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Abstract:

In this talk I will give a brief survey about the development of
linear and integer programming in the last fifty years and would
like to show what the current state of the art in practical
problem solving in linear and integer programming is. I will
report about experience at the Konrad-Zuse-Zentrum with the
solution of large-scale linear and integer programs coming from
practice to indicate the size of the problem instances that we
can successfully attack today.

I will also report about a new way to view linear programs as
semialgebraic sets. There are some theoretical results, a few
speculations, but no algorithmic ideas yet.
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The beginning: Clyde Monma 
(Bell Labs/Bell Communications Research)
 Cornell University, 1987

 Survivable telecommunications networks

 What was the problem?
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The IP Model
 minimum cost spanning tree
 minimum cost Steiner tree
 min-cost k-edge or k-node-connected subgraph

Special cases:
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Facets: one example
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Facets: another
example

≥
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Real data
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Problem reductions
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Computational results with real data
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LATA DL: optimal solutions
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Problem
 Nobody at Bell was interested (except for the scientists).

 We were too much ahead of time!

 But then!
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But then: USA 1987-1988
(collected by Clyde Monma)
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USA 1987-1988
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Special Report by IEEE Spectrum
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Special 
Report

IEEE 
Spectrum

June
1988
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Not unfrequent in industry:

Don't bother me 
with new ideas 
I have a battle to fight.
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Berlin 1994 & Köln 1994
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High-Tech
Terrorism 1995
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Berlin 1997 & Wien
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Österreich
Austria
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Industry Partners
Bell Communications Research (now Telcordia) & AT&T

Telenor (Norwegian Telecom)

E-Plus

DFN-Verein

Detecon International GmbH

Bosch Telekom

Siemens

Austria Telekom

T-Systems Nova (T-Systems, Deutsche Telekom)

KPN

Telecel-Vodafone

atesio (ZIB spin-off company)
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The Telecom-Group
Manfred Brandt
Andreas Eisenblätter
Martin Grötschel
Thorsten Koch
Maren Martens
Christian Raack
Axel Werner
Roland Wessäly

Former Team Members
Dimitris Alevras (ZIB, IBM)
Norbert Ascheuer (ZIB, atesio)
Andreas Bley (ZIB, TU Berlin)
Hans Florian Geerdes (ZIB, Booz Allen)
Tobias Harks (ZIB, TU Berlin)
Christoph Helmberg (ZIB, U Chemnitz)
Arie Koster (ZIB, RWTH Aachen) 
Sven Krumke (ZIB, TU Kaiserslautern)
Alexander Martin (ZIB, TU Darmstadt)
Mechthild Opperud (ZIB, Telenor)
Sebastian Orlowski (ZIB, atesio)
Diana Poensgen (ZIB, McKinsey)
Jörg Rambau (ZIB, U Bayreuth)
Adrian Zymolka (ZIB, Axioma)

The ZIB/MATHEON Telecom-Team
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Advertisement
 Modern telecommunication is impossible without mathematics. 

Cryptography, digital signal encoding, queue management come to 
your mind immediately. 

 But modern mathematics also supports the innovative design and 
the cost-efficient production of devices and equipment. Mathematics 
plans low-cost, high-capacity, survivable networks and optimizes 
their operation. 

 Briefly: no efficient use of scarce resources without mathematics –
not only in telecommunication. 

 Many of these achievements are results of newest research. Their 
employment in practice is fostered by significant improvements in 
computing technology. 
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What is the Telecom Problem?

Design excellent technical devices
and a robust network that survives
all kinds of failures and organize 
the traffic such that high quality 
telecommunication between
very many individual units at 
many locations is feasible
at low cost!

Speech
Data

Video
Etc.
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What is the Telecom Problem?

Design excellent technical devices
and a robust network that survives
all kinds of failures and organize 
the traffic such that high quality 
telecommunication between
very many individual units at 
many locations is feasible
at low cost!

This problem is 
too general 

to be solved in 
one step.

