
Online optimization: Elevator and vehicle scheduling
CO@Work Berlin

Benjamin Hiller

ZIB

10/01/2009

Benjamin Hiller (ZIB) Online optimization 10/01/2009 1 / 64

Online problems

high rack warehouse

dispatching service vehicleselevator scheduling

Benjamin Hiller (ZIB) Online optimization 10/01/2009 2 / 64

Outline

Recap: Online optimization

Theoretical framework: Online Dial-a-Ride problems and competitive
analysis

Online Optimization in Practice: Reoptimization Algorithms
Dispatching the service vehicles of ADAC
Controlling cargo elevators in a distribution center
Controlling passenger elevators in high-rise buildings

Theory again: The Online Bin Coloring problem

Benjamin Hiller (ZIB) Online optimization 10/01/2009 3 / 64

Outline

Recap: Online optimization

Theoretical framework: Online Dial-a-Ride problems and competitive
analysis

Online Optimization in Practice: Reoptimization Algorithms
Dispatching the service vehicles of ADAC
Controlling cargo elevators in a distribution center
Controlling passenger elevators in high-rise buildings

Theory again: The Online Bin Coloring problem

Benjamin Hiller (ZIB) Online optimization 10/01/2009 4 / 64

What is online?

typical application: elevator control
I passenger calls arrive over time
I a new call must immediately be

incorporated in the elevator schedule

Online optimization
In online optimization, we have to make
decisions before all data are known.
Online problems are often real-time.

common assumption: nothing known about the
future, not even stochastical information

Benjamin Hiller (ZIB) Online optimization 10/01/2009 5 / 64

Online algorithms

An online algorithm is a method to make a
decision as soon as some new information
becomes known.

Usual theoretical assumptions:
I The decision is irrevocable.
I Running time does not matter.

For our real-world applications:
I Decisions are (partially) revocable.
I Running time does matter.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 6 / 64

Online algorithms

An online algorithm is a method to make a
decision as soon as some new information
becomes known.

Usual theoretical assumptions:
I The decision is irrevocable.
I Running time does not matter.

For our real-world applications:
I Decisions are (partially) revocable.
I Running time does matter.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 6 / 64

Online algorithms

An online algorithm is a method to make a
decision as soon as some new information
becomes known.

Usual theoretical assumptions:
I The decision is irrevocable.
I Running time does not matter.

For our real-world applications:
I Decisions are (partially) revocable.
I Running time does matter.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 6 / 64

Outline

Recap: Online optimization

Theoretical framework: Online Dial-a-Ride problems and competitive
analysis

Online Optimization in Practice: Reoptimization Algorithms
Dispatching the service vehicles of ADAC
Controlling cargo elevators in a distribution center
Controlling passenger elevators in high-rise buildings

Theory again: The Online Bin Coloring problem

Benjamin Hiller (ZIB) Online optimization 10/01/2009 7 / 64

Dial-a-Ride Problems (offline)

Input

I weighted graph G = (V , A, w : A → R≥0)

I special node d ∈ V , called depot
I set R of node pairs (sj , tj), called requests

Solution: Schedule for a server

I A move is a triple m = (s, t, L) with (s, t) ∈ A and L ⊆ R .
I A schedule is a sequence of moves

(
mi = (si, ti, Li)

)
0≤i≤k .

I The time needed by a move m = (s, t, L) is w(s, t).

Objective

I Find a schedule with minimum completion time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 8 / 64

Dial-a-Ride Problems (offline)

Input

I weighted graph G = (V , A, w : A → R≥0)
I special node d ∈ V , called depot

I set R of node pairs (sj , tj), called requests

Solution: Schedule for a server

I A move is a triple m = (s, t, L) with (s, t) ∈ A and L ⊆ R .
I A schedule is a sequence of moves

(
mi = (si, ti, Li)

)
0≤i≤k .

I The time needed by a move m = (s, t, L) is w(s, t).

Objective

I Find a schedule with minimum completion time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 8 / 64

Dial-a-Ride Problems (offline)

Input

I weighted graph G = (V , A, w : A → R≥0)
I special node d ∈ V , called depot
I set R of node pairs (sj , tj), called requests

Solution: Schedule for a server

I A move is a triple m = (s, t, L) with (s, t) ∈ A and L ⊆ R .
I A schedule is a sequence of moves

(
mi = (si, ti, Li)

)
0≤i≤k .

I The time needed by a move m = (s, t, L) is w(s, t).

Objective

I Find a schedule with minimum completion time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 8 / 64

Dial-a-Ride Problems (offline)

Input

I weighted graph G = (V , A, w : A → R≥0)
I special node d ∈ V , called depot
I set R of node pairs (sj , tj), called requests

Solution: Schedule for a server
I A move is a triple m = (s, t, L) with (s, t) ∈ A and L ⊆ R .

I A schedule is a sequence of moves
(
mi = (si, ti, Li)

)
0≤i≤k .

I The time needed by a move m = (s, t, L) is w(s, t).

Objective

I Find a schedule with minimum completion time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 8 / 64

Dial-a-Ride Problems (offline)

Input

I weighted graph G = (V , A, w : A → R≥0)
I special node d ∈ V , called depot
I set R of node pairs (sj , tj), called requests

Solution: Schedule for a server
I A move is a triple m = (s, t, L) with (s, t) ∈ A and L ⊆ R .
I A schedule is a sequence of moves

(
mi = (si, ti, Li)

)
0≤i≤k with

I The time needed by a move m = (s, t, L) is w(s, t).

