Planning and Optimizing Large Scale Telecommunication Networks

CO@Work October 5, 2009

Maren Martens Andreas Bley, Christian Raack

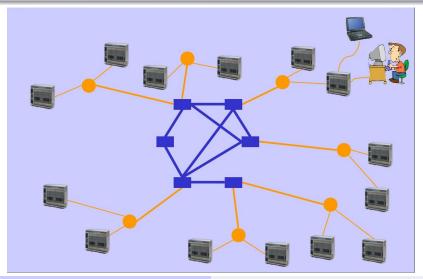
Planning and Optimizing Large Scale Networks

Maren Martens

Contents

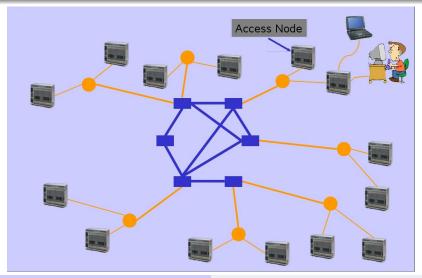
- 2 Access Networks
 - Minimum Cost Flows
- 3 Core Networks
 - Steiner Trees
 - IP Formulations
- ④ Survivability
 - $\{0,1,2\}$ -Survivable Network Design
- **5** Demands and Capacities

A Telecommunication Network



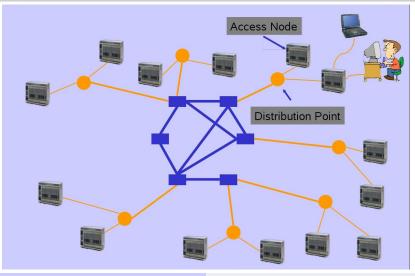
Planning and Optimizing Large Scale Networks

A Telecommunication Network



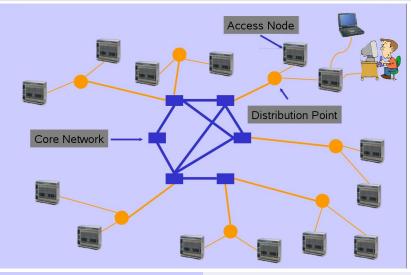
Planning and Optimizing Large Scale Networks

A Telecommunication Network



Planning and Optimizing Large Scale Networks

A Telecommunication Network



Planning and Optimizing Large Scale Networks

Planning Problems

Access Networks:

• How to connect customers to given routers? Core Networks:

• Which links to use between routers?

Survivability:

• How to avoid interruptions?

Demands:

• Given customer demands, how to route them?

∃ ▶ ∢

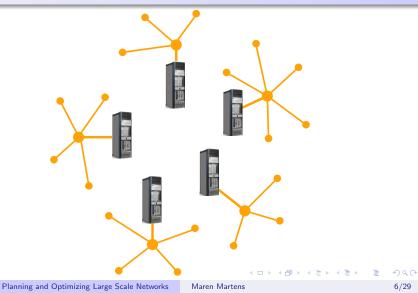
Minimum Cost Flows

ACCESS NETWORKS

э

Minimum Cost Flows

Access Networks



Minimum Cost Flows

The Minimum Cost Flow Problem (MCFP)

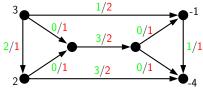
Given: Digraph D = (V, A), demands/supplies $b_v \in \mathbb{R}_0^+$ ($v \in V$) with $\sum_{v \in V} b_v = 0$, arc cost c_a and capacities u_a ($a \in A$)

(日) (同) (三) (三)

Minimum Cost Flows

The Minimum Cost Flow Problem (MCFP)

Given: Digraph D = (V, A), demands/supplies $b_v \in \mathbb{R}_0^+$ ($v \in V$) with $\sum_{v \in V} b_v = 0$, arc cost c_a and capacities u_a ($a \in A$)



< A >

Minimum Cost Flows

The Minimum Cost Flow Problem (MCFP)

Given: Digraph D = (V, A), demands/supplies $b_v \in \mathbb{R}_0^+$ ($v \in V$) with $\sum_{v \in V} b_v = 0$, arc cost c_a and capacities u_a ($a \in A$)

Find: Flow $f: A \to \mathbb{R}_0^+$ of minimum cost, satisfying all demands

A - A - A

Minimum Cost Flows

The Minimum Cost Flow Problem (MCFP)

Given: Digraph D = (V, A), demands/supplies $b_v \in \mathbb{R}_0^+$ $(v \in V)$ with $\sum_{v \in V} b_v = 0$, arc cost c_a and capacities u_a $(a \in A)$ $3 \xrightarrow{1/2} \xrightarrow{1/2} \xrightarrow{0/1} \xrightarrow{1/1} \xrightarrow{1/2} \xrightarrow{0/1} \xrightarrow{1/2} \xrightarrow{1/2} \xrightarrow{0/1} \xrightarrow{1/2} \xrightarrow{1/2$

A (1) > 4

Minimum Cost Flows

The Minimum Cost Flow Problem (MCFP)

Given: Digraph D = (V, A), demands/supplies $b_v \in \mathbb{R}_0^+$ ($v \in V$) with $\sum_{v \in V} b_v = 0$, arc cost c_a and capacities u_a ($a \in A$)

Find: Flow $f: A \to \mathbb{R}^+_0$ of minimum cost, satisfying all demands

A (1) > 4

Minimum Cost Flows

The Minimum Cost Flow Problem (MCFP)

Given: Digraph D = (V, A), demands/supplies $b_v \in \mathbb{R}_0^+$ ($v \in V$) with $\sum_{v \in V} b_v = 0$, arc cost c_a and capacities u_a ($a \in A$) 1/21/21/21/11/11/1**Find:** Flow $f : A \to \mathbb{R}_0^+$ of minimum cost, satisfying all demands

