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Planning Steps in Public Transport

network design line planning timetabling

fare planning duty scheduling vehicle scheduling
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Service Design

demandline planning

timetabling

network design

fare planning
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Passenger Demand

Data acquisition
I passenger interviews (purpose of trip, start and end,...)
I automatic counting in vehicles
→ reflects aggregated passenger demand of current transportation
system

Data representation
I Origin Destination Matrix (OD Matrix)
I passenger volume for each edge

There are statistical and mathematical programming methods for
estimating OD matrices from edge counts.
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OD Matrix

I public transport area divided
into different districts

I district represented by OD node
I OD Matrix – number of

passengers traveling between
each two OD nodes

Features
I aggregated (usually given for a whole day)
I give snapshot type of view
I representation of reality questionable
I industry standard for estimating transportation demand
I no relevant alternative in sight
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OD Matrix – Potsdam
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Traffic Area Divided in Districts (OD-Nodes)

Borndörfer, Neumann, Pfetsch () Line Planning in Public Transport 10/02/2009 9 / 61



OD-Nodes, Districts, and Network
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OD-Nodes and Network
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OD-Nodes and Connection to Network
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Line Planning Problem (LPP)

Given:
I network
I demands dst (OD-matrix)
I operating costs and traveling times

Line: path (list of stations) with special start and end nodes, frequency

Problem: Design lines to satisfy demand.

Goals:
I minimize traveling times or number of transfers
I minimize costs of line plan
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Literature Overview I

Heuristics:
I Build lines from smaller pieces

Remove lines from a “complete” line plan:
Patz, 1925
Lampkin and Saalmans 1967 ;
Dubois, Bel, and Llibre 1979;
Sonntag 1979

I Enumeration of lines:
Ceder and Wilson 1986

I Local search:
Mandl 1980

I Quadratic covering model:
Ceder and Israeli 1992, 1995
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Literature Overview II

Mixed integer programming methods:
I Fixed Passenger Routes – System Split (for rail transport)

I Minimize cost:
Claessens, van Dĳk, and Zwaneveld 1995;
Goossens, van Hoesel, and Kroon 2001, 2002;
Bussieck, Lindner, and Lübbecke 2002

I Maximize direct travelers:
Bouma, Oltrogge 1994;
Bussieck, Kreuzer, and Zimmermann 1997

I Free Routing of Passengers
I Minimize transfers/transfer time:

Scholl 2005;
Schöbel and Scholl 2005

I Minimize travel time and cost (weighted sum):
Borndörfer, Grötschel, Pfetsch, 2005, 2007
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Literature Overview – System Split

Bouma and Oltrogge 1994

Idea: Split network into different means of transport (fast train, local
train; bus, tram, subway)
 find line plan for each network, independently

Assumptions on behavior of passengers:
I “choose shortest path”,
I “change to faster system as early as possible”,
I “change to slower system as late as possible”.

 distribution of passengers to different paths
 passenger traveling paths are known
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Some Notation

Notation for line planning problems (LPP)
I number M of transportation modes (bus, tram, subway,...)
I undirected multigraph G = (V,E) = (V,E1∪, . . . ,∪, EM )
I terminals: set of nodes T1, . . . ,TM where lines can start and end
I OD matrix dst ∈ QV×V

+
I D = {(s, t) ∈ V × V | dst > 0} set of OD pairs
I L set of lines (simple paths)
I F` set of frequencies for each line
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Potsdam Network
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Line Planning with System Split
Assumptions

I number of passengers ρe for each edge known
I only one mode given, i.e.,capacity for all lines equal
I L pool of predefined lines

Definition Let
I G = (V,E) be a public transportation graph,
I L a set of simple line paths in G with capacity K
I F a set of possible frequencies
I ρe transportation demand for each edge e ∈ E.

The Feasible Line Plan Problem is to find a set of lines L′ ⊆ L and
frequencies f` ∈ F for all ` ∈ L′ such that∑

`∈L′,e∈`
K · f` ≥ ρe ∀e ∈ E.
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Example

10
10 30

20 10

10
10 200

f = 3

f = 1

f = 1
f = 1 f = 2

I public transport network with given demand on edges
I capacity of a line K = 10
I possible frequencies F = {1, 2, 3}
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Subproblem: Minimum Line Cover

Definition
Given

I a public transportation graph G = (V,E),
I a set of simple paths L defined in G,
I and a set of edges E′ ⊆ E with positive transportation demand.

The Minimum Line Cover Problem is to find a minimum set of lines
L′ ⊆ L that cover all “demand edges” E′.