Approach in Practice:
 Decompose whenever possible.
 Look at a hierarchy of problems.
 Address the individual problems one by one.
 Recompose to find a good global solution.
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Cell Phones and Mathematics

Designing mobile phones
Task partitioning
Chip design (VLSI)
Component design

Computational logic
Combinatorial   

optimization
Differential algebraic 

equations

Producing Mobile Phones
Production facility layout
Control of CNC machines
Control of robots 
Lot sizing
Scheduling
Logistics

Operations research
Linear and integer programming
Combinatorial optimization
Ordinary differential equations

Marketing and Distributing Mobiles
Financial mathematics 
Transportation optimization
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Production and Mathematics: 
Examples
CNC Machine for 2D and 3D 

cutting and welding
(IXION ULM 804)

Sequencing of Tasks
and Optimization of Moves

Mounting Devices
Minimizing Production Time

via TSP or IP

Printed Circuit 
Boards

Optimization of 
Manufacturing

SMD
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Mobile Phone Production Line

Fujitsu Nasu plant
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Network Components

Design, Production, Marketing, Distribution:
Similar math problems as for mobile phones

Fiber (and other) cables
Antennas and Transceivers 
Base stations (BTSs)
Base Station Controllers (BSCs)
Mobile Switching Centers (MSCs)
and more...
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Component „Cables“
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Component „Antennas“
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Component „Base Station“

Nokia MetroSite

Nokia UltraSite
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Component
„Mobile 
Switching 
Center“:

Example of 
an MSC Plan
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Network Design:  Tasks to be solved
Some Examples

 Locating the sites for antennas (TRXs) and 
base transceiver stations (BTSs)

 Assignment of frequencies/channels to antennas

 Cryptography and error correcting encoding for wireless 
communication

 Clustering BTSs

 Locating base station controllers (BSCs)

 Connecting BTSs to BSCs 
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Network Design: Tasks to be solved  
Some Examples (continued)
 Locating Mobile Switching Centers (MSCs)

 Clustering BSCs and Connecting BSCs to MSCs

 Designing the BSC network (BSS) and the 
MSC network (NSS or core network)
 Topology of the network 

 Capacity of the links and components

 Routing of the demand

 Survivability in failure situations

Most of these problems turn out to be 
Combinatorial Optimization or 

Mixed Integer Programming Problems
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Connecting Mobiles: What´s up?

BSC

MSC

BSC

BSC

BSC

BSC

BSC

BSC

MSC

MSC
MSC

MSC

BTS
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Frequency or Channel Assignment
Radio Interface
Andreas Eisenblätter will lecture on this aspect in detail, e.g., about:

 GSM technology
(GSM = Global System for Mobile Communications)

 UMTS 
(UMTS = Universal Mobile Telecommunications System),
a system that is based on CDMA technology
(CDMA = Code Division Multiple Access)
which is currently being deployed

 and more.

 Eisenblätter, Andreas: Frequency Assignment in GSM Networks: Models, 
Heuristics, and Lower Bounds, 2001 
(awarded with the INFORMS Telecommunications Dissertation Award and the 
Dissertation Prize of the Gesellschaft für Operations Research 2002)

 Geerdes, Hans-Florian: UMTS Radio Network Planning: Mastering Cell 
Coupling for Capacity Optimization, PhD Thesis, TU Berlin, 2008
(Dissertationspreis 2008 der von der Gesellschaft für Informatik (GI) und der 
Informationstechnischen Gesellschaft (ITG) gemeinsam getragenen Fachgruppe 
"Kommunikation und Verteilte Systeme") 
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GSM Region Berlin - Dresden

2877 
antennas

50 channels

interference 
reduction:

83.6%
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UMTS Configuration of Antennas

path loss

Isotropic
Prediction

Antenna Prediction Available for each 
potential antenna 
location

Antenna
Configuration
 Azimuth 
 Tilt
 Height

height: 41m, electrical tilt: 0-8°, azimuth 0-120°

© Digital Building Model Berlin (2002), 
E-Plus Mobilfunk GmbH & Co. KG

© Digital Building Model Berlin (2002), E-Plus Mobilfunk GmbH & Co. KG, Germany

Antenna
Diagram
 Signal propagation

in different 
directions
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Optimization: 
Reduction of UMTS Network Load

Start-
Configuration

Adjustment:

 Azimuth

 Direction

Optimized 
Configuration

0

20

TX
power
[W]

Reduction
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G-WiN Data
G-WiN = Gigabit-Wissenschafts-Netz of the DFN-Verein

Internet access of all German universities 
and research institutions

 Locations to be connected:           750
 Data volume in summer 2000:      220 Terabytes/month 
 Expected data volume in 2004: 10.000 Terabytes/month

Clustering (to design a hierarchical network):
 10 nodes in Level 1a                  261 nodes eligible for
 20 nodes in Level 1b                                  Level 1
 All other nodes in Level 2

Bley, Andreas ; Koch, Thorsten: Optimierung in der Planung und beim Aufbau 
des G-WiN, DFN-Mitteilungen H. 54, 2000, 13-15 
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G-WiN Problem

 Select the 10 nodes of Level 1a.
 Select the 20 nodes of Level 1b.

