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Planning Problems

Access Networks:

How to connect customers to given routers?

Core Networks:

Which links to use between routers?

Survivability:

How to avoid interruptions?

Demands:

Given customer demands, how to route them?
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Minimum Cost Flows

The Minimum Cost Flow Problem (MCFP)

Given: Digraph D = (V,A), demands/supplies bv ∈ R+
0 (v ∈ V )

with
∑

v∈V bv = 0, arc cost ca and capacities ua (a ∈ A)

min
∑
a∈A

caf(a)

s.t.
∑

a∈δ+(v)

f(a)−
∑

a∈δ−(v)

f(a) = bv ∀ v ∈ V

0 ≤ f(a) ≤ ua ∀ a ∈ A
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Access Networks and the MCFP

Given: Digraph D = (V,A), demands/supplies bv ∈ R+
0 (v ∈ V )

with
∑

v∈V bv = 0, arc cost ca and capacities ua (a ∈ A)
Find: Flow f : A→ R+

0 of minimum cost, satisfying all demands
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Given: Digraph D = (V,A), demands/supplies bv ∈ Z+
0 (v ∈ V )

with
∑

v∈V bv = 0, arc cost ca and capacities ua (a ∈ A)
Find: Flow f : A→ R+

0 of minimum cost, satisfying all demands
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Given: Digraph D = (V,A), demands/supplies bv ∈ Z+
0 (v ∈ V )
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∑
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Algorithms for MCFP

min
∑
a∈A

caf(a)

s.t.
∑

a∈δ+(v)

f(a)−
∑

a∈δ−(v)

f(a) = bv ∀ v ∈ V

0 ≤ f(a) ≤ ua ∀ a ∈ A

→ Solvable in polynomial time for f(a) ∈ R+
0 !

How do we quickly find integral solutions?
Polynomial combinatorial algorithms:

Minimum mean cycle cancelling algorithm

Successive shortest path algorithm

Both give integral optimal solution, if b and u are integral!
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Connection Point
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Steiner Trees

Definition

Given a graph G = (V,E) with terminals T ⊆ V , a Steiner tree is
a tree S ⊆ E that connects all terminals in T .
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The Steiner Tree Problem

Definition

Given: G = (V,E), terminals T ⊆ V , edge weights ce (e ∈ E)
Find: Steiner tree S ⊆ E of minimum weight c(S) =

∑
e∈S ce
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The Steiner Tree Problem

Definition

Given: G = (V,E), terminals T ⊆ V , edge weights ce (e ∈ E)
Find: Steiner tree S ⊆ E of minimum weight c(S) =

∑
e∈S ce

Theorem (Garey & Johnson, 1979)

The Steiner Tree Problem is NP-complete.
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The Steiner Tree Problem

Definition

Given: G = (V,E), terminals T ⊆ V , edge weights ce (e ∈ E)
Find: Steiner tree S ⊆ E of minimum weight c(S) =

∑
e∈S ce

Theorem (Garey & Johnson, 1979)

The Steiner Tree Problem is NP-complete.

Simple special cases:

|T | = 2: Shortest Path Problem

T = V : Minimum Spanning Tree Problem
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Formulation via Cuts (undirected)

Aneja 1980:

min cTx

s.t. x(δ(U)) ≥ 1 ∀ U ⊂ V : ∅ 6= U ∩ T 6= T

xe ∈ Z+
0 ∀ e ∈ E

This formulation has |E| variables and O(2|V |) constraints.

The separation problem is a minimum cut problem and can
therefore be solved in polynomial time.

→ The LP relaxation can also be solved in polynomial time.
(separation time ≈ optimization time, [GLS1988])
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Formulation via Directed Cuts

From G = (V,E), terminals T ⊆ V , and edge weights ce:

Build digraph D = (V,A) with A := {(i, j), (j, i)|{i, j} ∈ E}.
Choose arc weights c(i,j) := c{i,j} for all (i, j) ∈ A.

Choose a root r ∈ T and (other) terminals T ′ := T \ {r}.
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Choose arc weights c(i,j) := c{i,j} for all (i, j) ∈ A.

Choose a root r ∈ T and (other) terminals T ′ := T \ {r}.

min cTx

s.t. y(δ+(U)) ≥ 1 ∀ U ⊂ V : r ∈ U,U ∩ T ′ 6= T ′

y(i,j) + y(j,i) ≤ x{i,j} ∀ {i, j} ∈ E
y(i,j) ∈ {0, 1} ∀ (i, j) ∈ A
x{i,j} ∈ Z+

0 ∀ {i, j} ∈ E
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Directed vs. Undirected

The directed cut formulation reflects all feasible Steiner trees.

It permits fewer solutions than the undirected cut formulation.

Theorem

The directed cut formulation is stronger than the undirected cut
formulation.
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Steiner Trees
IP Formulations

Formulation via Flows

Problem with cuts: There are too many!