10
10 30

20 10

10
10 200
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Subproblem: Minimum Line Cover

The minimum line cover problem can be formulated as a set covering
problem.

min
∑
`∈L

x`

s.t.
∑
`:e∈`

x` ≥ 1 ∀ e ∈ E′

x` ∈ [0, 1] ∀ ` ∈ L

Proposition
The minimum line cover problem is NP-hard.
Proof: Reduction from set covering problem.
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Complexity – Proof (Idea: Schöbel, Scholl, 2005)

S = {a, b, c, d, e}, ({a, c}, {b, d}, {b, c}, {c, e}, {a, d, e})

s ta b c d es t

s ta b c d es t
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Cost Minimization Model (Claessens et al.)

min
∑
`∈L

⌈
f` T`
T

⌉
(Ct + Cc z`) + d` f` (ct + cc z`)

s.t. Λe ≤
∑
`∈Le

f` ≤ Λe ∀ e ∈ E

∑
`∈Le

K f` z` ≥ ρe ∀ e ∈ E

z ≤ z` ≤ z ∀ ` ∈ L

f`, z` ∈ Z+ ∀ ` ∈ L

Variables: z` number of carriages of line `
f` frequency of line `

Parameter: K capacity of one carriage
Λe,Λe lower, upper bound on frequency (Λe = d ρez·K e)
z, z lower, upper bound on number of carriages
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Objective Function

⌈
f` T`
T

⌉
︸ ︷︷ ︸
# trains

(Ct + Cc z`)︸ ︷︷ ︸
fixed costs

+ d` f` (ct + cc z`)︸ ︷︷ ︸
operating costs

Parameter: T time horizon
T` turn around time for line `

Ct fixed cost for one train
Cc fixed cost for one carriage
d` length of line `
ct operating cost for one train per distance
cc operating cost for one carriage per distance
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Cost Minimization Model

min
∑
`∈L

⌈
f` T`
T

⌉
(Ct + Cc z`) + d` f` (ct + cc z`)

s.t. Λe ≤
∑
`∈Le

f` ≤ Λe ∀ e ∈ E

∑
`∈Le

K f` z` ≥ ρe ∀ e ∈ E

z ≤ z` ≤ z ∀ ` ∈ L

f`, z` ∈ Z+ ∀ ` ∈ L

Linearization
I F set of feasible frequencies, e.g., F = {1, . . . , F}
I C set of feasible numbers of carriages, e.g., C = {3, 4, 5}
I R = L× F × C
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Linearized Cost Model (Goossens et al.)

min
∑
r∈R

(⌈
fr` Tr`
T

⌉
(Ct + Cc rz) + dr` rf (ct + cc rz)

)
· yr

s.t. Λe ≤
∑

r∈R: e∈r`

rf yr ≤ Λe ∀ e ∈ E

∑
r∈R: e∈r`

K rf rz yr ≥ ρe ∀ e ∈ E

∑
r∈R: r`=`

yr ≤ 1 ∀ ` ∈ L

yr ∈ {0, 1} ∀ r ∈ R

Variables: yr choosing combination of r = (r`, rf , rz) ∈ R
(line frequency and number of carriage)

Solving with preprocessing and branch-and-cut methods.
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Cost Minimization – Complexity

Proposition
The cost minimizing line planning approach is NP-hard.

Proof.
Setting

I z = z, (i.e., fixed number of carriages),
I F = 1, (i.e., fixed frequency),
I K = max{ρe | e ∈ E},
I Λe = 1, Λe =∞
I Ct = 1, Cc = cc = ct = 0

leads to a minimum line cover problem.
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Cutting Plane – Example

ρe1 = 10

ρe3 = 10 ρe2 = 10

I F = C = {1}, L = {1, 2, 3}, K = 10
I consider capacity constraint∑

r∈R: e∈r`

K rf rz yr ≥ ρe ∀ e

10 · y1 + 10 · y2 ≥ 10 {e1}
10 · y1 + 10 · y3 ≥ 10 {e2}
10 · y2 + 10 · y3 ≥ 10 {e3}

I y1 = y2 = y3 = 0.5 is solution
I  y1 + y2 + y3 ≥ 2 valid
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Cutting Plane – Example

ρe1 = 10

ρe3 = 10 ρe2 = 10

Proposition
Let

I E′ ⊆ E such that ρe > 0 ∀ e ∈ E′,
I α`E′ := |` ∩ E′|, and
I αmax

E′ := max{α`E′ | ` ∈ L}.
Then

∑
r∈R,αr`

E′≥1

yr ≥
⌈
|E′|
αmax
E′

⌉

is a valid inequality.
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Discussion of the Model

