# Line Planning in Public Transport CO@Work Berlin

### Marika Neumann Ralf Borndörfer, Marc Pfetsch

10/02/2009



Introduction

Line Planning with Fixed Passenger Routes

A Column Generation Approach to Line Planning

Line Planning in Practice

### Introduction

Line Planning with Fixed Passenger Routes

A Column Generation Approach to Line Planning

Line Planning in Practice

# Planning Steps in Public Transport





#### timetabling

| o | S=U Alexanderplat2 BM                        |       | 2.85  | 01170 |
|---|----------------------------------------------|-------|-------|-------|
| ķ | Spandauer St. Manierkirche überint           | 12-07 | 2.0   |       |
| ł | Congenier Derivo                             | 12.00 | 6.0   |       |
| ŧ | Studsger (Belin)                             | 0.11  | 210   |       |
| ŧ | Unter den Linden/Trieshickskr (Berlin)       | 0.0   | 1210  |       |
| ŝ | E Uniter size Lander                         | 10 16 | 10.16 |       |
| ķ | Feicholay/Bursteday (Berlin)                 | 13.18 | 10.18 |       |
| ÷ | Plate der Populäh (Derler)                   | 13.19 | 10.18 |       |
| ķ | Haut der Kulturen der Prist (Berlin)         | 0.21  | 10.21 |       |
| ŝ | Schutzberg Betro                             | 0.0   | 12.22 |       |
| ķ | Grader Stem Electro                          | 12.34 | 3224  |       |
| ķ | Nordoche Batachafonikdenauer Softung chorine | 12.26 | 928   |       |
| Ŷ | Country Only                                 | 6.17  | 4.17  |       |
| ŧ | Schiltet (Deriv)                             | 12.38 | 9.28  |       |
| ł | Expension Se (Berlin)                        | 12.29 | 12.29 |       |
| ŝ | Entrancinguate (Review)                      | 13.30 | 10.38 |       |
| ò | E-U Zoslogradure Gaster Eld                  | 13.30 |       |       |

#### fare planning



#### duty scheduling

### vehicle scheduling







### Data acquisition

- passenger interviews (purpose of trip, start and end,...)
- automatic counting in vehicles

 $\rightarrow$  reflects aggregated passenger demand of current transportation system

#### Data representation

- Origin Destination Matrix (OD Matrix)
- passenger volume for each edge

There are statistical and mathematical programming methods for estimating OD matrices from edge counts.

# **OD** Matrix

- public transport area divided into different districts
- district represented by OD node
- OD Matrix number of passengers traveling between each two OD nodes



# OD Matrix

- public transport area divided into different districts
- district represented by OD node
- OD Matrix number of passengers traveling between each two OD nodes



#### Features

- aggregated (usually given for a whole day)
- give snapshot type of view
- representation of reality questionable
- industry standard for estimating transportation demand
- no relevant alternative in sight

## OD Matrix – Potsdam



# Traffic Area Divided in Districts (OD-Nodes)



## OD-Nodes, Districts, and Network



## **OD-Nodes and Network**



## **OD-Nodes and Connection to Network**



### Given:

- network
- demands d<sub>st</sub> (OD-matrix)
- operating costs and traveling times

Line: path (list of stations) with special start and end nodes, frequency

Problem: Design lines to satisfy demand.

Goals:

- minimize traveling times or number of transfers
- minimize costs of line plan

## Literature Overview I

#### Heuristics:

- Build lines from smaller pieces
   Remove lines from a "complete" line plan: Patz, 1925
   Lampkin and Saalmans 1967; Dubois, Bel, and Llibre 1979; Sonntag 1979
- Enumeration of lines: Ceder and Wilson 1986
- Local search: Mandl 1980
- Quadratic covering model: Ceder and Israeli 1992, 1995

Mixed integer programming methods:

- ► Fixed Passenger Routes System Split
  - Minimize cost: Claessens, van Dijk, and Zwaneveld 1995; Goossens, van Hoesel, and Kroon 2001, 2002; Bussieck, Lindner, and Lübbecke 2002
  - Maximize direct travelers: Bouma, Oltrogge 1994; Bussieck, Kreuzer, and Zimmermann 1997
- ► Free Routing of Passengers
  - Minimize transfers/transfer time: Scholl 2005; Schöbel and Scholl 2005
  - Minimize travel time and cost (weighted sum): Borndörfer, Grötschel, Pfetsch, 2005, 2007

(for rail transport)

#### Bouma and Oltrogge 1994

Idea: Split network into different means of transport (fast train, local train; bus, tram, subway) ~> find line plan for each network, independently

#### Assumptions on behavior of passengers:

- "choose shortest path",
- "change to faster system as early as possible",
- "change to slower system as late as possible".

