject) at most 5%.
► Given topology: 

► Optimized topology:

stickies [m2/h]
fibers [t/h]

stickies [m2/h]
fibers [t/h]

stickies [m2/h]
fibers [t/h]

stickies [m2/h]
fibers [t/h]

stickies [m2/h]
fibers [t/h]

stickies [m2/h]
fibers [t/h]
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Thank you for your attention!

Questions?
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