 $\min \sum_{a \in A} c_a f(a)$ s.t. $\sum_{a \in \delta^+(v)} f(a) - \sum_{a \in \delta^-(v)} f(a) = b_v \qquad \forall v \in V$ $0 \le f(a) \le u_a \qquad \forall a \in A$

Planning and Optimizing Large Scale Networks

Minimum Cost Flows

Access Networks and the MCFP

Given: Digraph D = (V, A), demands/supplies $b_v \in \mathbb{R}_0^+$ ($v \in V$) with $\sum_{v \in V} b_v = 0$, arc cost c_a and capacities u_a ($a \in A$) **Find:** Flow $f : A \to \mathbb{R}_0^+$ of minimum cost, satisfying all demands

イロト イポト イヨト イヨト

Minimum Cost Flows

8/29

Access Networks and the MCFP

Given: Digraph D = (V, A), demands/supplies $b_v \in \mathbb{R}^+_0$ ($v \in V$) with $\sum_{v \in V} b_v = 0$, arc cost c_a and capacities u_a $(a \in A)$ **Find:** Flow $f: A \to \mathbb{R}^+_0$ of minimum cost, satisfying all demands cost = length $capacities = \infty$ (日) Planning and Optimizing Large Scale Networks Maren Martens

Minimum Cost Flows

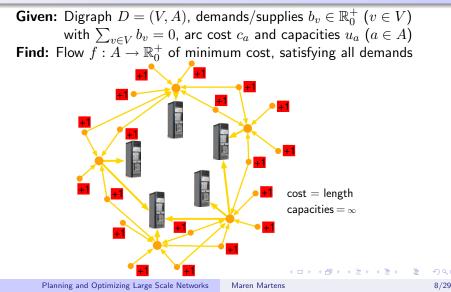
Access Networks and the MCFP

Given: Digraph D = (V, A), demands/supplies $b_v \in \mathbb{R}^+_0$ ($v \in V$) with $\sum_{v \in V} b_v = 0$, arc cost c_a and capacities u_a $(a \in A)$ **Find:** Flow $f: A \to \mathbb{R}^+_0$ of minimum cost, satisfying all demands cost = length $capacities = \infty$ (日) Planning and Optimizing Large Scale Networks Maren Martens

8/29

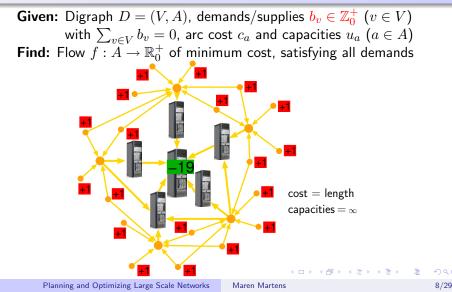
Minimum Cost Flows

Access Networks and the MCFP



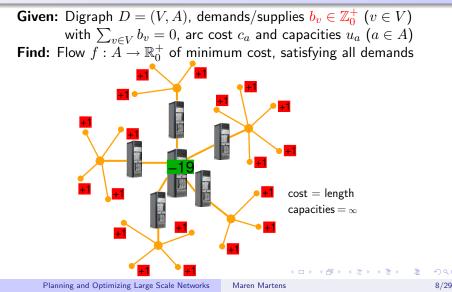
Minimum Cost Flows

Access Networks and the MCFP



Minimum Cost Flows

Access Networks and the MCFP



Minimum Cost Flows

8/29

Access Networks and the MCFP

Given: Digraph D = (V, A), demands/supplies $b_v \in \mathbb{Z}_0^+$ $(v \in V)$ with $\sum_{v \in V} b_v = 0$, arc cost c_a and capacities u_a $(a \in A)$ **Find:** Flow $f: A \to \mathbb{Z}_0^+$ of minimum cost, satisfying all demands 0.5 $\rightarrow f_e$ integral! (日) Planning and Optimizing Large Scale Networks Maren Martens

Minimum Cost Flows

Algorithms for MCFP

$$\begin{array}{ll} \min & \sum_{a \in A} c_a f(a) \\ \text{s.t.} & \sum_{a \in \delta^+(v)} f(a) - \sum_{a \in \delta^-(v)} f(a) = b_v & \forall \ v \in V \\ & 0 \leq f(a) \leq u_a & \forall \ a \in A \end{array}$$

 \rightarrow Solvable in polynomial time for $f(a) \in \mathbb{R}_0^+$!

э

Minimum Cost Flows

Algorithms for MCFP

$$\begin{array}{ll} \min & \sum_{a \in A} c_a f(a) \\ \text{s.t.} & \sum_{a \in \delta^+(v)} f(a) - \sum_{a \in \delta^-(v)} f(a) = b_v & \forall \ v \in V \\ & 0 \leq f(a) \leq u_a & \forall \ a \in A \end{array}$$

 \rightarrow Solvable in polynomial time for $f(a) \in \mathbb{R}_0^+$!

How do we quickly find integral solutions?

э

イロト イポト イヨト イヨト

Minimum Cost Flows

Algorithms for MCFP

$$\begin{array}{ll} \min & \sum_{a \in A} c_a f(a) \\ \text{s.t.} & \sum_{a \in \delta^+(v)} f(a) - \sum_{a \in \delta^-(v)} f(a) = b_v & \forall \ v \in V \\ & 0 \leq f(a) \leq u_a & \forall \ a \in A \end{array}$$

 \rightarrow Solvable in polynomial time for $f(a) \in \mathbb{R}_0^+$!

How do we quickly find integral solutions? Polynomial combinatorial algorithms:

- Minimum mean cycle cancelling algorithm
- Successive shortest path algorithm

Minimum Cost Flows

Algorithms for MCFP

$$\begin{array}{ll} \min & \sum_{a \in A} c_a f(a) \\ \text{s.t.} & \sum_{a \in \delta^+(v)} f(a) - \sum_{a \in \delta^-(v)} f(a) = b_v & \forall \ v \in V \\ & 0 \leq f(a) \leq u_a & \forall \ a \in A \end{array}$$

 \rightarrow Solvable in polynomial time for $f(a) \in \mathbb{R}_0^+$!