 $\rightsquigarrow$  distribution of passengers to different paths

 $\rightsquigarrow$  passenger traveling paths are known

Notation for line planning problems (LPP)

- ▶ number *M* of transportation modes (bus, tram, subway,...)
- undirected multigraph  $G = (V, E) = (V, E_1 \cup, \dots, \cup, E_M)$
- $\blacktriangleright$  terminals: set of nodes  ${\mathfrak T}_1,\ldots,{\mathfrak T}_M$  where lines can start and end
- OD matrix  $d_{st} \in \mathbb{Q}^{V \times V}_+$
- ▶  $D = \{(s,t) \in V \times V \,|\, d_{st} > 0\}$  set of OD pairs
- ▶ L set of lines (simple paths)
- $\mathcal{F}_{\ell}$  set of frequencies for each line

# Potsdam Network



Introduction

Line Planning with Fixed Passenger Routes

A Column Generation Approach to Line Planning

Line Planning in Practice

# Line Planning with System Split

### Assumptions

- number of passengers  $\rho_e$  for each edge known
- only one mode given, i.e.,capacity for all lines equal
- $\mathcal{L}$  pool of predefined lines

### Assumptions

- number of passengers  $\rho_e$  for each edge known
- only one mode given, i.e.,capacity for all lines equal
- $\blacktriangleright$   $\ensuremath{\mathcal{L}}$  pool of predefined lines

### Definition Let

- G = (V, E) be a public transportation graph,
- $\blacktriangleright$   $\ensuremath{\mathcal{L}}$  a set of simple line paths in G with capacity K
- $\blacktriangleright$   $\ensuremath{\mathcal{F}}$  a set of possible frequencies
- $\rho_e$  transportation demand for each edge  $e \in E$ .

The Feasible Line Plan Problem is to find a set of lines  $\mathcal{L}' \subseteq \mathcal{L}$  and frequencies  $f_{\ell} \in \mathfrak{F}$  for all  $\ell \in \mathcal{L}'$  such that

$$\sum_{\ell \in \mathcal{L}', e \in \ell} K \cdot f_\ell \geq \rho_e \quad \forall e \in E.$$



- public transport network with given demand on edges
- capacity of a line K = 10
- ▶ possible frequencies  $\mathcal{F} = \{1, 2, 3\}$



public transport network with given demand on edges

- capacity of a line K = 10
- ▶ possible frequencies  $\mathcal{F} = \{1, 2, 3\}$

### Definition

Given

- ▶ a public transportation graph G = (V, E),
- a set of simple paths  $\mathcal{L}$  defined in G,
- ▶ and a set of edges  $E' \subseteq E$  with positive transportation demand.

The *Minimum Line Cover Problem* is to find a minimum set of lines  $\mathcal{L}' \subseteq \mathcal{L}$  that cover all "demand edges" E'.

## Definition

Given

- ▶ a public transportation graph G = (V, E),
- $\blacktriangleright$  a set of simple paths  $\mathcal L$  defined in G,
- ▶ and a set of edges  $E' \subseteq E$  with positive transportation demand. The *Minimum Line Cover Problem* is to find a minimum set of lines  $\mathcal{L}' \subseteq \mathcal{L}$  that cover all "demand edges" E'.





The minimum line cover problem can be formulated as a set covering problem.

$$\begin{array}{ll} \min & \sum_{\ell \in \mathcal{L}} x_{\ell} \\ \text{s.t.} & \sum_{\ell : e \in \ell}^{\ell \in \mathcal{L}} x_{\ell} & \geq 1 & \forall \, e \in E' \\ & x_{\ell} & \in [0,1] & \forall \, \ell \in \mathcal{L} \end{array}$$

The minimum line cover problem can be formulated as a set covering problem.

$$\begin{array}{ll} \min & \sum_{\ell \in \mathcal{L}} x_{\ell} \\ \text{s.t.} & \sum_{\ell : e \in \ell}^{\ell \in \mathcal{L}} x_{\ell} & \geq 1 & \forall e \in E' \\ & x_{\ell} & \in [0,1] & \forall \ell \in \mathcal{L} \end{array}$$

### Proposition

The minimum line cover problem is NP-hard.

Proof: Reduction from set covering problem.

## Complexity - Proof (Idea: Schöbel, Scholl, 2005)

 $S = \{a, b, c, d, e\}, \quad (\{a, c\}, \{b, d\}, \{b, c\}, \{c, e\}, \{a, d, e\})$ 