 Each Level 1a node has to be linked to two Level 1b nodes.
 Link every Level 2 node to one Level 1 node. 

 Design a Level 1a Network such that
 Topology is survivable (2-node connected)
 Edge capacities are sufficient (also in failure situations)
 Shortest path routing (OSPF) leads to balanced

capacity use (objective in network update)
 The whole network should be „stable for the future“.
 The overall cost should be as low as possible.
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Potential node locations for the 
3-Level Network of the G-WIN

Red nodes are potential
level 1 nodes

Cost:
Connection between nodes
Capacity of the nodes

Blue nodes are all 
remaining nodes
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Demand distribution

The demand scales with the 
height of each red line

Aim
Select backbone nodes and 

connect all non-backbone nodes to 
a backbone node

such that the
overall network cost is minimal

(access+backbone cost)
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G-WiN Location Problem: Data
=set of locations

 set of potential Level 1a locations (subset of )
 set of possible configurations at 
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G-WiN Location/Clustering Problem
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Each location i must be connected to a Level 1 node

Capacity at p must be large enough

Only one configuration at each Location 1 node

All variables are 0/1.

# of Level 1a nodes
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Solution: Hierarchy & Backbone
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G-WiN Location Problem: 
Solution Statistics

The DFN problem leads to ~100.000 0/1-variables.
Typical computational experience:

Optimal solution via CPLEX in a few seconds!

A very related problem at Telekom Austria has
~300.000 0/1-variables plus some continuous variables

and capacity constraints.
Computational experience (before problem specific fine tuning):

10% gap after 6 h of CPLEX computation,
60% gap after „simplification“ 
(dropping certain capacities).
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Re-Optimization of 
Signaling Transfer Points

Telecommunication companies maintain a signaling network
(in adition to their communication transport network). 
This is used for management tasks such as:

 Basic call setup or tear down

 Wireless roaming

 Mobile subscriber authentication

 Call forwarding

 Number display

 SMS messages

 etc.
A. Eisenblätter, A. M. C. A. Koster, R. Wallbaum, R. Wessäly 
Load Balancing in Signaling Transfer Points
ZIB-Report 02-50, 
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Signaling Transfer Point (STP)

CCD

CCD

CCD

CCD CCD

CCD

CCD

CCD

CCD

Link-Sets STP

Cluster

Cluster

Cluster

CCLK

CCD=Common Channel Distributors,       CCLK=Common Channel Link Controllers

CCD=routing unit, CCLK=interface card
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STP – Problem description

Target

Assign each link to a CCD/CCLK

Constraints

At most 50% of the links in a linkset can be assigned to a single 
cluster

Number of CCLKs in a cluster is restricted

Objective

Balance load of CCDs
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STP – Mathematical model
Data

C set of CCDs j

L set of links i

Di demand of link i

P set of link-sets

Q set of clusters

Lp subset of links in link-set p

Cq subset of CCDs in cluster q

cq #CCLKs in cluster q

Variables

{ }0,1 , ,∈ ∈ ∈ijx i L j C
1=ijx if and only if link i

is assigned to CCD j
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STP – Mathematical model
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STP – former (unacceptable) solution

Minimum: 186 Maximum: 404 Load difference: 218
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STP – „Optimal solution“

Minimum: 280 Maximum: 283 Load difference: 3
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STP – Practical difficulty

Problem: 311 rearrangements are necessary 
to migrate to the optimal solution

Reformulation with new objective

Find a best solution with a 
restricted number of changes
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STP – Reformulated Model
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STP – Alternative Model
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STP – New Solutions

0
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White: D=50, (alternative)
Minimum: 257 Maximum: 307

D=Load difference: 50 Number of changes: 12
Orange: B=8, (reformulated)