Objective

I Find a schedule with minimum completion time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 8 / 64

Dial-a-Ride Problems (offline)

Input

I weighted graph G = (V , A, w : A → R≥0)
I special node d ∈ V , called depot
I set R of node pairs (sj , tj), called requests

Solution: Schedule for a server
I A move is a triple m = (s, t, L) with (s, t) ∈ A and L ⊆ R .
I A schedule is a sequence of moves

(
mi = (si, ti, Li)

)
0≤i≤k with

1. The first move starts and the last move ends at d.

2. Move mi+1 starts at the target node ti of its predecessor move mi.
3. The requests Li+1 \ Li start at node ti (are picked up) and the requests
Li \ Li+1 end at node ti (are dropped).

4. Every request is picked up and dropped exactly once.
I The time needed by a move m = (s, t, L) is w(s, t).

Objective

I Find a schedule with minimum completion time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 8 / 64

Dial-a-Ride Problems (offline)

Input

I weighted graph G = (V , A, w : A → R≥0)
I special node d ∈ V , called depot
I set R of node pairs (sj , tj), called requests

Solution: Schedule for a server
I A move is a triple m = (s, t, L) with (s, t) ∈ A and L ⊆ R .
I A schedule is a sequence of moves

(
mi = (si, ti, Li)

)
0≤i≤k with

1. The first move starts and the last move ends at d.
2. Move mi+1 starts at the target node ti of its predecessor move mi.

3. The requests Li+1 \ Li start at node ti (are picked up) and the requests
Li \ Li+1 end at node ti (are dropped).

4. Every request is picked up and dropped exactly once.
I The time needed by a move m = (s, t, L) is w(s, t).

Objective

I Find a schedule with minimum completion time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 8 / 64

Dial-a-Ride Problems (offline)

Input

I weighted graph G = (V , A, w : A → R≥0)
I special node d ∈ V , called depot
I set R of node pairs (sj , tj), called requests

Solution: Schedule for a server
I A move is a triple m = (s, t, L) with (s, t) ∈ A and L ⊆ R .
I A schedule is a sequence of moves

(
mi = (si, ti, Li)

)
0≤i≤k with

1. The first move starts and the last move ends at d.
2. Move mi+1 starts at the target node ti of its predecessor move mi.
3. The requests Li+1 \ Li start at node ti (are picked up) and the requests
Li \ Li+1 end at node ti (are dropped).

4. Every request is picked up and dropped exactly once.
I The time needed by a move m = (s, t, L) is w(s, t).

Objective

I Find a schedule with minimum completion time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 8 / 64

Dial-a-Ride Problems (offline)

Input

I weighted graph G = (V , A, w : A → R≥0)
I special node d ∈ V , called depot
I set R of node pairs (sj , tj), called requests

Solution: Schedule for a server
I A move is a triple m = (s, t, L) with (s, t) ∈ A and L ⊆ R .
I A schedule is a sequence of moves

(
mi = (si, ti, Li)

)
0≤i≤k with

1. The first move starts and the last move ends at d.
2. Move mi+1 starts at the target node ti of its predecessor move mi.
3. The requests Li+1 \ Li start at node ti (are picked up) and the requests
Li \ Li+1 end at node ti (are dropped).

4. Every request is picked up and dropped exactly once.

I The time needed by a move m = (s, t, L) is w(s, t).

Objective

I Find a schedule with minimum completion time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 8 / 64

Dial-a-Ride Problems (offline)

Input

I weighted graph G = (V , A, w : A → R≥0)
I special node d ∈ V , called depot
I set R of node pairs (sj , tj), called requests

Solution: Schedule for a server
I A move is a triple m = (s, t, L) with (s, t) ∈ A and L ⊆ R .
I A schedule is a sequence of moves

(
mi = (si, ti, Li)

)
0≤i≤k .

I The time needed by a move m = (s, t, L) is w(s, t).

Objective

I Find a schedule with minimum completion time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 8 / 64

Dial-a-Ride Problems (offline)

Input

I weighted graph G = (V , A, w : A → R≥0)
I special node d ∈ V , called depot
I set R of node pairs (sj , tj), called requests

Solution: Schedule for a server
I A move is a triple m = (s, t, L) with (s, t) ∈ A and L ⊆ R .
I A schedule is a sequence of moves

(
mi = (si, ti, Li)

)
0≤i≤k .

I The time needed by a move m = (s, t, L) is w(s, t).

Objective

I Find a schedule with minimum completion time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 8 / 64

Online Dial-a-Ride Problems

I system operates continuously, requests arrive over time
I online control algorithm does not know anything about future

requests, note even their number
I schedule for server may change in response to new requests
I assumption: schedule may only change when the server is at a node

Benjamin Hiller (ZIB) Online optimization 10/01/2009 9 / 64

Online Dial-a-Ride Problems

Input

I weighted graph G = (V , A, w : A → R≥0), depot node d ∈ V

I sequence σ of requests (sj , tj , τj), τj is release time

Solution: Online schedule for a server
I An online schedule is a sequence of moves with

1. The sequence is a feasible (offline) schedule.
2. A request is not picked up before its release time τj .

Objectives

I Find a schedule with minimum completion time.

I Find a schedule with minimum average/maximum waiting time.
I Find a schedule with minimum average/maximum flow time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 10 / 64

Online Dial-a-Ride Problems

Input

I weighted graph G = (V , A, w : A → R≥0), depot node d ∈ V
I sequence σ of requests (sj , tj , τj), τj is release time

Solution: Online schedule for a server
I An online schedule is a sequence of moves with

1. The sequence is a feasible (offline) schedule.
2. A request is not picked up before its release time τj .

Objectives

I Find a schedule with minimum completion time.