## Complexity - Proof (Idea: Schöbel, Scholl, 2005)





## Complexity - Proof (Idea: Schöbel, Scholl, 2005)





# Cost Minimization Model (Claessens et al.)

\_ 7

$$\begin{split} \min \sum_{\ell \in \mathcal{L}} \left| \frac{f_{\ell} T_{\ell}}{T} \right| (C^{t} + C^{c} z_{\ell}) + d_{\ell} f_{\ell} (c^{t} + c^{c} z_{\ell}) \\ s.t. \ \underline{\Lambda}_{e} \leq \sum_{\ell \in \mathcal{L}_{e}} f_{\ell} \leq \overline{\Lambda}_{e} & \forall e \in E \\ \sum_{\ell \in \mathcal{L}_{e}} K f_{\ell} z_{\ell} \geq \rho_{e} & \forall e \in E \\ \underline{z} \leq z_{\ell} \leq \overline{z} & \forall \ell \in \mathcal{L} \\ f_{\ell}, z_{\ell} \in \mathbb{Z}_{+} & \forall \ell \in \mathcal{L} \\ \end{split}$$
Variables:
$$\begin{aligned} z_{\ell} & \text{number of carriages of line } \ell \\ f_{\ell} & \text{frequency of line } \ell \\ \end{aligned}$$
Parameter:
$$K & \text{capacity of one carriage} \\ \underline{\Lambda}_{e}, \overline{\Lambda}_{e} & \text{lower, upper bound on frequency } (\underline{\Lambda}_{e} = \lceil \frac{\rho_{e}}{\overline{z \cdot K}} \rceil \\ \text{lower, upper bound on number of carriages} \\ \end{aligned}$$

Borndörfer, Neumann, Pfetsch ()

Line Planning in Public Transport

10/02/2009 25 / 61

)

# **Objective Function**



- Parameter: T time horizon
  - $T_{\ell}$  turn around time for line  $\ell$

# **Objective Function**

T



Parameter:

- time horizon
- $T_\ell$  turn around time for line  $\ell$
- $C^t$  fixed cost for one train
- $C^c$  fixed cost for one carriage

# **Objective Function**



Parameter:

- T time horizon
- $T_\ell$  turn around time for line  $\ell$
- $C^t$  fixed cost for one train
- $C^c$  fixed cost for one carriage
- $d_\ell$  length of line  $\ell$
- $c^t$  operating cost for one train per distance
- $c^c$  operating cost for one carriage per distance

# Cost Minimization Model

$$\begin{split} \min \ \sum_{\ell \in \mathcal{L}} \left\lceil \frac{f_{\ell} T_{\ell}}{T} \right\rceil (C^{t} + C^{c} z_{\ell}) + d_{\ell} f_{\ell} (c^{t} + c^{c} z_{\ell}) \\ s.t. \ \underline{\Lambda}_{e} \leq \sum_{\ell \in \mathcal{L}_{e}} f_{\ell} \leq \overline{\Lambda}_{e} \qquad \qquad \forall e \in E \\ \sum_{\ell \in \mathcal{L}_{e}} K f_{\ell} z_{\ell} \geq \rho_{e} \qquad \qquad \forall e \in E \\ \underline{z} \leq z_{\ell} \leq \overline{z} \qquad \qquad \forall \ell \in \mathcal{L} \\ f_{\ell}, z_{\ell} \in \mathbb{Z}_{+} \qquad \qquad \forall \ell \in \mathcal{L} \end{split}$$

## Cost Minimization Model

$$\begin{split} \min \sum_{\ell \in \mathcal{L}} \left\lceil \frac{f_{\ell} T_{\ell}}{T} \right\rceil (C^{t} + C^{c} z_{\ell}) + d_{\ell} f_{\ell} (c^{t} + c^{c} z_{\ell}) \\ s.t. \ \underline{\Lambda}_{e} \leq \sum_{\ell \in \mathcal{L}_{e}} f_{\ell} \leq \overline{\Lambda}_{e} & \forall e \in E \\ \sum_{\ell \in \mathcal{L}_{e}} K f_{\ell} z_{\ell} \geq \rho_{e} & \forall e \in E \\ \underline{z} \leq z_{\ell} \leq \overline{z} & \forall \ell \in \mathcal{L} \\ f_{\ell}, z_{\ell} \in \mathbb{Z}_{+} & \forall \ell \in \mathcal{L} \end{split}$$

#### Linearization

- $\mathfrak{F}$  set of feasible frequencies, e.g.,  $\mathfrak{F} = \{1, \dots, F\}$
- $\mathcal{C}$  set of feasible numbers of carriages, e.g.,  $\mathcal{C} = \{3, 4, 5\}$

$$\blacktriangleright \ \mathcal{R} = \mathcal{L} \times \mathcal{F} \times \mathcal{C}$$

$$\begin{split} \min \sum_{r \in \mathcal{R}} \left( \left\lceil \frac{f_{r_{\ell}} T_{r_{\ell}}}{T} \right\rceil (C^{t} + C^{c} r_{z}) + d_{r_{\ell}} r_{f} (c^{t} + c^{c} r_{z}) \right) \cdot y_{r} \\ s.t. \quad \underline{\Lambda}_{e} \leq \sum_{r \in \mathcal{R}: e \in r_{\ell}} r_{f} y_{r} \leq \overline{\Lambda}_{e} & \forall e \in E \\ \sum_{r \in \mathcal{R}: e \in r_{\ell}} K r_{f} r_{z} y_{r} \geq \rho_{e} & \forall e \in E \\ \sum_{r \in \mathcal{R}: r_{\ell} = \ell} y_{r} \leq 1 & \forall \ell \in \mathcal{L} \\ y_{r} \in \{0, 1\} & \forall r \in \mathcal{R} \end{split}$$

Variables:  $y_r$  choosing combination of  $r = (r_\ell, r_f, r_z) \in \mathcal{R}$ (line frequency and number of carriage)

Solving with preprocessing and branch-and-cut methods.