I detailed cost function
based on following assumption

I no switching of rolling stock between lines
I line is operated by same trains (same number of carriages)
I timetable is periodic (e.g. repeated every hour)

I many variables
(every possible combination of frequency and number of carriages)
however, reduction by preprocessing

I only one transportation mode considered
I passenger paths are fixed
I line pool
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Example – Free Passenger Routing
a

g
b c

d e f

f = 1

f = 3

f = 1
f = 2

a

g
b c

d e f

I public transport network with following demand (OD pairs):
I a→ c: 10
I a→ d: 10
I d→ c: 10
I c→ f : 20
I d→ f : 20

a c d f

a 0 10 10 0
c 0 0 0 20
d 0 10 0 20
f 0 0 0 0

I capacity of a line K = 10, frequencies F = {1, 2, 3}

I  directed graph G = (V,A) for passenger paths
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Multi Commodity Flow Model (Grötschel, Borndörfer, Pfetsch)

min λ
∑
`

(
C` x` + c` f`

)
+ (1− λ)

∑
p

τp yp

i)
∑
p∈Pst

yp = dst ∀ (s, t) ∈ D transport all passengers

ii)
∑
p3a

yp≤
∑

`:e(a)∈`
κ` f` ∀ a ∈ A arc capacity constraints

iii)
∑
`3 e

f`≤ Λe ∀ e ∈ E frequency bounds

iv) f`≤ Fx` ∀ ` ∈ L coupling constraints

yp ∈ R+ ∀ p ∈ P passenger flow

x` ∈ {0, 1} ∀ ` ∈ L choose line `

f` ∈ R+ ∀ ` ∈ L frequency of line `
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Discussion of the Model

Properties of the model:
I no system split
I continuous frequencies
I other linear constraints possible
I system optimum = user equilibrium

Advantages of the model:
I Traveling paths of passengers are not fixed a priori.
I Lines can be generated dynamically (column generation).

Disadvantages of the model:
I Some passengers may use long paths.

possible solution: length constraints
I Transfers between lines of same type cannot be controlled.
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Transfers

Lines of different type:
Time penalties for transfers

Lines of same type:
Capacity constraints do not distinguish between these lines:∑

p3a
yp ≤

∑
`:e(a)∈`

∑
f∈F`

κf` x
f
`

Solution: expansion of the graph:

Problem: Symmetries
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LP Relaxation

min
∑
`∈L

(C` x` + c` f`) +
∑
p∈P

τp yp

s.t.
∑
p∈Pst

yp = dst ∀ (s, t) ∈ D∑
p:a∈p

yp ≤
∑

`:e(a)∈`
κ` f` ∀ a ∈ A∑

`:e∈`
f` ≤ Λe ∀e ∈ E

f` ≤ F x` ∀` ∈ L

x` ∈ [0, 1] ∀ ` ∈ L

f` ≥ 0 ∀ ` ∈ L

yp ≥ 0 ∀ p ∈ P.

Solve LP relaxation with column generation.

Proposition
The computation of the optimal value of (LP) is NP-hard.
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Pricing of Passenger Paths
The dual model is:

(DLP) min
∑

(s,t)∈D
dst πst −

∑
e∈E

Λe ηe

s.t. πst −
∑
a∈p

µa ≤ τp ∀ p ∈ Pst, (s, t) ∈ D∑
e∈`

(κ`(µa(e) + µā(e))− ηe) ≤ γ` ∀ ` ∈ L

ηe ≥ 0 ∀ e ∈ E
µa ≥ 0 ∀ a ∈ A

Reduced cost τp for yp, p ∈ Pst, (s, t) ∈ D:

τp = τp − πst +
∑
a∈p

µa = −πst +
∑
a∈p

(µa + τa)

τp < 0⇔
∑
a∈p

(µa + τa) < πst

 shortest path problem
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(κ`(µa(e) + µā(e))− ηe) ≤ γ` ∀ ` ∈ L

ηe ≥ 0 ∀ e ∈ E
µa ≥ 0 ∀ a ∈ A

Reduced cost τp for yp, p ∈ Pst, (s, t) ∈ D:

τp = τp − πst +
∑
a∈p

µa = −πst +
∑
a∈p

(µa + τa)

τp < 0⇔
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(µa + τa) < πst
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Pricing of Line Paths

(DLP) min
∑

(s,t)∈D
dst πst −

∑
e∈E

Λe ηe

s.t. πst −
∑
a∈p

µa ≤ τp ∀ p ∈ Pst, (s, t) ∈ D∑
e∈`

(κ`(µa(e) + µā(e))− ηe) ≤ γ` ∀ ` ∈ L

ηe ≥ 0 ∀ e ∈ E
µa ≥ 0 ∀ a ∈ A

Reduced cost γ` for f`, ` ∈ L, (s, t) ∈ D:

γ` = γ` −
∑
e∈`

(κ`(µa(e) + µā(e))− ηe)
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Pricing of Line Paths

γ` = γ` −
∑
e∈`

(κ`(µa(e) + µā(e))− ηe)

= C`
F + c` −

∑
e∈`

(κ`(µa(e) + µā(e))− ηe)

= Ci
F +

∑
e∈`

cie −
∑
e∈`

(κi(µa(e) + µā(e))− ηe)

= Ci
F −

∑
e∈`

(κi(µa(e) + µā(e))− ηe − cie)

0 > γ` ⇔
∑
e∈`

(κi(µa(e) + µā(e))− ηe − cie) > Ci
F

 longest path problem (NP-hard)
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= Ci
F −

∑
e∈`
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(κi(µa(e) + µā(e))− ηe − cie) > Ci
F

 longest path problem (NP-hard)

Borndörfer, Neumann, Pfetsch () Line Planning in Public Transport 10/02/2009 39 / 61



Pricing of Line Paths

Let n be the number of nodes.

Theorem
If the lengths of paths are O(logn), one can solve the longest path
problem in polynomial time.

Corollary
If the lengths of lines are O(logn), one can solve the LP relaxation in
polynomial time.

Alternative method: Find lines by enumeration.
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A Column Generation Approach to Line Planning

Line Planning in Practice
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Current Practice

I sophisticated simulation tools,
e.g., VISUM
(but no mathematical
optimization methods)

I experience of practitioners
I political requirements
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Computational Experiments for Potsdam

Cooperation with: ViP Potsdam

network of Potsdam:
inhabitants: 150,000
travels in morning traffic: 42 973
number of bus lines: 15 + 8
number of tram lines: 6
nodes: 872 (1643) edges: 2462 (5470)
OD-nodes: 385 nonzeros: 12 787
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Variation of (Grötschel, Borndörfer, Pfetsch)

min λ
∑
`∈L

∑
f∈F

cf` x
f
` + (1− λ)

∑
p∈P

τp yp

i)
∑
p∈Pst

yp = dst ∀ (s, t) ∈ D transport all passengers

ii)
∑
p3a

yp≤
∑

`:e(a)∈`

∑
f∈F`

κf` x
f
` ∀ a ∈ A arc capacity constraints

iii)
∑
f∈F`

xf` ≤ 1 ∀ ` ∈ L one frequency per line

yp ∈ R+ ∀ p ∈ P passenger flow

xf` ∈ {0, 1} ∀ ` ∈ L line and frequency

I pricing problem for passenger paths similar as before
I pricing of line paths? (exercise)
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Things to Do Besides Optimization

How to present the solution?

I list of lines with stations and frequencies, basic visualization
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Solution – List
line name cycle time in minutes:
BVB134R;32088;U 30
BVB234H;10723;U 30
BVB534R;35166;U 30
HVG612;180287;U 30
N01RB20H;612362;U 60
N01RB21R;610169;U 60
VIB692H;530239;U 30
VIT92;92_KA-MJ;U 20

list of stations for each line:
BVB134R;32088;U Hottengrund (Berlin)
BVB134R;32088;U Kaserne Hottengrund (Berlin)
BVB134R;32088;U Temmeweg (Berlin)
BVB134R;32088;U Gös̈weinsteiner Gang (Berlin)
BVB134R;32088;U Parnemannweg (Berlin)
BVB134R;32088;U Alt-Kladow (Berlin)
BVB134R;32088;U Finnenhaus-Siedlung (Berlin)
BVB134R;32088;U Neukladower Allee (Berlin)
BVB134R;32088;U Krankenhaus Havelhöhe (Berlin)
BVB134R;32088;U General-Steinhoff-Kaserne (Berlin)
BVB134R;32088;U Weg nach Breitehorn (Berlin)
BVB134R;32088;U Breitehornweg (Berlin)
BVB134R;32088;U Helleberge (Berlin)
BVB134R;32088;U Am Graben (Berlin)
BVB134R;32088;U Alt-Gatow (Berlin)
BVB134R;32088;U Gatow Kirche (Berlin)
BVB134R;32088;U Pfirsichweg (Berlin)
BVB134R;32088;U Emil-Basdeck-Str. (Berlin)
BVB134R;32088;U Biberburg (Berlin)
BVB134R;32088;U Zur Haveldüne (Berlin)
BVB134R;32088;U Gatower Str./Weinmeisterhornweg (Berlin)
BVB134R;32088;U Sandheideweg (Berlin)
BVB134R;32088;U Gatower Str./Heerstr. (Berlin)
BVB134R;32088;U Am Omnibushof (Berlin)
BVB134R;32088;U Melanchthonplatz (Berlin)
BVB134R;32088;U Metzer Str. (Berlin)
BVB134R;32088;U Ziegelhof (Berlin)
BVB134R;32088;U Brunsbütteler Damm/Ruhlebener Str. (Berlin)
BVB134R;32088;U S+U Rathaus Spandau
BVB134R;32088;U Moritzstr. (Berlin)
BVB134R;32088;U Wröhmännerpark (Berlin)
BVB134R;32088;U Kurze Str./Mittelstr. (Berlin)
BVB134R;32088;U Windmühlenberg (Berlin)
BVB134R;32088;U Falkenhagener Tor (Berlin)
BVB134R;32088;U Pionierstr./Zeppelinstr. (Berlin)
BVB134R;32088;U Friedhof In den Kisseln (Berlin)
BVB134R;32088;U Frankenwaldstr. (Berlin)
BVB134R;32088;U Wolburgsweg (Berlin)
BVB134R;32088;U Wasserwerk Spandau (Berlin)
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Basic Visualization
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Things to do besides Optimization