I Find a schedule with minimum average/maximum waiting time.
I Find a schedule with minimum average/maximum flow time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 10 / 64

Online Dial-a-Ride Problems

Input

I weighted graph G = (V , A, w : A → R≥0), depot node d ∈ V
I sequence σ of requests (sj , tj , τj), τj is release time

Solution: Online schedule for a server
I An online schedule is a sequence of moves with

1. The sequence is a feasible (offline) schedule.
2. A request is not picked up before its release time τj .

Objectives

I Find a schedule with minimum completion time.

I Find a schedule with minimum average/maximum waiting time.
I Find a schedule with minimum average/maximum flow time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 10 / 64

Online Dial-a-Ride Problems

Input

I weighted graph G = (V , A, w : A → R≥0), depot node d ∈ V
I sequence σ of requests (sj , tj , τj), τj is release time

Solution: Online schedule for a server
I An online schedule is a sequence of moves with

1. The sequence is a feasible (offline) schedule.

2. A request is not picked up before its release time τj .

Objectives

I Find a schedule with minimum completion time.

I Find a schedule with minimum average/maximum waiting time.
I Find a schedule with minimum average/maximum flow time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 10 / 64

Online Dial-a-Ride Problems

Input

I weighted graph G = (V , A, w : A → R≥0), depot node d ∈ V
I sequence σ of requests (sj , tj , τj), τj is release time

Solution: Online schedule for a server
I An online schedule is a sequence of moves with

1. The sequence is a feasible (offline) schedule.
2. A request is not picked up before its release time τj .

Objectives

I Find a schedule with minimum completion time.

I Find a schedule with minimum average/maximum waiting time.
I Find a schedule with minimum average/maximum flow time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 10 / 64

Online Dial-a-Ride Problems

Input

I weighted graph G = (V , A, w : A → R≥0), depot node d ∈ V
I sequence σ of requests (sj , tj , τj), τj is release time

Solution: Online schedule for a server
I An online schedule is a sequence of moves with

1. The sequence is a feasible (offline) schedule.
2. A request is not picked up before its release time τj .

Objectives

I Find a schedule with minimum completion time.

I Find a schedule with minimum average/maximum waiting time.
I Find a schedule with minimum average/maximum flow time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 10 / 64

Online Dial-a-Ride Problems

Input

I weighted graph G = (V , A, w : A → R≥0), depot node d ∈ V
I sequence σ of requests (sj , tj , τj), τj is release time

Solution: Online schedule for a server
I An online schedule is a sequence of moves with

1. The sequence is a feasible (offline) schedule.
2. A request is not picked up before its release time τj .

Objectives

I Find a schedule with minimum completion time.
I Find a schedule with minimum average/maximum waiting time.

I Find a schedule with minimum average/maximum flow time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 10 / 64

Online Dial-a-Ride Problems

Input

I weighted graph G = (V , A, w : A → R≥0), depot node d ∈ V
I sequence σ of requests (sj , tj , τj), τj is release time

Solution: Online schedule for a server
I An online schedule is a sequence of moves with

1. The sequence is a feasible (offline) schedule.
2. A request is not picked up before its release time τj .

Objectives

I Find a schedule with minimum completion time.
I Find a schedule with minimum average/maximum waiting time.
I Find a schedule with minimum average/maximum flow time.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 10 / 64

Quality of Dial-a-Ride algorithms

Offline Dial-a-Ride problem

I The problem on general graphs is NP-hard (contains TSP).

I Algorithm ALG is called an α-approximation algorithm if
ALG(G, d, R) ≤ α ·OPT(G, d, R)

for all instances (G, d, R).

Online Dial-a-Ride problem

I An online algorithm ALG is called a c-competitive algorithm if
ALG(G, d, R) ≤ c ·OPT(G, d, R)

for all instances (G, d, R). Here, OPT is the optimal offline algorithm
that has access to the entire sequence, i.e. knows the future.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 11 / 64

Quality of Dial-a-Ride algorithms

Offline Dial-a-Ride problem

I The problem on general graphs is NP-hard (contains TSP).
I Algorithm ALG is called an α-approximation algorithm if

ALG(G, d, R) ≤ α ·OPT(G, d, R)
for all instances (G, d, R).

Online Dial-a-Ride problem

I An online algorithm ALG is called a c-competitive algorithm if
ALG(G, d, R) ≤ c ·OPT(G, d, R)

for all instances (G, d, R). Here, OPT is the optimal offline algorithm
that has access to the entire sequence, i.e. knows the future.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 11 / 64

Quality of Dial-a-Ride algorithms

Offline Dial-a-Ride problem

I The problem on general graphs is NP-hard (contains TSP).
I Algorithm ALG is called an α-approximation algorithm if

ALG(G, d, R) ≤ α ·OPT(G, d, R)
for all instances (G, d, R).

Online Dial-a-Ride problem

I An online algorithm ALG is called a c-competitive algorithm if
ALG(G, d, R) ≤ c ·OPT(G, d, R)

for all instances (G, d, R). Here, OPT is the optimal offline algorithm
that has access to the entire sequence, i.e. knows the future.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 11 / 64

Construction of online algorithms

I for simple online problems like bin packing, special online
algorithms have been designed

I for complex online problems like Dial-a-Ride, one wants to make use
of offline algorithms

Benjamin Hiller (ZIB) Online optimization 10/01/2009 12 / 64

Construction of online algorithms

I for simple online problems like bin packing, special online
algorithms have been designed

I for complex online problems like Dial-a-Ride, one wants to make use
of offline algorithms

Benjamin Hiller (ZIB) Online optimization 10/01/2009 12 / 64

Construction of online algorithms

REPLAN-strategy

I As a new request arrives, compute a new schedule for the current set
of requests using offline algorithm ALG.