Borndörfer, Neumann, Pfetsch ()

Line Planning in Public Transport

#### Proposition

The cost minimizing line planning approach is NP-hard.

Proof.

Setting

- $\underline{z} = \overline{z}$ , (i.e., fixed number of carriages),
- F = 1, (i.e., fixed frequency),

$$\blacktriangleright K = \max\{\rho_e \,|\, e \in E\},\$$

• 
$$\underline{\Lambda}_e = 1$$
,  $\overline{\Lambda}_e = \infty$ 

• 
$$C^t = 1$$
,  $C^c = c^c = c^t = 0$ 

leads to a minimum line cover problem.

# Cutting Plane – Example



- $\mathfrak{F} = \mathfrak{C} = \{1\}$ ,  $\mathcal{L} = \{1, 2, 3\}$ , K = 10
- consider capacity constraint

$$\sum_{r \in \mathcal{R}: e \in r_{\ell}} K r_f r_z y_r \ge \rho_e \quad \forall e$$



- - $\sum_{r \in \mathcal{R}: \, e \in r_\ell} K \, r_f \, r_z \, y_r \geq \rho_e \quad \forall \, e$
  - $\begin{array}{ll} 10 \cdot y_1 + 10 \cdot y_2 \geq 10 & \{e_1\} \\ 10 \cdot y_1 + 10 \cdot y_3 \geq 10 & \{e_2\} \\ 10 \cdot y_2 + 10 \cdot y_3 \geq 10 & \{e_3\} \end{array}$



$$\sum_{r \in \mathcal{R}: e \in r_{\ell}} K r_f r_z y_r \ge \rho_e \quad \forall e$$

 $\begin{array}{ll} 10 \cdot y_1 + 10 \cdot y_2 \geq 10 & \{e_1\} \\ 10 \cdot y_1 + 10 \cdot y_3 \geq 10 & \{e_2\} \\ 10 \cdot y_2 + 10 \cdot y_3 \geq 10 & \{e_3\} \end{array}$ 

▶ 
$$y_1 = y_2 = y_3 = 0.5$$
 is solution  
▶  $y_1 + y_2 + y_3 > 2$  valid



is a valid inequality.

#### detailed cost function based on following assumption

- no switching of rolling stock between lines
- line is operated by same trains (same number of carriages)
- timetable is periodic (e.g. repeated every hour)

#### many variables

(every possible combination of frequency and number of carriages) however, reduction by preprocessing

- only one transportation mode considered
- passenger paths are fixed
- line pool

Introduction

Line Planning with Fixed Passenger Routes

A Column Generation Approach to Line Planning

Line Planning in Practice

## Example – Free Passenger Routing



public transport network with following demand (OD pairs):

| $\blacktriangleright a \rightarrow c$ : 10 |   | a  | c   | d            | f  |
|--------------------------------------------|---|----|-----|--------------|----|
| $\blacktriangleright a \rightarrow d$ : 10 | a | 0  | 10  | 10           | 0  |
| • $d \rightarrow c$ : 10                   | c | 0  | 0   | 10<br>0<br>0 | 20 |
| • $c \rightarrow f$ : 20                   | d | 0  | 10  | 0            | 20 |
| ► $d \rightarrow f$ : 20                   | f | 0  | 0   | 0            | 0  |
|                                            | æ | (1 | 0.0 |              |    |

• capacity of a line K = 10, frequencies  $\mathcal{F} = \{1, 2, 3\}$ 

## Example – Free Passenger Routing



public transport network with following demand (OD pairs):

| $\blacktriangleright a \rightarrow c$ : 10 |        | a  | c  | d  | f  |
|--------------------------------------------|--------|----|----|----|----|
| $\blacktriangleright a \rightarrow d$ : 10 | a      | 0  | 10 | 10 | 0  |
| • $d \rightarrow c$ : 10                   | c      | 0  | 0  | 0  | 20 |
| • $c \rightarrow f$ : 20                   | d      | 0  | 10 | 0  | 20 |
| • $d \rightarrow f$ : 20                   | f      | 0  | 0  | 0  | 0  |
|                                            | $\sim$ | 64 |    |    |    |

• capacity of a line K = 10, frequencies  $\mathcal{F} = \{1, 2, 3\}$ 

## Example – Free Passenger Routing



public transport network with following demand (OD pairs):

| $\blacktriangleright a \rightarrow c$ : 10                         |   | a | c  | d                 | f  |  |
|--------------------------------------------------------------------|---|---|----|-------------------|----|--|
| $\blacktriangleright$ $a \rightarrow d$ : 10                       | a |   |    |                   |    |  |
| • $d \rightarrow c$ : 10                                           | c | 0 | 0  | 10<br>0<br>0<br>0 | 20 |  |
| • $c \rightarrow f$ : 20                                           | d | 0 | 10 | 0                 | 20 |  |
| • $d \rightarrow f$ : 20                                           | f | 0 | 0  | 0                 | 0  |  |
| capacity of a line $K=10$ , frequencies $\mathfrak{F}=\{1,2,3\}$   |   |   |    |                   |    |  |
| $\rightsquigarrow$ directed graph $G = (V, A)$ for passenger paths |   |   |    |                   |    |  |