How to present the solution?
I list of lines with stations and frequencies, visualization with matlab

advantage: easy
disadvantage: very rudimental, e.g., no switching through lines

I visualization tool implemented by M. Kinder (student at ZIB)
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VisualLPP (M. Kinder)
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Things to do besides Optimization

How to present the solution?
I list of lines with stations and frequencies, visualization with matlab

advantage: easy
disadvantage: very rudimental, e.g., no switching through lines

I visualization tool implemented by M. Kinder (student at ZIB)
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disadvantage: no geographic map, restricted evaluation of solution

I visualization with map
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Map
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Things to do besides Optimization

How to present the solution?
I list of lines with stations and frequencies, visualization with matlab

advantage: easy
disadvantage: very rudimental, e.g., no switching through lines

I visualization tool implemented by M. Kinder (student at ZIB)
advantage: tool was ready
disadvantage: no geographic map, restricted evaluation of solution

I visualization with map
advantage: geographic map, part of software used by Potsdam
disadvantage: restricted evaluation of solution

I visualization with VISUM
advantage: geographic map, evaluation of solution possible
disadvantage: expensive
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VISUM
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ViP Verkehrsbetrieb Potsdam GmbH Datenbasis: Verkehrserhebung 2007

Sachbearbeiter: Grüschow, erstellt am 29.09.2009 Maßstab: 1:10000
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Other Things to Do

Data
I some data missing, incomplete, contains errors
 long iterative process to get needed data

Parameter
I cost function, operating cost for each line
I capacities of lines
I choose terminal nodes (endpoint of line)
I weighting of cost and travel time (choosing λ)
 computation of Pareto curve
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Pareto Curve
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Pareto Curve
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Computations

column generation of passenger paths, predefined line pool
(computations in chronological order):

Instance |L| |F| #line var #constr. time1

potsdam1 30 232 4 120 592 44 577 349
potsdam2 29 142 2 58 268 43 419 125
potsdam3 1172 3 3 486 15 491 24
potsdam4 623 3 1 755 14 939 20
potsdam5 3861 3 11 471 21 199 3772

1in minutes, after solving root node including separators and heuristics; gap< 5%
2for adjusted network
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Problems

General Problems
I data contains information relevant for transportation company but

not relevant for optimization tools
(e.g., nodes of network not only stops but also crossings, track
switches, turnouts,..)

Problems concerning our solutions
I too many too short lines
I service (frequency) on some stations to small
I the importance of tram not represented by our solution

(important for tourism, environment, prestige)
I lines over a train crossing – no robust timetable
I “curious” bus lines (no stations shared with tram, regional traffic)
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Problems – Solutions

I relevant vs. irrelevant data

 preprocessing
I too many too short lines

Idea: include fixed cost
I service (frequency) on some stations to small
 bound on minimal frequency for serving a station

I the importance of the tram not represented by our solution
Idea: condition of covering all tracks of tram

I lines over train crossing
Idea: high cost for using crossing in line; prohibit the use of crossing

I “curious” bus lines (no stations shared with tram, regional traffic)
Idea: generate only bus lines that contain a station shared with tram
or regional traffic
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Line Plan – Solutions

Work in Progress...

I first step to establish optimization methods for line planning in
practice

I line planning optimization not completely solved
I hope for future: optimization in (service design of) public transport as

decision support
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