How do we quickly find integral solutions? Polynomial combinatorial algorithms:

- Minimum mean cycle cancelling algorithm
- Successive shortest path algorithm

Both give integral optimal solution, if b and u are integral!

イロト イポト イヨト イヨト

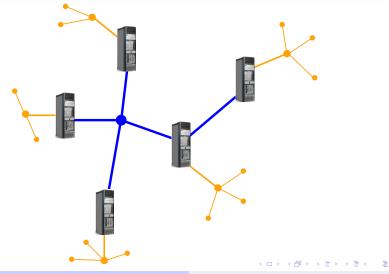
Steiner Trees IP Formulations

CORE NETWORKS

э

Steiner Trees IP Formulations

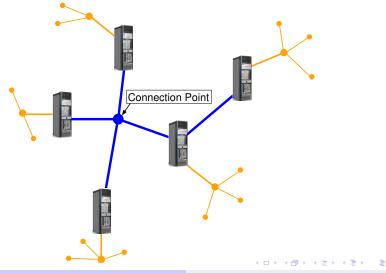
A Core Network



Planning and Optimizing Large Scale Networks

Steiner Trees IP Formulations

A Core Network



Planning and Optimizing Large Scale Networks

Steiner Trees IP Formulations

Steiner Trees

Definition

Given a graph G = (V, E) with *terminals* $T \subseteq V$, a *Steiner tree* is a tree $S \subseteq E$ that connects all terminals in T.

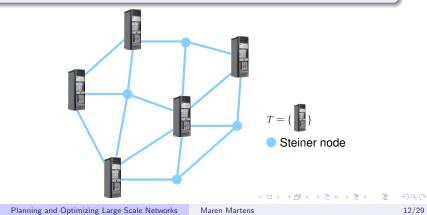
・ロッ ・ 一 ・ ・ ・ ・

Steiner Trees IP Formulations

Steiner Trees

Definition

Given a graph G = (V, E) with *terminals* $T \subseteq V$, a *Steiner tree* is a tree $S \subseteq E$ that connects all terminals in T.

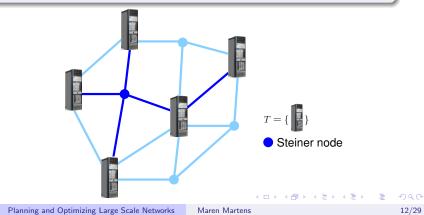


Steiner Trees IP Formulations

Steiner Trees

Definition

Given a graph G = (V, E) with *terminals* $T \subseteq V$, a *Steiner tree* is a tree $S \subseteq E$ that connects all terminals in T.



Steiner Trees IP Formulations

The Steiner Tree Problem

Definition

Given: G = (V, E), terminals $T \subseteq V$, edge weights c_e ($e \in E$) **Find:** Steiner tree $S \subseteq E$ of minimum weight $c(S) = \sum_{e \in S} c_e$

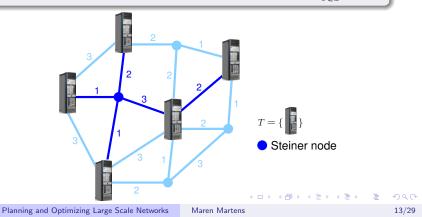
イロト イポト イヨト イヨト

Steiner Trees IP Formulations

The Steiner Tree Problem

Definition

Given: G = (V, E), terminals $T \subseteq V$, edge weights c_e ($e \in E$) **Find:** Steiner tree $S \subseteq E$ of minimum weight $c(S) = \sum_{e \in S} c_e$



Steiner Trees IP Formulations

The Steiner Tree Problem

Definition

Given: G = (V, E), terminals $T \subseteq V$, edge weights c_e ($e \in E$) **Find:** Steiner tree $S \subseteq E$ of minimum weight $c(S) = \sum_{e \in S} c_e$

Theorem (Garey & Johnson, 1979)

The Steiner Tree Problem is NP-complete.

イロト イポト イヨト イヨト

Steiner Trees IP Formulations

The Steiner Tree Problem

Definition

Given: G = (V, E), terminals $T \subseteq V$, edge weights c_e ($e \in E$) **Find:** Steiner tree $S \subseteq E$ of minimum weight $c(S) = \sum_{e \in S} c_e$

Theorem (Garey & Johnson, 1979)

The Steiner Tree Problem is NP-complete.

Simple special cases:

- |T| = 2: Shortest Path Problem
- T = V: Minimum Spanning Tree Problem

イロト イポト イヨト イヨト

Steiner Trees IP Formulations

Formulation via Cuts (undirected)

Aneja 1980:

$$\begin{array}{ll} \min \ c^T x \\ \text{s.t.} \ x(\delta(U)) \geq 1 \\ x_e \in \mathbb{Z}_0^+ \end{array} \quad & \forall \ U \subset V: \ \emptyset \neq U \cap T \neq T \\ \forall \ e \in E \end{array}$$

문 🛌 문

∃ ▶

Access Networks Core Networks Survivability remands and Capacities

Steiner Trees IP Formulations

Formulation via Cuts (undirected)

Aneja 1980:

$$\begin{array}{ll} \min \ c^T x \\ \text{s.t.} \ x(\delta(U)) \geq 1 & \forall \ U \subset V : \ \emptyset \neq U \cap T \neq T \\ x_e \in \mathbb{Z}_0^+ & \forall \ e \in E \end{array}$$

• This formulation has |E| variables and $O(2^{|V|})$ constraints.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Access Networks Core Networks Survivability remands and Capacities

Steiner Trees IP Formulations

Formulation via Cuts (undirected)

Aneja 1980:

$$\begin{array}{ll} \min \ c^T x \\ \text{s.t.} \ x(\delta(U)) \geq 1 \qquad & \forall \ U \subset V : \ \emptyset \neq U \cap T \neq T \\ x_e \in \mathbb{Z}_0^+ \qquad & \forall \ e \in E \end{array}$$

- This formulation has |E| variables and $O(2^{|V|})$ constraints.
- The separation problem is a minimum cut problem and can therefore be solved in polynomial time.