### Multi Commodity Flow Model (Grötschel, Borndörfer, Pfetsch)

$$\begin{array}{ll} \min & \lambda \sum_{\ell} (C_{\ell} \, x_{\ell} + c_{\ell} \, f_{\ell}) \ + \ (1 - \lambda) \sum_{p} \tau_{p} \, y_{p} \\ \text{i)} & \sum_{p \in \mathcal{P}_{st}} y_{p} = d_{st} & \forall \ (s,t) \in D & \text{transport all passengers} \\ \text{ii)} & \sum_{p \ni a} y_{p} \leq \sum_{\ell: e(a) \in \ell} \kappa_{\ell} \, f_{\ell} & \forall \ a \in A & \text{arc capacity constraints} \\ \text{iii)} & \sum_{\ell \ni e} f_{\ell} \leq \Lambda_{e} & \forall \ e \in E & \text{frequency bounds} \\ \text{iv)} & f_{\ell} \leq F x_{\ell} & \forall \ \ell \in \mathcal{L} & \text{coupling constraints} \\ & y_{p} \in \mathbb{R}_{+} & \forall \ p \in \mathcal{P} & \text{passenger flow} \\ & x_{\ell} \in \{0, 1\} & \forall \ \ell \in \mathcal{L} & \text{choose line } \ell \\ & f_{\ell} \in \mathbb{R}_{+} & \forall \ \ell \in \mathcal{L} & \text{frequency of line } \ell \\ \end{array}$$

#### Properties of the model:

- no system split
- continuous frequencies
- other linear constraints possible
- system optimum = user equilibrium

#### Properties of the model:

- no system split
- continuous frequencies
- other linear constraints possible
- system optimum = user equilibrium

#### Advantages of the model:

- > Traveling paths of passengers are not fixed a priori.
- ► Lines can be generated dynamically (column generation).

#### Properties of the model:

- no system split
- continuous frequencies
- other linear constraints possible
- system optimum = user equilibrium

#### Advantages of the model:

- > Traveling paths of passengers are not fixed a priori.
- Lines can be generated dynamically (column generation).

### Disadvantages of the model:

- Some passengers may use long paths. possible solution: length constraints
- Transfers between lines of same type cannot be controlled.

# Transfers

#### Lines of different type: Time penalties for transfers

### Lines of same type:

Capacity constraints do not distinguish between these lines:

$$\sum_{p \ni a} y_p \le \sum_{\ell: e(a) \in \ell} \sum_{f \in \mathcal{F}_{\ell}} \kappa_{\ell}^f \, x_{\ell}^f$$

Solution: expansion of the graph:



Problem: Symmetries

Borndörfer, Neumann, Pfetsch ()

### LP Relaxation

$$\begin{array}{ll} \min & \sum_{\ell \in \mathcal{L}} (C_{\ell} \, x_{\ell} + c_{\ell} \, f_{\ell}) + \sum_{p \in \mathcal{P}} \tau_{p} \, y_{p} \\ \text{s.t.} & \sum_{p \in \mathcal{P}_{st}} y_{p} &= d_{st} & \forall \, (s,t) \in D \\ & \sum_{p:a \in p} y_{p} &\leq \sum_{\ell:e(a) \in \ell} \kappa_{\ell} \, f_{\ell} & \forall \, a \in A \\ & \sum_{p:a \in p} f_{\ell} &\leq \Lambda_{e} & \forall e \in E \\ & \int_{\ell:e \in \ell} f_{\ell} &\leq \Lambda_{e} & \forall e \in E \\ & \int_{\ell:e \in \ell} f_{\ell} &\leq F \, x_{\ell} & \forall \ell \in \mathcal{L} \\ & f_{\ell} &\leq 0 & \forall \ell \in \mathcal{L} \\ & f_{\ell} &\geq 0 & \forall \ell \in \mathcal{L} \\ & y_{p} &\geq 0 & \forall p \in \mathcal{P}. \end{array}$$

### LP Relaxation

## LP Relaxation

Solve LP relaxation with column generation.

Proposition

The computation of the optimal value of (LP) is NP-hard.