Minimum: 249 Maximum:                  339   
Load difference: 90 Number of changes=B: 8
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STP – Experimental results

Max changes 0 5 10 15 20

Load differences 218 129 71 33 14

1 hour application of CPLEX MIP-Solver for each case
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STP - Conclusions

It is possible to achieve
85%

of the optimal improvement with less than 
5%

of the changes necessary to obtain a load 
balance optimal solution !
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Network Optimization

Networks

Capacities Requirements

Cost
Wessäly, Roland: DImensioning Survivable Capacitated NETworks, PhD 
Thesis, TU Berlin, 2000 
(awarded with the Mannesmann-Innovationspreis)



CO@W

Martin
Grötschel

81

What needs to be planned?

 Topology
 Capacities 
 Routing
 Failure Handling (Survivability)

 IP Routing
 Node Equipment Planning
 Optimizing Optical Links and Switches

DISCNET: A Network Planning Tool
(Dimensioning Survivable Capacitated NETworks)

atesio ZIB Spin-Off, founded by A. Eisenblätter and R. Wessäly

special
lecture
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Survivability-Models:
today still a hot topic
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mathematical models and software for:

plus: simultaneous capacity planning and routing
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 topology decisison

 capacity decisions

 normal operation routing

 component failure routing
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DFN: German Research Network
Internet for German universities, scientific institutions, museums, 
libraries, etc.

B-WiN: Breitband WissenschaftsNetz, 1996 – 2000
• virtual private network from DeTeSystems

• ~ 400 users

• Backbone links 35 – 155 Mbit/s

G-WiN: Gigabit WissenschaftsNetz, 2000 – 2006
• virtual private SDH/WDM network from DeTeSystems

• IP over SDH/WDM

• Backbone links 155 Mbit/s – 10 Gbit/s

X-Win: since 2006
Bley, Andreas: Routing and Capacity Optimization for IP Networks, 

PhD Thesis, TU Berlin, 2007
(awarded with the Dissertation Prize 2007 of the Gesellschaft für Operations 
Research and the INFORMS Doctoral Dissertation Award for Operations 
Research in Telecommunications 2008) 

Vorführender
Präsentationsnotizen
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X-Win, http://www.dfn.de/xwin/
 Das Wissenschaftsnetz X-WiN

 Maßgeschneidert für Wissenschaft und Forschung

 Das Wissenschaftsnetz X-WiN ist die technische Plattform des Deutschen Forschungsnetzes. Über 
das X-WiN sind Hochschulen, Forschungseinrichtungen und forschungsnahe Unternehmen in 
Deutschland untereinander, mit den Wissenschaftsnetzen in Europa und auf anderen Kontinenten 
verbunden. Darüber hinaus verfügt das X-WiN über leistungsstarke Austauschpunkte mit dem 
allgemeinen Internet. 

 Mit Anschlusskapazitäten bis zu 10 Gigabit/s und einem Terabit-Kernnetz, das sich zwischen ca. 60 
Kernnetz-Standorten aufspannt, zählt das X-WiN zu den leistungsfähigsten Kommunikationsnetzen 
weltweit. 

 Andreas Bley (ZIB, now TU Berlin) has significantly 
contributed to the planning of the X-Win
 Locations

 Network 

 Hub and Line Capacities
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X-WIN
 G-WIN served the ~750 scientific institutions from 

2000 to 2006.

 G-WIN was reconfigured about every two months to meet 
changes in demand. Three modifications were allowed at 
each update at most.

 With new transport, hub, and switching technologies new 
design possibilities arise. We have designed the new 
German science network, called X-WIN which started 
operating at the end of 2006 (terabit backbone, 
10 gigabit/second connections,…)

Martin
Grötschel
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X-WIN

Martin
Grötschel

89

Node Bandwidths Level 1a and some 1b Nodes 
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initial model:
 1 billion variables
after reduction
 ~100.000 variables
 ~100.000 constraints
solved by ZIMPL/CPLEX
in a few minutes.
 81 scenarios have been 

considered and solved –
after lots of trials – for each
choice of reasonable number 
of core nodes. 
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Location- and Network Topology Planing: 
solvable to optimality in practice
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Faser vorhanden