• □ ▶ • □ ▶ • □ ▶ • •

Access Networks Core Networks Survivability remands and Capacities

Steiner Trees IP Formulations

Formulation via Cuts (undirected)

Aneja 1980:

$$\begin{array}{ll} \min \ c^T x \\ \text{s.t.} \ x(\delta(U)) \geq 1 \qquad & \forall \ U \subset V : \ \emptyset \neq U \cap T \neq T \\ x_e \in \mathbb{Z}_0^+ \qquad & \forall \ e \in E \end{array}$$

- This formulation has |E| variables and $O(2^{|V|})$ constraints.
- The separation problem is a minimum cut problem and can therefore be solved in polynomial time.
- $\rightarrow\,$ The LP relaxation can also be solved in polynomial time. (separation time $\approx\,$ optimization time, [GLS1988])

< ロ > < 同 > < 回 > < 回 >

Steiner Trees IP Formulations

Formulation via Directed Cuts

Planning and Optimizing Large Scale Networks Maren Martens

æ

・ロト ・回ト ・モト ・モト

Steiner Trees IP Formulations

Formulation via Directed Cuts

From G = (V, E), terminals $T \subseteq V$, and edge weights c_e :

- Build digraph D = (V, A) with $A := \{(i, j), (j, i) | \{i, j\} \in E\}.$
- Choose arc weights $c_{(i,j)} := c_{\{i,j\}}$ for all $(i,j) \in A$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Steiner Trees IP Formulations

Formulation via Directed Cuts

From G = (V, E), terminals $T \subseteq V$, and edge weights c_e :

- Build digraph D = (V, A) with $A := \{(i, j), (j, i) | \{i, j\} \in E\}.$
- Choose arc weights $c_{(i,j)} := c_{\{i,j\}}$ for all $(i,j) \in A$.
- Choose a root $r \in T$ and (other) terminals $T' := T \setminus \{r\}$.

< 日 > < 同 > < 三 > < 三 >

Steiner Trees IP Formulations

Formulation via Directed Cuts

T

From G = (V, E), terminals $T \subseteq V$, and edge weights c_e :

- Build digraph D = (V, A) with $A := \{(i, j), (j, i) | \{i, j\} \in E\}.$
- Choose arc weights $c_{(i,j)} := c_{\{i,j\}}$ for all $(i,j) \in A$.
- Choose a root $r \in T$ and (other) terminals $T' := T \setminus \{r\}$.

$$\begin{array}{ll} \min \ c^{T} x \\ \text{s.t.} \ y(\delta^{+}(U)) \geq 1 & \forall \ U \subset V : \ r \in U, U \cap T' \neq T' \\ y_{(i,j)} + y_{(j,i)} \leq x_{\{i,j\}} & \forall \ \{i,j\} \in E \\ y_{(i,j)} \in \{0,1\} & \forall \ (i,j) \in A \\ x_{\{i,j\}} \in \mathbb{Z}_{0}^{+} & \forall \ \{i,j\} \in E \end{array}$$

Steiner Trees IP Formulations

Formulation via Directed Cuts

From G = (V, E), terminals $T \subseteq V$, and edge weights c_e :

- Build digraph D = (V, A) with $A := \{(i, j), (j, i) | \{i, j\} \in E\}.$
- Choose arc weights $c_{(i,j)} := c_{\{i,j\}}$ for all $(i,j) \in A$.
- Choose a root $r \in T$ and (other) terminals $T' := T \setminus \{r\}$.

$$\begin{array}{ll} \min \ c^T x \\ \text{s.t.} \ y(\delta^+(U)) \ge 1 & \forall \ U \subset V : \ r \in U, U \cap T' \neq T' \\ y_{(i,j)} + y_{(j,i)} \le x_{\{i,j\}} & \forall \ \{i,j\} \in E \\ y_{(i,j)} \ge 0 & \forall \ (i,j) \in A \\ x_{\{i,j\}} \in \mathbb{Z}_0^+ & \forall \ \{i,j\} \in E \end{array}$$

< 日 > < 同 > < 三 > < 三 >

Steiner Trees IP Formulations

Directed vs. Undirected

• The directed cut formulation reflects all feasible Steiner trees.

3

(a)

Steiner Trees IP Formulations

Directed vs. Undirected

- The directed cut formulation reflects all feasible Steiner trees.
- It permits fewer solutions than the undirected cut formulation.

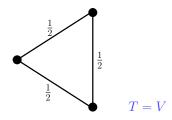
э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Steiner Trees IP Formulations

Directed vs. Undirected

- The directed cut formulation reflects all feasible Steiner trees.
- It permits fewer solutions than the undirected cut formulation.

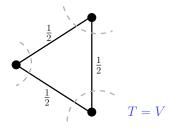


3) 3

Steiner Trees IP Formulations

Directed vs. Undirected

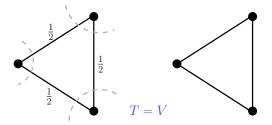
- The directed cut formulation reflects all feasible Steiner trees.
- It permits fewer solutions than the undirected cut formulation.



э

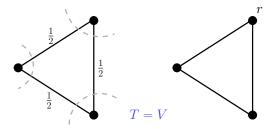
Steiner Trees IP Formulations

- The directed cut formulation reflects all feasible Steiner trees.
- It permits fewer solutions than the undirected cut formulation.



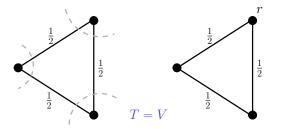
Steiner Trees IP Formulations

- The directed cut formulation reflects all feasible Steiner trees.
- It permits fewer solutions than the undirected cut formulation.