The dual model is:

The dual model is:

Reduced cost  $\overline{\tau}_p$  for  $y_p$ ,  $p \in \mathcal{P}_{st}$ ,  $(s,t) \in D$ :

The dual model is:

Reduced cost  $\overline{\tau}_p$  for  $y_p$ ,  $p \in \mathcal{P}_{st}$ ,  $(s,t) \in D$ :

$$\overline{\tau}_p = \tau_p - \pi_{st} + \sum_{a \in p} \mu_a = -\pi_{st} + \sum_{a \in p} (\mu_a + \tau_a)$$
$$\overline{\tau}_p < 0 \Leftrightarrow \sum_{a \in p} (\mu_a + \tau_a) < \pi_{st}$$

The dual model is:

Reduced cost  $\overline{\tau}_p$  for  $y_p$ ,  $p \in \mathcal{P}_{st}$ ,  $(s,t) \in D$ :

$$\overline{\tau}_p = \tau_p - \pi_{st} + \sum_{a \in p} \mu_a = -\pi_{st} + \sum_{a \in p} (\mu_a + \tau_a)$$
$$\overline{\tau}_p < 0 \Leftrightarrow \sum_{a \in p} (\mu_a + \tau_a) < \pi_{st}$$

 $\rightsquigarrow$  shortest path problem

Borndörfer, Neumann, Pfetsch ()

Reduced cost  $\overline{\gamma}_{\ell}$  for  $f_{\ell}$ ,  $\ell \in \mathcal{L}$ ,  $(s,t) \in D$ :

Reduced cost  $\overline{\gamma}_{\ell}$  for  $f_{\ell}$ ,  $\ell \in \mathcal{L}$ ,  $(s,t) \in D$ :

$$\overline{\gamma}_{\ell} = \gamma_{\ell} - \sum_{e \in \ell} (\kappa_{\ell}(\mu_{a(e)} + \mu_{\overline{a}(e)}) - \eta_{e})$$

$$\overline{\gamma}_{\ell} = \gamma_{\ell} - \sum_{e \in \ell} (\kappa_{\ell}(\mu_{a(e)} + \mu_{\overline{a}(e)}) - \eta_{e})$$

$$\overline{\gamma}_{\ell} = \gamma_{\ell} - \sum_{e \in \ell} (\kappa_{\ell}(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_{e})$$
$$= \frac{C_{\ell}}{F} + c_{\ell} - \sum_{e \in \ell} (\kappa_{\ell}(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_{e})$$

$$\begin{split} \overline{\gamma}_{\ell} &= \gamma_{\ell} - \sum_{e \in \ell} (\kappa_{\ell}(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_{e}) \\ &= \frac{C_{\ell}}{F} + c_{\ell} - \sum_{e \in \ell} (\kappa_{\ell}(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_{e}) \\ &= \frac{C_{i}}{F} + \sum_{e \in \ell} c_{e}^{i} - \sum_{e \in \ell} (\kappa_{i}(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_{e}) \end{split}$$

$$\begin{split} \overline{\gamma}_{\ell} &= \gamma_{\ell} - \sum_{e \in \ell} (\kappa_{\ell}(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_{e}) \\ &= \frac{C_{\ell}}{F} + c_{\ell} - \sum_{e \in \ell} (\kappa_{\ell}(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_{e}) \\ &= \frac{C_{i}}{F} + \sum_{e \in \ell} c_{e}^{i} - \sum_{e \in \ell} (\kappa_{i}(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_{e}) \\ &= \frac{C_{i}}{F} - \sum_{e \in \ell} (\kappa_{i}(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_{e} - c_{e}^{i}) \end{split}$$

$$\begin{split} \overline{\gamma}_{\ell} &= \gamma_{\ell} - \sum_{e \in \ell} (\kappa_{\ell}(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_{e}) \\ &= \frac{C_{\ell}}{F} + c_{\ell} - \sum_{e \in \ell} (\kappa_{\ell}(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_{e}) \\ &= \frac{C_{i}}{F} + \sum_{e \in \ell} c_{e}^{i} - \sum_{e \in \ell} (\kappa_{i}(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_{e}) \\ &= \frac{C_{i}}{F} - \sum_{e \in \ell} (\kappa_{i}(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_{e} - c_{e}^{i}) \end{split}$$

$$0 > \overline{\gamma}_{\ell} \quad \Leftrightarrow \quad \sum_{e \in \ell} (\kappa_i(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_e - c_e^i) > \frac{C_i}{F}$$

$$\begin{split} \overline{\gamma}_{\ell} &= \gamma_{\ell} - \sum_{e \in \ell} (\kappa_{\ell}(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_{e}) \\ &= \frac{C_{\ell}}{F} + c_{\ell} - \sum_{e \in \ell} (\kappa_{\ell}(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_{e}) \\ &= \frac{C_{i}}{F} + \sum_{e \in \ell} c_{e}^{i} - \sum_{e \in \ell} (\kappa_{i}(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_{e}) \\ &= \frac{C_{i}}{F} - \sum_{e \in \ell} (\kappa_{i}(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_{e} - c_{e}^{i}) \end{split}$$

$$0 > \overline{\gamma}_{\ell} \quad \Leftrightarrow \quad \sum_{e \in \ell} (\kappa_i(\mu_{a(e)} + \mu_{\bar{a}(e)}) - \eta_e - c_e^i) > \frac{C_i}{F}$$

→ longest path problem (NP-hard)

Let  $\boldsymbol{n}$  be the number of nodes.