I Replace the old schedule by the new one and follow this schedule
until it is finished or replaced.

IGNORE-strategy

I As a request arrives, serve it if the server is idle. If the server is not
idle, ignore the request and complete the current schedule.

I As the server becomes idle, compute a schedule for the requests
ignored so far using offline algorithm ALG and follow this schedule.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 13 / 64

Construction of online algorithms

REPLAN-strategy

I As a new request arrives, compute a new schedule for the current set
of requests using offline algorithm ALG.

I Replace the old schedule by the new one and follow this schedule
until it is finished or replaced.

IGNORE-strategy

I As a request arrives, serve it if the server is idle. If the server is not
idle, ignore the request and complete the current schedule.

I As the server becomes idle, compute a schedule for the requests
ignored so far using offline algorithm ALG and follow this schedule.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 13 / 64

Competitive analysis results

Completion time [Ascheuer, Krumke, Rambau ’00, Ausiello et al ’01]

I Both REPLAN and IGNORE are 5/2-competitive if they use an optimal
offline algorithm.

I REPLAN and IGNORE yield 5α/2-competitive algorithms if they employ
an α-approximation algorithm.

I There is an online algorithm that is 2-competitive.
I No (deterministic) online algorithm can be better than 2-competitive.

Average/maximum flow/waiting time

I There is no c-competitive online algorithm for any c ≥ 1.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 14 / 64

Competitive analysis results

Completion time [Ascheuer, Krumke, Rambau ’00, Ausiello et al ’01]

I Both REPLAN and IGNORE are 5/2-competitive if they use an optimal
offline algorithm.

I REPLAN and IGNORE yield 5α/2-competitive algorithms if they employ
an α-approximation algorithm.

I There is an online algorithm that is 2-competitive.
I No (deterministic) online algorithm can be better than 2-competitive.

Average/maximum flow/waiting time

I There is no c-competitive online algorithm for any c ≥ 1.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 14 / 64

Competitive analysis results

Completion time [Ascheuer, Krumke, Rambau ’00, Ausiello et al ’01]

I Both REPLAN and IGNORE are 5/2-competitive if they use an optimal
offline algorithm.

I REPLAN and IGNORE yield 5α/2-competitive algorithms if they employ
an α-approximation algorithm.

I There is an online algorithm that is 2-competitive.

I No (deterministic) online algorithm can be better than 2-competitive.

Average/maximum flow/waiting time

I There is no c-competitive online algorithm for any c ≥ 1.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 14 / 64

Competitive analysis results

Completion time [Ascheuer, Krumke, Rambau ’00, Ausiello et al ’01]

I Both REPLAN and IGNORE are 5/2-competitive if they use an optimal
offline algorithm.

I REPLAN and IGNORE yield 5α/2-competitive algorithms if they employ
an α-approximation algorithm.

I There is an online algorithm that is 2-competitive.
I No (deterministic) online algorithm can be better than 2-competitive.

Average/maximum flow/waiting time

I There is no c-competitive online algorithm for any c ≥ 1.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 14 / 64

Competitive analysis results

Completion time [Ascheuer, Krumke, Rambau ’00, Ausiello et al ’01]

I Both REPLAN and IGNORE are 5/2-competitive if they use an optimal
offline algorithm.

I REPLAN and IGNORE yield 5α/2-competitive algorithms if they employ
an α-approximation algorithm.

I There is an online algorithm that is 2-competitive.
I No (deterministic) online algorithm can be better than 2-competitive.

Average/maximum flow/waiting time

I There is no c-competitive online algorithm for any c ≥ 1.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 14 / 64

Proof

I Want to show: There is no c-competitive online algorithm for any
c ≥ 1.

I Meaning: For any online algorithm ALG and any c ≥ 1, there is a
sequence σALG s. t. ALGmax−flow(σALG) ≥ c ·OPTmax−flow(σALG).

I Consider the real line and a server moving at unit speed.

Let x be position of the server controlled by ALG at time 1.

I Case 1: x ≤ 0 σALG =
(
r = (1, 1, 1 + ε)

)
.

ALGmax−flow(σALG) ≥ 1 + ε
OPTmax−flow(σALG) = ε

1 d = 0 1

x
r = (1, 1, 1 + ε)

Benjamin Hiller (ZIB) Online optimization 10/01/2009 15 / 64

Proof

I Want to show: There is no c-competitive online algorithm for any
c ≥ 1.

I Meaning: For any online algorithm ALG and any c ≥ 1, there is a
sequence σALG s. t. ALGmax−flow(σALG) ≥ c ·OPTmax−flow(σALG).

I Consider the real line and a server moving at unit speed.

Let x be position of the server controlled by ALG at time 1.

I Case 1: x ≤ 0 σALG =
(
r = (1, 1, 1 + ε)

)
.

ALGmax−flow(σALG) ≥ 1 + ε
OPTmax−flow(σALG) = ε

1 d = 0 1

x
r = (1, 1, 1 + ε)

Benjamin Hiller (ZIB) Online optimization 10/01/2009 15 / 64

Proof

I Want to show: There is no c-competitive online algorithm for any
c ≥ 1.

I Meaning: For any online algorithm ALG and any c ≥ 1, there is a
sequence σALG s. t. ALGmax−flow(σALG) ≥ c ·OPTmax−flow(σALG).