Wellenlänge

GRE

Vorführender
Präsentationsnotizen
Example: 0.3% proven optimality gap for real 700 nodes network within < 30 minutes
Knoten:757 (davon 30 potentiell backbone)
Kanten: 6407
Demands: 122.180
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The network design problem

Supply Graph 

Demands

Discrete Capacities & Costs

OSPF-Routing

Survivability

Further technical constraints
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S
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N

Vorführender
Präsentationsnotizen
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OSPF-Routing: Weights

Non-bifurcated routing on shortest paths
w.r.t. non-negative link weights

Sink-tree for each destination

Unique shortest paths necessary
to guarantee feasible routing in 
practice!
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Vorführender
Präsentationsnotizen
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OSPF-Routing: Survivability

Survivability: Capacities must 
accommodate a feasible 
OSPF-routing in

• the normal operating state

• single edge and single node failure 
states 

2-node-connectivity

HH
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S
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X
XX

Vorführender
Präsentationsnotizen
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Model & Solution approach

Mixed-integer programming model

Solution approach (Decomposition) 
Network design

Cutting plane algorithm

Heuristics

Weight computation
Linear programming

Vorführender
Präsentationsnotizen
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Results: Original network

Demands: Nov 1997

Routing with perturbed unit-weights

Original topology

Cost: 12.04

HH
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Vorführender
Präsentationsnotizen
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Results: New Network

Demands: Nov 1997 

Routing with perturbed unit-weights

Maximal 3 topology changes

Cost: 10.71

10% improvement on the 
network that has  already 

been optimized
with our algorithm
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Vorführender
Präsentationsnotizen
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Conclusion
OSPF-routing (weights)

and
topology & capacities

must be simultaneously optimized !

Vorführender
Präsentationsnotizen
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X-WiN Traffic Engineering: Results

Reduction of the maximal load to 
below 50% of the initial max load
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Telecommunication networks

• Focus: Backbone layer
• Planning-objective: Cost-minimal network
• Reason: New technology, new services
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From copper to fiber…

 high transmission-capacity, but 
restricted mileage

 various types 

(uni- and bi-directional)

 various qualities

Electronic Networks

Edges:
electronic

Nodes:
electronic

Fiber-Networks

Edges:
optic

Nodes:
electronic

Fiber
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…to WDM …

 Capacity is multiplied

 growing multiplex factors

 different systems 

(#channels and spectra)

Fiber-Networks

Edges: optic
Nodes: electronic

Wavelength Division
Multiplexing (WDM)

(Point-to-Point-) WDM-Networks

Edges:
optic (WDM)

Nodes:
electronic
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… to all optical networks

 Switching optical channels 
w/o o-e-o-conversion

 Switching of arbitrary 
wavelengths

(Point-to-Point-) WDM-Networks

Edges:
optic (WDM)

Nodes:
electronic

Optical Networks

Edges:
optic (WDM)

Nodes:
optic

Optical devices

Optical Cross-
connect (OXC)

Optical 
Wavelength
Converter
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Lightpaths

Lightpath = pure optical connection between two
nodes via one or multiple fibers with optical
switching in traversed nodes

 length restriction     
(dispersion and attenuation)

 wavelength assignment
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Optical Network Configuration

physical
topology

virtual
topology

lightpath
configuration
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Planning Optical Networks

Dimensioning
Edges: Transmission-capacity

Nodes: Switching-capacity

Routing
Determination of routing

(with survivability)

Coloring
Conflict-free wavelength

assignment (with converters)

Planning
present networks

Planning
optical networks

Input: Network topology and demand-matrix
Output: Cost-minimal network configuration with:
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Modeling Optical Networks
 Overall problem is too complex

 extreme large mathematical model (intractable)

 Decomposition into two subproblems:
 Dimensioning and Routing

 connection to previous network planning

 integer routing requirement

 Wavelength Assignment

 conflict-free wavelength assignment to lightpaths
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Dimensioning and Routing
Present 

Network Dimensioning and 
Routing:

 Capacity planning
 mainly edge capacities

⇒ integer capacity variables

 Routing either bifurcated (splittable) 
⇒ continuous flow or path variables

 or non-bifurcated (unsplittable)
⇒ 0-1 flow or path variables

Optical 
Network Dimensioning and 
Routing:

 Capacity planning
 both edge and node related

⇒ integer capacity variables

 Routing in lightpaths (integer-
valued)
⇒ general integer routing variables

 Lightpath length restriction
⇒ only via path variables 
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Integer Programming Formulation