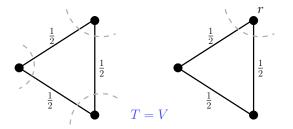
Steiner Trees IP Formulations

- The directed cut formulation reflects all feasible Steiner trees.
- It permits fewer solutions than the undirected cut formulation.



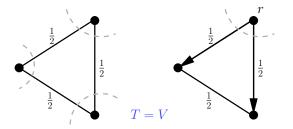
Steiner Trees IP Formulations

- The directed cut formulation reflects all feasible Steiner trees.
- It permits fewer solutions than the undirected cut formulation.



Steiner Trees IP Formulations

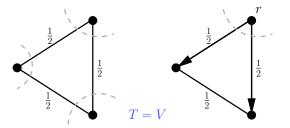
- The directed cut formulation reflects all feasible Steiner trees.
- It permits fewer solutions than the undirected cut formulation.



Steiner Trees IP Formulations

Directed vs. Undirected

- The directed cut formulation reflects all feasible Steiner trees.
- It permits fewer solutions than the undirected cut formulation.



Theorem

The directed cut formulation is stronger than the undirected cut formulation.

Steiner Trees IP Formulations

Formulation via Flows

Problem with cuts: There are too many!

э

イロン イロン イヨン イヨン

Steiner Trees IP Formulations

Formulation via Flows

Problem with cuts: There are too many!

On digraph D = (V, A) with root $r \in T$ and $T' := T \setminus \{r\}$: • $\forall t \in T', a \in A$: flow variables $f_t(a) = \begin{cases} 1, & a \text{ on } r\text{-}t\text{-path} \\ 0, & \text{otherwise} \end{cases}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Steiner Trees IP Formulations

Formulation via Flows

Problem with cuts: There are too many!

On digraph
$$D = (V, A)$$
 with root $r \in T$ and $T' := T \setminus \{r\}$:
• $\forall t \in T', a \in A$: flow variables $f_t(a) = \begin{cases} 1, & a \text{ on } r\text{-}t\text{-path} \\ 0, & \text{otherwise} \end{cases}$

min $c^T x$

s.t.
$$\sum_{a \in \delta^{+}(v)} f_{t}(a) - \sum_{a \in \delta^{-}(v)} f_{t}(a) = \begin{cases} 1, & v = r \\ 0, & \text{else} \end{cases} \quad \forall \ t \in T', v \neq t \\ f_{s}(i,j) + f_{t}(j,i) \leq x_{\{i,j\}} & \forall \ s,t \in T', \{i,j\} \in E \\ f_{t}(a) \in \{0,1\} & \forall \ t \in T', a \in A \\ x_{e} \in \mathbb{Z}_{0}^{+} & \forall \ e \in E \end{cases}$$

Maren Martens

Steiner Trees IP Formulations

Formulation via Flows

Problem with cuts: There are too many!

On digraph
$$D = (V, A)$$
 with root $r \in T$ and $T' := T \setminus \{r\}$:
• $\forall t \in T', a \in A$: flow variables $f_t(a) = \begin{cases} 1, & a \text{ on } r\text{-}t\text{-path} \\ 0, & \text{otherwise} \end{cases}$

min $c^T x$

s.t.
$$\sum_{a \in \delta^+(v)} f_t(a) - \sum_{a \in \delta^-(v)} f_t(a) = \begin{cases} 1, & v = r \\ 0, & \text{else} \end{cases} \quad \forall \ t \in T', v \neq t \\ f_s(i,j) + f_t(j,i) \le x_{\{i,j\}} & \forall \ s,t \in T', \{i,j\} \in E \\ f_t(a) \ge 0 & \forall \ t \in T', a \in A \\ x_e \in \mathbb{Z}_0^+ & \forall \ e \in E \end{cases}$$

Maren Martens

{0,1,2}-Survivable Network Design

SURVIVABILITY

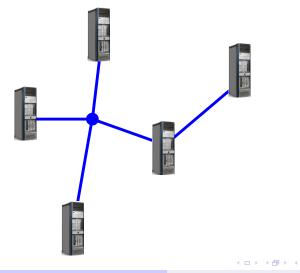
Planning and Optimizing Large Scale Networks Maren Martens

æ

・ロト ・回ト ・モト ・モト

 $\{0,1,2\}$ -Survivable Network Design

Failures happen...



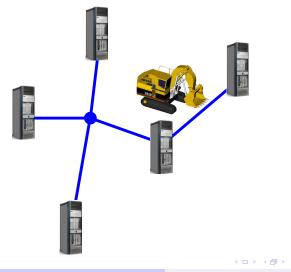
Planning and Optimizing Large Scale Networks

æ

э

 $\{0,1,2\}$ -Survivable Network Design

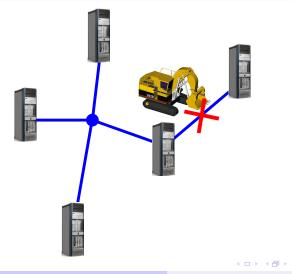
Failures happen...



Planning and Optimizing Large Scale Networks

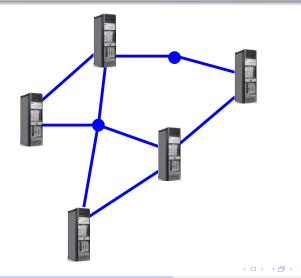
 $\{0,1,2\}$ -Survivable Network Design

Failures happen...



 $\{0,1,2\}$ -Survivable Network Design

Failures happen...



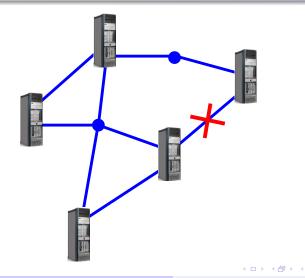
Planning and Optimizing Large Scale Networks

Maren Martens

æ

 $\{0,1,2\}$ -Survivable Network Design

Failures happen...