I Consider the real line and a server moving at unit speed.

Let x be position of the server controlled by ALG at time 1.
I Case 1: x ≤ 0 σALG =

(
r = (1, 1, 1 + ε)

)
.

ALGmax−flow(σALG) ≥ 1 + ε
OPTmax−flow(σALG) = ε

1 d = 0 1

x
r = (1, 1, 1 + ε)

Benjamin Hiller (ZIB) Online optimization 10/01/2009 15 / 64

Proof

I Want to show: There is no c-competitive online algorithm for any
c ≥ 1.

I Meaning: For any online algorithm ALG and any c ≥ 1, there is a
sequence σALG s. t. ALGmax−flow(σALG) ≥ c ·OPTmax−flow(σALG).

I Consider the real line and a server moving at unit speed.
Let x be position of the server controlled by ALG at time 1.

I Case 1: x ≤ 0 σALG =
(
r = (1, 1, 1 + ε)

)
.

ALGmax−flow(σALG) ≥ 1 + ε
OPTmax−flow(σALG) = ε

1 d = 0 1

x
r = (1, 1, 1 + ε)

Benjamin Hiller (ZIB) Online optimization 10/01/2009 15 / 64

Proof

I Want to show: There is no c-competitive online algorithm for any
c ≥ 1.

I Meaning: For any online algorithm ALG and any c ≥ 1, there is a
sequence σALG s. t. ALGmax−flow(σALG) ≥ c ·OPTmax−flow(σALG).

I Consider the real line and a server moving at unit speed.
Let x be position of the server controlled by ALG at time 1.

I Case 1: x ≤ 0

 σALG =
(
r = (1, 1, 1 + ε)

)
.

ALGmax−flow(σALG) ≥ 1 + ε
OPTmax−flow(σALG) = ε

1 d = 0 1

x

r = (1, 1, 1 + ε)

Benjamin Hiller (ZIB) Online optimization 10/01/2009 15 / 64

Proof

I Want to show: There is no c-competitive online algorithm for any
c ≥ 1.

I Meaning: For any online algorithm ALG and any c ≥ 1, there is a
sequence σALG s. t. ALGmax−flow(σALG) ≥ c ·OPTmax−flow(σALG).

I Consider the real line and a server moving at unit speed.
Let x be position of the server controlled by ALG at time 1.

I Case 1: x ≤ 0 σALG =
(
r = (1, 1, 1 + ε)

)
.

ALGmax−flow(σALG) ≥ 1 + ε
OPTmax−flow(σALG) = ε

1 d = 0 1

x
r = (1, 1, 1 + ε)

Benjamin Hiller (ZIB) Online optimization 10/01/2009 15 / 64

Proof

I Want to show: There is no c-competitive online algorithm for any
c ≥ 1.

I Meaning: For any online algorithm ALG and any c ≥ 1, there is a
sequence σALG s. t. ALGmax−flow(σALG) ≥ c ·OPTmax−flow(σALG).

I Consider the real line and a server moving at unit speed.
Let x be position of the server controlled by ALG at time 1.

I Case 1: x ≤ 0 σALG =
(
r = (1, 1, 1 + ε)

)
.

ALGmax−flow(σALG) ≥ 1 + ε

OPTmax−flow(σALG) = ε

1 d = 0 1

x
r = (1, 1, 1 + ε)

Benjamin Hiller (ZIB) Online optimization 10/01/2009 15 / 64

Proof

I Want to show: There is no c-competitive online algorithm for any
c ≥ 1.

I Meaning: For any online algorithm ALG and any c ≥ 1, there is a
sequence σALG s. t. ALGmax−flow(σALG) ≥ c ·OPTmax−flow(σALG).

I Consider the real line and a server moving at unit speed.
Let x be position of the server controlled by ALG at time 1.

I Case 1: x ≤ 0 σALG =
(
r = (1, 1, 1 + ε)

)
.

ALGmax−flow(σALG) ≥ 1 + ε
OPTmax−flow(σALG) = ε

1 d = 0 1

x
r = (1, 1, 1 + ε)

Benjamin Hiller (ZIB) Online optimization 10/01/2009 15 / 64

Alternatives to pure competitive analysis

Theory

deterministic
I restrict input sequences
I resource augmentation
I max/max ratio
I worst order ratio
I bijective analysis
I . . . many more

probabilistic

I randomized online algorithms
I average case analysis
I diffuse adversaries
I smoothed analysis
I stochastic dominance
I . . . many more

Practice
I simulation
I Markov Decision Process policy evaluation

Benjamin Hiller (ZIB) Online optimization 10/01/2009 16 / 64

Alternatives to pure competitive analysis

Theory

deterministic
I restrict input sequences
I resource augmentation
I max/max ratio
I worst order ratio
I bijective analysis
I . . . many more

probabilistic

I randomized online algorithms
I average case analysis
I diffuse adversaries
I smoothed analysis
I stochastic dominance
I . . . many more

Practice
I simulation
I Markov Decision Process policy evaluation

Benjamin Hiller (ZIB) Online optimization 10/01/2009 16 / 64

Alternative analysis: Reasonable load

Observation
I request sequences are not restricted: arbitrarily many requests may

arrive in a short period of time

I continuously operating systems should exhibit stability
I Queueing theory: arrival rate µ < service rate ρ

Worst-case model: Reasonable load

I For request set R , let δ(R) denote the time span of R .
I A request set R is called ∆-reasonable if

For all R ′ ⊆ R with δ(R ′) ≥ ∆ we have

OPTcomp(R ′) ≤ δ(R ′).