#### Theorem

If the lengths of paths are  $O(\log n)$ , one can solve the longest path problem in polynomial time.

### Corollary

If the lengths of lines are  $O(\log n),$  one can solve the LP relaxation in polynomial time.

Alternative method: Find lines by enumeration.

Introduction

Line Planning with Fixed Passenger Routes

A Column Generation Approach to Line Planning

Line Planning in Practice

- sophisticated simulation tools, e.g., VISUM
   (but no mathematical optimization methods)
- experience of practitioners
- political requirements



Cooperation with: ViP Potsdam



network of Potsdam:

| inhabitants  | 5:               |           | 150,000     |
|--------------|------------------|-----------|-------------|
| travels in r | norning traffic: |           | 42973       |
| number of    | bus lines:       |           | 15 + 8      |
| number of    | tram lines:      |           | 6           |
| nodes:       | 872 (1643)       | edges:    | 2462 (5470) |
| OD-nodes:    | 385              | nonzeros: | 12787       |

# Variation of (Grötschel, Borndörfer, Pfetsch)

$$\begin{array}{ll} \min & \lambda \sum_{\ell \in \mathcal{L}} \sum_{f \in F} c_{\ell}^{f} \, x_{\ell}^{f} + (1 - \lambda) \sum_{p \in \mathcal{P}} \tau_{p} \, y_{p} \\ \text{i)} & \sum_{p \in \mathcal{P}_{st}} y_{p} = d_{st} & \forall \, (s, t) \in D & \text{transport all passengers} \\ \text{ii)} & \sum_{p \ni a} y_{p} \leq \sum_{\ell: e(a) \in \ell} \sum_{f \in \mathcal{F}_{\ell}} \kappa_{\ell}^{f} \, x_{\ell}^{f} & \forall \, a \in A & \text{arc capacity constraints} \\ \text{iii)} & \sum_{f \in \mathcal{F}_{\ell}} x_{\ell}^{f} \leq 1 & \forall \, \ell \in \mathcal{L} & \text{one frequency per line} \\ & y_{p} \in \mathbb{R}_{+} & \forall \, p \in \mathcal{P} & \text{passenger flow} \\ & x_{\ell}^{f} \in \{0, 1\} & \forall \, \ell \in \mathcal{L} & \text{line and frequency} \\ \end{array}$$

- pricing problem for passenger paths similar as before
- pricing of line paths? (exercise)

list of lines with stations and frequencies, basic visualization

# Solution – List

line name cycle time in minutes: BVB134R:32088:U 30 BVB234H:10723:U 30 BVB534R;35166;U 30 HVG612:180287:U 30 N01RB20H;612362;U 60 N01RB21R;610169;U 60 VIB692H:530239:U 30 VIT92:92 KA-MJ:U 20 list of stations for each line: BVB134R:32088:U Hottengrund (Berlin) BVB134R;32088;U Kaserne Hottengrund (Berlin) BVB134R;32088;U Temmeweg (Berlin) BVB134R;32088;U Gösweinsteiner Gang (Berlin) BVB134R:32088:U Parnemannweg (Berlin) BVB134R;32088;U Alt-Kladow (Berlin) BVB134R;32088;U Finnenhaus-Siedlung (Berlin) BVB134R:32088:U Neukladower Allee (Berlin) BVB134R;32088;U Krankenhaus Havelhöhe (Berlin) BVB134R;32088;U General-Steinhoff-Kaserne (Berlin) BVB134R:32088:U Weg nach Breitehorn (Berlin) BVB134R:32088:U Breitehornweg (Berlin) BVB134R;32088;U Helleberge (Berlin) BVB134R:32088:U Am Graben (Berlin) BVB134R;32088;U Alt-Gatow (Berlin) BVB134R;32088;U Gatow Kirche (Berlin) BVB134R;32088;U Pfirsichweg (Berlin) BVB134R:32088:U Emil-Basdeck-Str. (Berlin) BVB134R;32088;U Biberburg (Berlin) BVB134R;32088;U Zur Haveldüne (Berlin) BVB134R:32088:U Gatower Str./Weinmeisterhornweg (Berlin) BVB134R:32088:U Sandheideweg (Berlin)

### **Basic Visualization**



list of lines with stations and frequencies, visualization with matlab advantage: easy disadvantage: very rudimental, e.g., no switching through lines

- list of lines with stations and frequencies, visualization with matlab advantage: easy disadvantage: very rudimental, e.g., no switching through lines
- visualization tool implemented by M. Kinder (student at ZIB)

# VisualLPP (M. Kinder)



Borndörfer, Neumann, Pfetsch ()

10/02/2009 49 / 61

- list of lines with stations and frequencies, visualization with matlab advantage: easy disadvantage: very rudimental, e.g., no switching through lines
- visualization tool implemented by M. Kinder (student at ZIB) advantage: tool was ready disadvantage: no geographic map, restricted evaluation of solution