Planning and Optimizing Large Scale Networks

Maren Martens

æ

{0,1,2}-Survivable Network Design

2-Connectivity

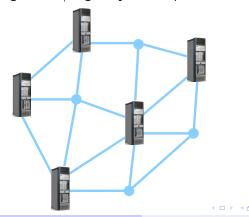
Given: G = (V, E), edge cost c_e ($e \in E$) **Find:** Minimum cost subgraph containing all $v \in V$ and having 2 node/edge-disjoint *s*-*t*-paths for all $s, t \in V$

< 日 > < 同 > < 三 > < 三 >

 $\{0,1,2\}\text{-}\mathsf{Survivable}$ Network Design

2-Connectivity

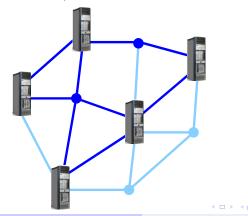
Given: G = (V, E), edge cost c_e ($e \in E$) **Find:** Minimum cost subgraph containing all $v \in V$ and having 2 node/edge-disjoint *s*-*t*-paths for all $s, t \in V$



 $\{0,1,2\}\text{-}\mathsf{Survivable}$ Network Design

2-Connectivity

Given: G = (V, E), edge cost c_e ($e \in E$) **Find:** Minimum cost subgraph containing all $v \in V$ and having 2 node/edge-disjoint *s*-*t*-paths for all $s, t \in V$



{0,1,2}-Survivable Network Design

$\{0,1,2\}$ -Survivable Network Design ($\{0,1,2\}$ -SND)

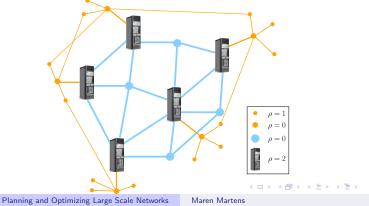
- Given: G = (V, E), connectivity request $\rho_v \in \{0, 1, 2\}$ $(v \in V)$, edge cost c_e $(e \in E)$
- Find: Minimum cost subgraph containing all $v \in V$ with $\rho_v > 0$, having min $\{\rho_s, \rho_t\}$ node/edge-disjoint *s*-*t*-paths ($s, t \in V$)

(日) (同) (日) (日) (日)

{0,1,2}-Survivable Network Design

$\{0,1,2\}$ -Survivable Network Design ($\{0,1,2\}$ -SND)

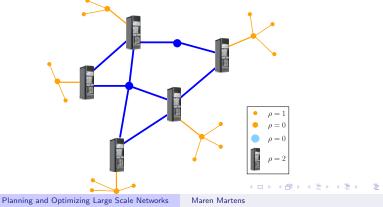
- Given: G = (V, E), connectivity request $\rho_v \in \{0, 1, 2\}$ $(v \in V)$, edge cost c_e $(e \in E)$
- Find: Minimum cost subgraph containing all $v \in V$ with $\rho_v > 0$, having $\min\{\rho_s, \rho_t\}$ node/edge-disjoint *s*-*t*-paths ($s, t \in V$)



{0,1,2}-Survivable Network Design

$\{0,1,2\}$ -Survivable Network Design ($\{0,1,2\}$ -SND)

- Given: G = (V, E), connectivity request $\rho_v \in \{0, 1, 2\}$ $(v \in V)$, edge cost c_e $(e \in E)$
- Find: Minimum cost subgraph containing all $v \in V$ with $\rho_v > 0$, having $\min\{\rho_s, \rho_t\}$ node/edge-disjoint *s*-*t*-paths ($s, t \in V$)



{0,1,2}-Survivable Network Design

・ロッ ・ 一 ・ ・ ・ ・

문 🛌 문

Algorithms for $\{0,1,2\}$ -SND

Theorem

{0,1,2}-SND is NP-hard.

{0,1,2}-Survivable Network Design

Algorithms for $\{0,1,2\}$ -SND

Theorem {0,1,2}-SND is NP-hard.

IP formulations:

- via undirected cuts (Grötschel, Monma, Stoer 1989)
- via directed cuts (Chimani, Kandyba, Ljubic, Mutzel 2007)

{0,1,2}-Survivable Network Design

Algorithms for $\{0,1,2\}$ -SND

Theorem {0,1,2}-SND is NP-hard.

IP formulations:

- via undirected cuts (Grötschel, Monma, Stoer 1989)
- via directed cuts (Chimani, Kandyba, Ljubic, Mutzel 2007)

Algorithms approximating the minimum cost:

- Factor 2-approximation for edge-connectivity (Jain 1998)
- Node-connectivity is NP-hard to approximate within factor $2^{\log^{1-\epsilon}|V|}$ (Kortsarz, Krauthgamer, Lee 2003)

イロト イポト イヨト イヨト

{0,1,2}-Survivable Network Design

Algorithms for $\{0,1,2\}$ -SND

Theorem {0,1,2}-SND is NP-hard.

IP formulations:

- via undirected cuts (Grötschel, Monma, Stoer 1989)
- via directed cuts (Chimani, Kandyba, Ljubic, Mutzel 2007)

Algorithms approximating the minimum cost:

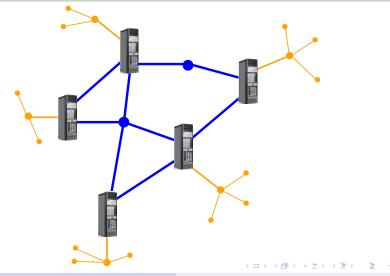
- Factor 2-approximation for edge-connectivity (Jain 1998)
- Node-connectivity is NP-hard to approximate within factor $2^{\log^{1-\epsilon}|V|}$ (Kortsarz, Krauthgamer, Lee 2003)* * 2-approximation for 2-node-connected subgraph (Khuller 1997)

Demands and Capacities

э

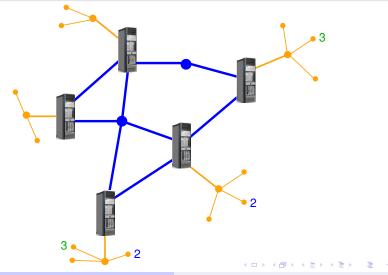
<ロ> <同> <同> < 同> < 同>

Are we done yet?