I A request sequence σ is called ∆-reasonable if the set of all
requests in σ is ∆-reasonable.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 17 / 64

Alternative analysis: Reasonable load

Observation
I request sequences are not restricted: arbitrarily many requests may

arrive in a short period of time
I continuously operating systems should exhibit stability

I Queueing theory: arrival rate µ < service rate ρ

Worst-case model: Reasonable load

I For request set R , let δ(R) denote the time span of R .
I A request set R is called ∆-reasonable if

For all R ′ ⊆ R with δ(R ′) ≥ ∆ we have

OPTcomp(R ′) ≤ δ(R ′).

I A request sequence σ is called ∆-reasonable if the set of all
requests in σ is ∆-reasonable.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 17 / 64

Alternative analysis: Reasonable load

Observation
I request sequences are not restricted: arbitrarily many requests may

arrive in a short period of time
I continuously operating systems should exhibit stability
I Queueing theory: arrival rate µ < service rate ρ

Worst-case model: Reasonable load

I For request set R , let δ(R) denote the time span of R .
I A request set R is called ∆-reasonable if

For all R ′ ⊆ R with δ(R ′) ≥ ∆ we have

OPTcomp(R ′) ≤ δ(R ′).

I A request sequence σ is called ∆-reasonable if the set of all
requests in σ is ∆-reasonable.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 17 / 64

Alternative analysis: Reasonable load

Observation
I request sequences are not restricted: arbitrarily many requests may

arrive in a short period of time
I continuously operating systems should exhibit stability
I Queueing theory: arrival rate µ < service rate ρ

Worst-case model: Reasonable load
I For request set R , let δ(R) denote the time span of R .

I A request set R is called ∆-reasonable if
For all R ′ ⊆ R with δ(R ′) ≥ ∆ we have

OPTcomp(R ′) ≤ δ(R ′).

I A request sequence σ is called ∆-reasonable if the set of all
requests in σ is ∆-reasonable.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 17 / 64

Alternative analysis: Reasonable load

Observation
I request sequences are not restricted: arbitrarily many requests may

arrive in a short period of time
I continuously operating systems should exhibit stability
I Queueing theory: arrival rate µ < service rate ρ

Worst-case model: Reasonable load
I For request set R , let δ(R) denote the time span of R .
I A request set R is called ∆-reasonable if

For all R ′ ⊆ R with δ(R ′) ≥ ∆ we have

OPTcomp(R ′) ≤ δ(R ′).

I A request sequence σ is called ∆-reasonable if the set of all
requests in σ is ∆-reasonable.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 17 / 64

Alternative analysis: Reasonable load

Observation
I request sequences are not restricted: arbitrarily many requests may

arrive in a short period of time
I continuously operating systems should exhibit stability
I Queueing theory: arrival rate µ < service rate ρ

Worst-case model: Reasonable load
I For request set R , let δ(R) denote the time span of R .
I A request set R is called ∆-reasonable if

For all R ′ ⊆ R with δ(R ′) ≥ ∆ we have

OPTcomp(R ′) ≤ δ(R ′).

I A request sequence σ is called ∆-reasonable if the set of all
requests in σ is ∆-reasonable.
Benjamin Hiller (ZIB) Online optimization 10/01/2009 17 / 64

Results for Dial-a-Ride under reasonable load

Theorem ([Hauptmeier, Krumke, Rambau ’00])

1. Let σ be a ∆-reasonable request sequence. Then maximal flow time
achieved by IGNORE on σ is bounded by 2∆.

2. There is a ∆ ∈ R, a ∆-reasonable request sequence σ and a
request r in σ such that the flow time for r achieved by REPLAN is
unbounded.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 18 / 64

Results for Dial-a-Ride under reasonable load

Theorem ([Hauptmeier, Krumke, Rambau ’00])

1. Let σ be a ∆-reasonable request sequence. Then maximal flow time
achieved by IGNORE on σ is bounded by 2∆.

2. There is a ∆ ∈ R, a ∆-reasonable request sequence σ and a
request r in σ such that the flow time for r achieved by REPLAN is
unbounded.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 18 / 64

Proof of 2∆ bound for IGNORE

δ0 = 0 time

R0 = {r}

δ1

R1

δ2

R2

δ3

R3

I Let r be the first request arriving at time δ0 = 0.

I Define
I R0 = {r}

I δi+1 := time needed to serve Ri
I Ri+1 := set of requests arriving during serving Ri

I observation: IGNOREmax−flow(Ri) ≤ δi + δi+1
I suffices to show: δi ≤ ∆ for all i
I we have: δi+1 = OPTcomp(Ri)

≤ δ(Ri) ≤ δi ≤ max{∆, δi} ≤ ∆.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 19 / 64

Proof of 2∆ bound for IGNORE

δ0 = 0 time
R0 = {r}

δ1

R1

δ2

R2

δ3

R3

I Let r be the first request arriving at time δ0 = 0.
I Define

I R0 = {r}

I δi+1 := time needed to serve Ri
I Ri+1 := set of requests arriving during serving Ri

I observation: IGNOREmax−flow(Ri) ≤ δi + δi+1
I suffices to show: δi ≤ ∆ for all i
I we have: δi+1 = OPTcomp(Ri)

≤ δ(Ri) ≤ δi ≤ max{∆, δi} ≤ ∆.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 19 / 64

Proof of 2∆ bound for IGNORE

δ0 = 0 time
R0 = {r}

δ1

R1

δ2

R2

δ3

R3

I Let r be the first request arriving at time δ0 = 0.
I Define

I R0 = {r}
I δi+1 := time needed to serve Ri
I Ri+1 := set of requests arriving during serving Ri