On digraph D = (V,A) with root r ∈ T and T ′ := T \ {r}:

∀t ∈ T ′, a ∈ A: flow variables ft(a) =

{
1, a on r-t-path

0, otherwise
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On digraph D = (V,A) with root r ∈ T and T ′ := T \ {r}:

∀t ∈ T ′, a ∈ A: flow variables ft(a) =

{
1, a on r-t-path

0, otherwise

min cTx

s.t.
∑

a∈δ+(v)

ft(a)−
∑

a∈δ−(v)

ft(a) =

{
1, v = r

0, else
∀ t ∈ T ′, v 6= t

fs(i, j) + ft(j, i) ≤ x{i,j} ∀ s, t ∈ T ′, {i, j} ∈ E
ft(a) ∈ {0, 1} ∀ t ∈ T ′, a ∈ A
xe ∈ Z+

0 ∀ e ∈ E
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{0,1,2}-Survivable Network Design

2-Connectivity

Given: G = (V,E), edge cost ce (e ∈ E)
Find: Minimum cost subgraph containing all v ∈ V and

having 2 node/edge-disjoint s-t-paths for all s, t ∈ V
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{0,1,2}-Survivable Network Design ({0,1,2}-SND)

Given: G = (V,E), connectivity request ρv ∈ {0, 1, 2} (v ∈ V ),
edge cost ce (e ∈ E)

Find: Minimum cost subgraph containing all v ∈ V with ρv > 0,
having min{ρs, ρt} node/edge-disjoint s-t-paths (s, t ∈ V )
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{0,1,2}-Survivable Network Design

Algorithms for {0,1,2}-SND

Theorem

{0,1,2}-SND is NP-hard.

IP formulations:

via undirected cuts (Grötschel, Monma, Stoer 1989)

via directed cuts (Chimani, Kandyba, Ljubic, Mutzel 2007)

Algorithms approximating the minimum cost:

Factor 2-approximation for edge-connectivity (Jain 1998)

Node-connectivity is NP-hard to approximate within
factor 2log1−ε |V | (Kortsarz, Krauthgamer, Lee 2003)∗

∗ 2-approximation for 2-node-connected subgraph (Khuller 1997)
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Demands and Capacities

Connectivity and Flows

Given: G = (V,E), commodities (s, t) ∈ V × V with demands dst,
capacity modules k ∈ K with capacities uk, cost ck

Find: Minimum cost subgraph with capacity installations such that
we can route all demands
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Given: G = (V,E), commodities (s, t) ∈ V × V with demands dst,
capacity modules k ∈ K with capacities uk, cost ck

Find: Minimum cost subgraph with capacity installations such that
we can route all demands

Capacity modules:
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1: u1 = 2, c1 = 20

2: u2 = 3, c2 = 25

3: u3 = 5, c3 = 30
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Connectivity and Flows

Given: G = (V,E), commodities (s, t) ∈ V × V with demands dst,
capacity modules k ∈ K with capacities uk, cost ck

Find: Minimum cost subgraph with capacity installations such that
we can route all demands

Capacity modules:

total cost for core: 55
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1: u1 = 2, c1 = 20

2: u2 = 3, c2 = 25

3: u3 = 5, c3 = 30
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IP Formulation (Connectivity and Flows)

Given: G = (V,E), commodities (s, t) ∈ V × V with demands dst,
capacity modules k ∈ K with capacities uk, cost ck

Network flow on arcs: f(a) ≥ 0, for a ∈ {(i, j), (j, i)|{i, j} ∈ E}
Capacity decisions for edges: yek ∈ Z+

0 , for e ∈ E, k ∈ K

min
∑
e∈E

∑
k∈K

cky
e
k

s.t.
∑

a∈δ+(v)

fst(a)−
∑

a∈δ−(v)

fst(a) =

{
1, v = s

0, else
∀ (s, t), v 6= t

∑
(s,t)

dst(f(ae) + f(←−ae)) ≤
∑
k∈K

uky
e
k ∀ e ∈ E

[for e = {i, j} ∈ E: directed arcs ae = (i, j) and ←−ae = (j, i)]
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Demands and Capacities

How to realize survivability?

(1+1)-protection:
Send every demand twice on two node/edge-disjoint paths.

Planning and Optimizing Large Scale Networks Maren Martens 27/29



Introduction
Access Networks

Core Networks
Survivability

Demands and Capacities

How to realize survivability?

(1+1)-protection:
Send every demand twice on two node/edge-disjoint paths.

2+3

3

2

3

3
2

Planning and Optimizing Large Scale Networks Maren Martens 27/29



Introduction
Access Networks

Core Networks
Survivability

Demands and Capacities

How to realize survivability?

(1+1)-protection:
Send every demand twice on two node/edge-disjoint paths.

2

3

3

2+3

2+3

3

2

3

3
2

Planning and Optimizing Large Scale Networks Maren Martens 27/29



Introduction
Access Networks

Core Networks
Survivability

Demands and Capacities

How to realize survivability?

(1+1)-protection:
Send every demand twice on two node/edge-disjoint paths.

2

3

3

2+3

3

3

5

2

5

3

2+3

3

2

3

3
2

Planning and Optimizing Large Scale Networks Maren Martens 27/29



Introduction
Access Networks

Core Networks
Survivability

Demands and Capacities

How to realize survivability?

(1+1)-protection:
Send every demand twice on two node/edge-disjoint paths.
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2+3

3

3

5

2

total cost for core: 155
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IP Formulation ((1+1)-Protection)

Given: G = (V,E), commodities (s, t) ∈ V × V with demands dst,
capacity modules k ∈ K with capacities uk, cost ck

Network flow on arcs: f(a) ≥ 0, for a ∈ {(i, j), (j, i)|{i, j} ∈ E}
Capacity decisions for edges: yek ∈ Z+

0 , for e ∈ E, k ∈ K

min
∑
e∈E

∑
k∈K

cky
e
k

s.t.
∑

a∈δ+(v)

fst(a)−
∑

a∈δ−(v)

fst(a) =

{
2, v = s

0, else
∀ (s, t), v 6= t

∑
(s,t)

dst(f(ae) + f(←−ae)) ≤
∑
k∈K

uky
e
k ∀ e ∈ E

∑
a∈δ−(v)

fst(a) ≤ 1 ∀ (s, t), v 6= t∗

∗ for node-disjointness
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The End

To be continued with
Exercises at 2PM!

Enjoy lunch!
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