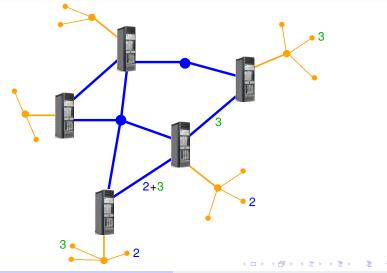
Planning and Optimizing Large Scale Networks

Are we done yet?



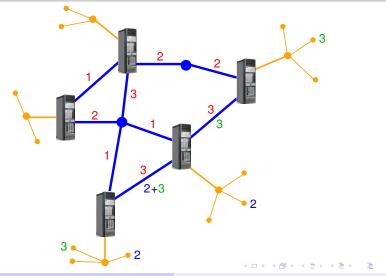
Planning and Optimizing Large Scale Networks

Are we done yet?



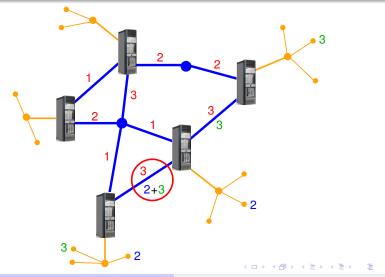
Planning and Optimizing Large Scale Networks

Are we done yet?



Planning and Optimizing Large Scale Networks

Are we done yet?



Planning and Optimizing Large Scale Networks

Connectivity and Flows

Given: G = (V, E), commodities $(s, t) \in V \times V$ with demands d_{st} , capacity modules $k \in K$ with capacities u_k , cost c_k

イロト イポト イヨト イヨト

Connectivity and Flows

Given: G = (V, E), commodities $(s, t) \in V \times V$ with demands d_{st} , capacity modules $k \in K$ with capacities u_k , cost c_k **Find:** Minimum cost subgraph with capacity installations such that we can route all demands

(a)

Connectivity and Flows

Given: G = (V, E), commodities $(s, t) \in V \times V$ with demands d_{st} , capacity modules $k \in K$ with capacities u_k , cost c_k Find: Minimum cost subgraph with capacity installations such that we can route all demands 3 2 3 2 < □ > < Planning and Optimizing Large Scale Networks Maren Martens 25/29

Connectivity and Flows

Given: G = (V, E), commodities $(s, t) \in V \times V$ with demands d_{st} , capacity modules $k \in K$ with capacities u_k , cost c_k Find: Minimum cost subgraph with capacity installations such that we can route all demands 3 Capacity modules: 1: $u_1 = 2$, $c_1 = 20$ 2: $u_2 = 3$, $c_2 = 25$ 3: $u_3 = 5$, $c_3 = 30$ 2 3 2 Image: A math Planning and Optimizing Large Scale Networks Maren Martens 25/29

Connectivity and Flows

Given: G = (V, E), commodities $(s, t) \in V \times V$ with demands d_{st} , capacity modules $k \in K$ with capacities u_k , cost c_k Find: Minimum cost subgraph with capacity installations such that we can route all demands 3 Capacity modules: 1: $u_1 = 2$, $c_1 = 20$ 2: $u_2 = 3$, $c_2 = 25$ 3: $u_3 = 5$, $c_3 = 30$ 2 3 2 Image: A math Planning and Optimizing Large Scale Networks Maren Martens 25/29

Connectivity and Flows

Given: G = (V, E), commodities $(s, t) \in V \times V$ with demands d_{st} , capacity modules $k \in K$ with capacities u_k , cost c_k Find: Minimum cost subgraph with capacity installations such that we can route all demands 3 Capacity modules: 1: $u_1 = 2$, $c_1 = 20$ 2: $u_2 = 3$, $c_2 = 25$ 3: $u_3 = 5$, $c_3 = 30$ 2 total cost for core: 55 3 2 (日) Planning and Optimizing Large Scale Networks Maren Martens 25/29

IP Formulation (Connectivity and Flows)

Given: G = (V, E), commodities $(s, t) \in V \times V$ with demands d_{st} , capacity modules $k \in K$ with capacities u_k , cost c_k

IP Formulation (Connectivity and Flows)

Given: G = (V, E), commodities $(s, t) \in V \times V$ with demands d_{st} , capacity modules $k \in K$ with capacities u_k , cost c_k

Network flow on arcs: $f(a) \ge 0$, for $a \in \{(i, j), (j, i) | \{i, j\} \in E\}$ Capacity decisions for edges: $y_k^e \in \mathbb{Z}_0^+$, for $e \in E, k \in K$

(日) (同) (三) (三)

IP Formulation (Connectivity and Flows)

Given: G = (V, E), commodities $(s, t) \in V \times V$ with demands d_{st} , capacity modules $k \in K$ with capacities u_k , cost c_k

Network flow on arcs: $f(a) \ge 0$, for $a \in \{(i, j), (j, i) | \{i, j\} \in E\}$ Capacity decisions for edges: $y_k^e \in \mathbb{Z}_0^+$, for $e \in E, k \in K$