- list of lines with stations and frequencies, visualization with matlab advantage: easy disadvantage: very rudimental, e.g., no switching through lines
- visualization tool implemented by M. Kinder (student at ZIB) advantage: tool was ready disadvantage: no geographic map, restricted evaluation of solution
- visualization with map



Borndörfer, Neumann, Pfetsch ()

- list of lines with stations and frequencies, visualization with matlab advantage: easy disadvantage: very rudimental, e.g., no switching through lines
- visualization tool implemented by M. Kinder (student at ZIB) advantage: tool was ready disadvantage: no geographic map, restricted evaluation of solution
- visualization with map advantage: geographic map, part of software used by Potsdam disadvantage: restricted evaluation of solution

- list of lines with stations and frequencies, visualization with matlab advantage: easy disadvantage: very rudimental, e.g., no switching through lines
- visualization tool implemented by M. Kinder (student at ZIB) advantage: tool was ready disadvantage: no geographic map, restricted evaluation of solution
- visualization with map advantage: geographic map, part of software used by Potsdam disadvantage: restricted evaluation of solution
- visualization with VISUM advantage: geographic map, evaluation of solution possible disadvantage: expensive

# VISUM





### Data

▶ some data missing, incomplete, contains errors → long iterative process to get needed data

#### Parameter

- cost function, operating cost for each line
- capacities of lines
- choose terminal nodes (endpoint of line)
- ► weighting of cost and travel time (choosing λ) → computation of Pareto curve

Pareto Curve





column generation of passenger paths, predefined line pool (computations in chronological order):

| Instance | $ \mathcal{L} $ | $ \mathcal{F} $ | #line var | #constr. | time <sup>1</sup> |
|----------|-----------------|-----------------|-----------|----------|-------------------|
| potsdam1 | 30 232          | 4               | 120 592   | 44 577   | 349               |
| potsdam2 | 29 1 4 2        | 2               | 58 268    | 43 419   | 125               |
| potsdam3 | 1172            | 3               | 3 486     | 15 491   | 24                |
| potsdam4 | 623             | 3               | 1 755     | 14 939   | 20                |
| potsdam5 | 3861            | 3               | 11 471    | 21 199   | 377 <sup>2</sup>  |

Borndörfer, Neumann, Pfetsch ()

 $<sup>^1 {\</sup>rm in}$  minutes, after solving root node including separators and heuristics; gap < 5%  $^2 {\rm for}$  adjusted network

### Problems

### **General Problems**

 data contains information relevant for transportation company but not relevant for optimization tools (e.g., nodes of network not only stops but also crossings, track switches, turnouts,..)

#### Problems concerning our solutions

- too many too short lines
- service (frequency) on some stations to small
- the importance of tram not represented by our solution (important for tourism, environment, prestige)
- lines over a train crossing no robust timetable
- "curious" bus lines (no stations shared with tram, regional traffic)

relevant vs. irrelevant data

- relevant vs. irrelevant data
   ~> preprocessing
- too many too short lines

- relevant vs. irrelevant data
   ~> preprocessing
- too many too short lines Idea: include fixed cost
- service (frequency) on some stations to small

- relevant vs. irrelevant data
   ~> preprocessing
- too many too short lines Idea: include fixed cost
- ▶ service (frequency) on some stations to small
   → bound on minimal frequency for serving a station
- ▶ the importance of the tram not represented by our solution

- relevant vs. irrelevant data
   ~> preprocessing
- too many too short lines Idea: include fixed cost
- ► service (frequency) on some stations to small → bound on minimal frequency for serving a station
- the importance of the tram not represented by our solution Idea: condition of covering all tracks of tram
- lines over train crossing

- relevant vs. irrelevant data
   ~> preprocessing
- too many too short lines Idea: include fixed cost
- ► service (frequency) on some stations to small → bound on minimal frequency for serving a station
- the importance of the tram not represented by our solution Idea: condition of covering all tracks of tram
- lines over train crossing
   Idea: high cost for using crossing in line; prohibit the use of crossing
- "curious" bus lines (no stations shared with tram, regional traffic)

- relevant vs. irrelevant data
   ~> preprocessing
- too many too short lines Idea: include fixed cost
- ► service (frequency) on some stations to small → bound on minimal frequency for serving a station
- the importance of the tram not represented by our solution Idea: condition of covering all tracks of tram
- lines over train crossing
   Idea: high cost for using crossing in line; prohibit the use of crossing
- "curious" bus lines (no stations shared with tram, regional traffic)
   Idea: generate only bus lines that contain a station shared with tram or regional traffic

Work in Progress...

Work in Progress...

- first step to establish optimization methods for line planning in practice
- line planning optimization not completely solved
- hope for future: optimization in (service design of) public transport as decision support

## Line Planning in Public Transport CO@Work Berlin

### Marika Neumann Ralf Borndörfer, Marc Pfetsch

10/02/2009