G =(V,E ) Physical topology

Q Demand set, (sq,tq,dq) source, target and lightpath demand

P q Set of paths from sq to tq that are allowed to route lightpaths for commodity q

Tmn Index set of available edge capacity levels (fibers + WDM systems) for edge mn

κ0
mn , κt

mn Installed edge capacity (channels), available capacity levels

cT
mn Cost of installing edge capacity level t at edge mn

Θm Index set of available node capacity levels (OXCs) for node m

κ0
m, κθm Installed node capacity (ports), available capacity levels

cθm Cost of installing node capacity level θ at node m
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Integer Programming Formulation

# of lightpaths of commodity  routed via path 

0-1 variable indicating whether edge 
capacity level  is used at edge 
0-1 variable indicating whether node 
capacity level  is used at node 

q
p

t
mn

θ
m

q pz

t mn
x

θ



m
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Integer Programming Formulation
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Formulation Alternatives
 Depending on concrete capacity structure other variables 

can be used

 Every lightpath can be considered as a single commodity: 
 non-bifurcated routing of commodities, all with unit demand

 number of variables is blown up

 available inequalities for non-bifurcated routing are less/not 
effective for unit demands (with integer capacity)



CO@W

Martin
Grötschel

116

Computational Experiments
 Deleting integrality requirements yields surprisingly few 

non-integer routings

a b

c d

Remaining 
free capacity 1
at every edge

a b

c d

Lightpaths
to be routed

½
½

Continuous
routing

a b

c d

½

½

a b

c d

Lightpath
routing
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Concluding Remarks on Optical Networks
 Lightpath routing implies (general) integer routing variables

 Formulation alternative with dq non-bifurcated commodities 
unattractive

 IP traffic results in assymmetric demand matrix: 
 symmetric routing not possible

 asymmetric routing formulation

 Multi-hop networks require 2-layer formulation

 Wavelength assignment introduces a new aspect of optical network 
design

 Survivability concepts have to be added
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Summary

Telecommunication Problems such as

 Frequency Assignment
 Locating the Nodes of a Network Optimally
 Balancing the Load of Signaling Transfer Points
 Integrated Topology, Capacity, and Routing Optimization 

as well as  Survivability Planning
 Planning IP Networks
 Optical Network Design
 and many others

can be succesfully attacked with optimization techniques.
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Summary
The mathematical programming approach

 Helps understanding the problems arising
 Makes much faster and more reliable planning possible
 Allows considering variations and scenario analysis
 Allows the comparison of different technologies
 Yields feasible solutions
 Produces much cheaper solutions than traditional 

planning techniques
 Helps evaluating the quality of a network.

There is still a lot to be done, e.g., 
for the really important problems, 
optimal solutions are way out of reach!
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Integrating Variable Multimedia Services

Time of Day Usage Patterns
Courtesy Dr. Winter (E-Plus)

Vorführender
Präsentationsnotizen
Various Multimedia Services
Die verschiedenen Multimediadienste in einer Anwendung, in einem Dienst, von einem Kunden? Da muss noch sehr viel passieren.
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The Mathematical Challenges
 Finding the right ballance between 

flexibility and controlability of future networks

 Controlling such a flexible network

 Handling the huge complexity

 Integrating new services easily

 Guaranteeing quality

 Finding appropriate Mathematical Models

 Finding appropriate solution techniques (exact, approximate , 
interactive, quality guaranteed)
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Martin Grötschel  Institut für Mathematik, Technische Universität Berlin (TUB)
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Combinatorial Optimization in 
Telecommunication
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Martin Grötschel
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The End

Vorführender
Präsentationsnotizen
LP and IP: current practice and some new theory

Martin Groetschel
ZIB, TU, and Matheon Berlin

Abstract:

In this talk I will give a brief survey about the development of
linear and integer programming in the last fifty years and would
like to show what the current state of the art in practical
problem solving in linear and integer programming is. I will
report about experience at the Konrad-Zuse-Zentrum with the
solution of large-scale linear and integer programs coming from
practice to indicate the size of the problem instances that we
can successfully attack today.

I will also report about a new way to view linear programs as
semialgebraic sets. There are some theoretical results, a few
speculations, but no algorithmic ideas yet.
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