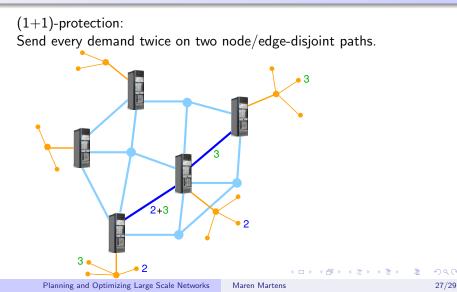
$$\begin{array}{ll} \min & \sum_{e \in E} \sum_{k \in K} c_k y_k^e \\ \text{s.t.} & \sum_{a \in \delta^+(v)} f_{st}(a) - \sum_{a \in \delta^-(v)} f_{st}(a) = \begin{cases} \mathbf{d}_{\mathbf{s}}, & v = s \\ \mathcal{I}, & \text{else} \end{cases} \quad \forall \ (s,t), v \neq t \\ 0, & \text{else} \end{cases} \quad \forall \ (s,t), v \neq t \\ \sum_{(s,t)} \mathbf{d}_{\mathbf{s}} (f(a_e) + f(\overleftarrow{a_e})) \leq \sum_{k \in K} u_k y_k^e \qquad \forall \ e \in E \\ \text{[for } e = \{i, j\} \in E: \text{ directed arcs } a_e = (i, j) \text{ and } \overleftarrow{a_e} = (j, i) \text{]} \end{cases}$$

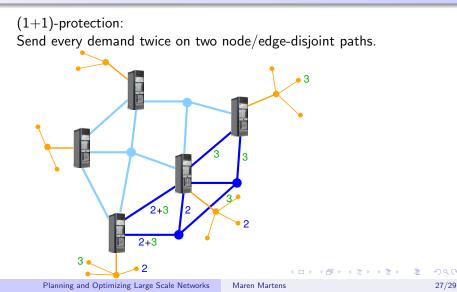
How to realize survivability?

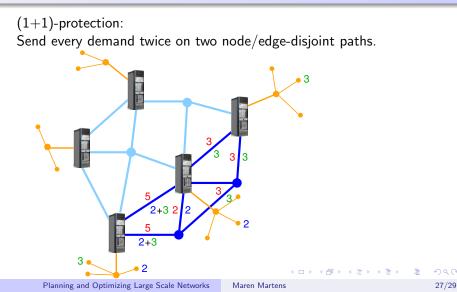
(1+1)-protection: Send every demand twice on two node/edge-disjoint paths.

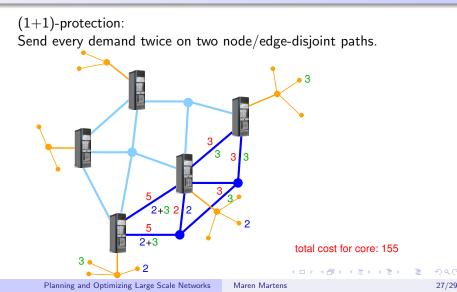
э

イロト イポト イヨト イヨト









IP Formulation ((1+1)-Protection)

Given: G = (V, E), commodities $(s, t) \in V \times V$ with demands d_{st} , capacity modules $k \in K$ with capacities u_k , cost c_k Network flow on arcs: $f(a) \ge 0$, for $a \in \{(i, j), (j, i) | \{i, j\} \in E\}$ Capacity decisions for edges: $y_k^e \in \mathbb{Z}_0^+$, for $e \in E, k \in K$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

IP Formulation ((1+1)-Protection)

Given: G = (V, E), commodities $(s, t) \in V \times V$ with demands d_{st} , capacity modules $k \in K$ with capacities u_k , cost c_k Network flow on arcs: $f(a) \ge 0$, for $a \in \{(i, j), (j, i) | \{i, j\} \in E\}$ Capacity decisions for edges: $y_k^e \in \mathbb{Z}_0^+$, for $e \in E, k \in K$

$$\begin{array}{ll} \min & \sum_{e \in E} \sum_{k \in K} c_k y_k^e \\ \text{s.t.} & \sum_{a \in \delta^+(v)} f_{st}(a) - \sum_{a \in \delta^-(v)} f_{st}(a) = \begin{cases} 2, & v = s \\ 0, & \text{else} \end{cases} \quad \forall \ (s,t), v \neq t \\ & \sum_{(s,t)} d_{st}(f(a_e) + f(\overleftarrow{a_e})) \leq \sum_{k \in K} u_k y_k^e \qquad \forall \ e \in E \\ & \sum_{a \in \delta^-(v)} f_{st}(a) \leq 1 \qquad \forall \ (s,t), v \neq t^* \end{cases}$$

Planning and Optimizing Large Scale Networks

IP Formulation ((1+1)-Protection)

Given: G = (V, E), commodities $(s, t) \in V \times V$ with demands d_{st} , capacity modules $k \in K$ with capacities u_k , cost c_k Network flow on arcs: $f(a) \ge 0$, for $a \in \{(i, j), (j, i) | \{i, j\} \in E\}$ Capacity decisions for edges: $y_k^e \in \mathbb{Z}_0^+$, for $e \in E, k \in K$

$$\begin{array}{ll} \min & \sum_{e \in E} \sum_{k \in K} c_k y_k^e \\ \text{s.t.} & \sum_{a \in \delta^+(v)} f_{st}(a) - \sum_{a \in \delta^-(v)} f_{st}(a) = \begin{cases} 2, & v = s \\ 0, & \text{else} \end{cases} \quad \forall \ (s,t), v \neq t \\ & \sum_{(s,t)} d_{st}(f(a_e) + f(\overleftarrow{a_e})) \leq \sum_{k \in K} u_k y_k^e \qquad \forall \ e \in E \\ & \sum_{a \in \delta^-(v)} f_{st}(a) \leq 1 \qquad \forall \ (s,t), v \neq t^* \\ & \text{`for node-disjointness} \end{cases}$$

Planning and Optimizing Large Scale Networks

The End

TO BE CONTINUED WITH EXERCISES AT 2PM!

э

・ロン ・部 と ・ ヨ と ・ ヨ と …

The End

To be continued with Exercises at 2PM! Enjoy lunch!

Planning and Optimizing Large Scale Networks Maren Martens

イロト イポト イヨト イヨト