I observation: IGNOREmax−flow(Ri) ≤ δi + δi+1
I suffices to show: δi ≤ ∆ for all i
I we have: δi+1 = OPTcomp(Ri)

≤ δ(Ri) ≤ δi ≤ max{∆, δi} ≤ ∆.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 19 / 64

Proof of 2∆ bound for IGNORE

δ0 = 0 time
R0 = {r}

δ1

R1

δ2

R2

δ3

R3

I Let r be the first request arriving at time δ0 = 0.
I Define

I R0 = {r}
I δi+1 := time needed to serve Ri
I Ri+1 := set of requests arriving during serving Ri

I observation: IGNOREmax−flow(Ri) ≤ δi + δi+1

I suffices to show: δi ≤ ∆ for all i
I we have: δi+1 = OPTcomp(Ri)

≤ δ(Ri) ≤ δi ≤ max{∆, δi} ≤ ∆.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 19 / 64

Proof of 2∆ bound for IGNORE

δ0 = 0 time
R0 = {r}

δ1

R1

δ2

R2

δ3

R3

I Let r be the first request arriving at time δ0 = 0.
I Define

I R0 = {r}
I δi+1 := time needed to serve Ri
I Ri+1 := set of requests arriving during serving Ri

I observation: IGNOREmax−flow(Ri) ≤ δi + δi+1 ≤ 2∆
I suffices to show: δi ≤ ∆ for all i

I we have: δi+1 = OPTcomp(Ri)

≤ δ(Ri) ≤ δi ≤ max{∆, δi} ≤ ∆.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 19 / 64

Proof of 2∆ bound for IGNORE

δ0 = 0 time
R0 = {r}

δ1

R1

δ2

R2

δ3

R3

I Let r be the first request arriving at time δ0 = 0.
I Define

I R0 = {r}
I δi+1 := time needed to serve Ri
I Ri+1 := set of requests arriving during serving Ri

I observation: IGNOREmax−flow(Ri) ≤ δi + δi+1
I suffices to show: δi ≤ ∆ for all i
I we have: δi+1 = OPTcomp(Ri)

≤ δ(Ri) ≤ δi ≤ max{∆, δi} ≤ ∆.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 19 / 64

Proof of 2∆ bound for IGNORE

δ0 = 0 time
R0 = {r}

δ1

R1

δ2

R2

δ3

R3

I Let r be the first request arriving at time δ0 = 0.
I Define

I R0 = {r}
I δi+1 := time needed to serve Ri
I Ri+1 := set of requests arriving during serving Ri

I observation: IGNOREmax−flow(Ri) ≤ δi + δi+1
I suffices to show: δi ≤ ∆ for all i
I we have: δi+1 = OPTcomp(Ri) ≤ δ(Ri) ≤ δi

≤ max{∆, δi} ≤ ∆.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 19 / 64

Proof of 2∆ bound for IGNORE

δ0 = 0 time
R0 = {r}

δ1

R1

δ2

R2

δ3

R3

I Let r be the first request arriving at time δ0 = 0.
I Define

I R0 = {r}
I δi+1 := time needed to serve Ri
I Ri+1 := set of requests arriving during serving Ri

I observation: IGNOREmax−flow(Ri) ≤ δi + δi+1
I suffices to show: δi ≤ ∆ for all i
I we have: δi+1 = OPTcomp(Ri) ≤ δ(Ri) ≤ δi ≤ max{∆, δi}

≤ ∆.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 19 / 64

Proof of 2∆ bound for IGNORE

δ0 = 0 time
R0 = {r}

δ1

R1

δ2

R2

δ3

R3

I Let r be the first request arriving at time δ0 = 0.
I Define

I R0 = {r}
I δi+1 := time needed to serve Ri
I Ri+1 := set of requests arriving during serving Ri

I observation: IGNOREmax−flow(Ri) ≤ δi + δi+1 ≤ 2∆
I suffices to show: δi ≤ ∆ for all i
I we have: δi+1 = OPTcomp(Ri) ≤ δ(Ri) ≤ δi ≤ max{∆, δi} ≤ ∆.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 19 / 64

Outline

Recap: Online optimization

Theoretical framework: Online Dial-a-Ride problems and competitive
analysis

Online Optimization in Practice: Reoptimization Algorithms
Dispatching the service vehicles of ADAC
Controlling cargo elevators in a distribution center
Controlling passenger elevators in high-rise buildings

Theory again: The Online Bin Coloring problem

Benjamin Hiller (ZIB) Online optimization 10/01/2009 20 / 64

Outline

Recap: Online optimization

Theoretical framework: Online Dial-a-Ride problems and competitive
analysis

Online Optimization in Practice: Reoptimization Algorithms
Dispatching the service vehicles of ADAC
Controlling cargo elevators in a distribution center
Controlling passenger elevators in high-rise buildings

Theory again: The Online Bin Coloring problem

Benjamin Hiller (ZIB) Online optimization 10/01/2009 21 / 64

Application #1: Dispatching the service vehicles of
ADAC

Benjamin Hiller (ZIB) Online optimization 10/01/2009 22 / 64

Application #1: Dispatching the service vehicles of
ADAC

Benjamin Hiller (ZIB) Online optimization 10/01/2009 22 / 64

Application #1: Dispatching the service vehicles of
ADAC

help center

phone call

Benjamin Hiller (ZIB) Online optimization 10/01/2009 22 / 64

Application #1: Dispatching the service vehicles of
ADAC

help center

dispatch:
human operator

phone call

Benjamin Hiller (ZIB) Online optimization 10/01/2009 22 / 64

Application #1: Dispatching the service vehicles of
ADAC

help center

dispatch:
human operatorYellow Angel

phone call

wireless transmission

Benjamin Hiller (ZIB) Online optimization 10/01/2009 22 / 64

Application #1: Dispatching the service vehicles of
ADAC

help center

dispatch:
human operatorYellow Angel

phone call

wireless transmission

service

Benjamin Hiller (ZIB) Online optimization 10/01/2009 22 / 64

ADAC break down service

Situation
I ≈ 1,700 Yellow Angels
I ≈ 1,200 road service partners with
≈ 5,000 vehicles

I 5 help centers
I on average 10,000 requests a day;

peak: 45,000 requests in 4 hours

Task
Determine assignment of the requests to units and partners. Schedule
corresponding tours for the units online and in real-time (computation time
≤ 10 seconds).

Goal
Minimize operating cost + lateness cost.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 23 / 64

Difficulties and solution strategies

I The ADAC dispatching problem is an online problem.
⇒ Reoptimization algorithm: At certain decision times, compute a
(good) dispatch for the current situation.

I The offline problem is NP-hard and there are real time requirements.
⇒ Abandon optimality and use efficient, problem-specific
approximation algorithm based on an exact approach.

I Cost structure is complex: nonlinear lateness cost, discounted
partner costs, . . .
⇒ tour-based model

Benjamin Hiller (ZIB) Online optimization 10/01/2009 24 / 64

Difficulties and solution strategies

I The ADAC dispatching problem is an online problem.
⇒ Reoptimization algorithm: At certain decision times, compute a
(good) dispatch for the current situation.

I The offline problem is NP-hard and there are real time requirements.
⇒ Abandon optimality and use efficient, problem-specific
approximation algorithm based on an exact approach.

I Cost structure is complex: nonlinear lateness cost, discounted
partner costs, . . .
⇒ tour-based model

Benjamin Hiller (ZIB) Online optimization 10/01/2009 24 / 64

Difficulties and solution strategies

I The ADAC dispatching problem is an online problem.
⇒ Reoptimization algorithm: At certain decision times, compute a
(good) dispatch for the current situation.

I The offline problem is NP-hard and there are real time requirements.
⇒ Abandon optimality and use efficient, problem-specific
approximation algorithm based on an exact approach.

I Cost structure is complex: nonlinear lateness cost, discounted
partner costs, . . .
⇒ tour-based model

Benjamin Hiller (ZIB) Online optimization 10/01/2009 24 / 64

Tour-based model: Details

û1

u1

û2

u2 r1

r2

r3

t1 t2 t3 t4 . . . tN
1 0 0 1 . . . r1
0 1 0 0 . . . r2

A 1 1 0 0 . . . r3
1 0 1 0 . . . u1
0 1 0 0 . . . u2

cT ct1 ct2 ct3 ct4 . . . ctN

xT xt1 xt2 xt3 xt4 . . . xtN

obtain set partitioning IP: min cTx
Ax = 1
x ∈ {0, 1}n

Benjamin Hiller (ZIB) Online optimization 10/01/2009 25 / 64

Tour-based model: Details

û1

u1

û2

u2 r1

r2

r3

t1

t2 t3 t4 . . . tN

1

0 0 1 . . .

r1
0

1 0 0 . . .

r2

A

1

1 0 0 . . .

r3
1

0 1 0 . . .

u1
0

1 0 0 . . .

u2

cT

ct1

ct2 ct3 ct4 . . . ctN

xT

xt1

xt2 xt3 xt4 . . . xtN

obtain set partitioning IP: min cTx
Ax = 1
x ∈ {0, 1}n

Benjamin Hiller (ZIB) Online optimization 10/01/2009 25 / 64

Tour-based model: Details

û1

u1

û2

u2 r1

r2

r3

t1 t2

t3 t4 . . . tN

1 0

0 1 . . .

r1
0 1

0 0 . . .

r2

A

1 1

0 0 . . .

r3
1 0

1 0 . . .

u1
0 1

0 0 . . .

u2

cT

ct1 ct2

ct3 ct4 . . . ctN

xT

xt1 xt2

xt3 xt4 . . . xtN

obtain set partitioning IP: min cTx
Ax = 1
x ∈ {0, 1}n

Benjamin Hiller (ZIB) Online optimization 10/01/2009 25 / 64

Tour-based model: Details

û1

u1

û2

u2 r1

r2

r3

t1 t2 t3 t4

. . . tN

1 0 0 1

. . .

r1
0 1 0 0

. . .

r2

A

1 1 0 0

. . .

r3
1 0 1 0

. . .

u1
0 1 0 0

. . .

u2

cT

ct1 ct2 ct3 ct4

. . . ctN

xT

xt1 xt2 xt3 xt4

. . . xtN

obtain set partitioning IP: min cTx
Ax = 1
x ∈ {0, 1}n

Benjamin Hiller (ZIB) Online optimization 10/01/2009 25 / 64

Tour-based model: Details

û1

u1

û2

u2 r1

r2

r3

t1 t2 t3 t4 . . . tN
1 0 0 1 . . . r1
0 1 0 0 . . . r2

A

1 1 0 0 . . . r3
1 0 1 0 . . . u1
0 1 0 0 . . . u2

cT

ct1 ct2 ct3 ct4 . . . ctN

xT

xt1 xt2 xt3 xt4 . . . xtN

obtain set partitioning IP: min cTx
Ax = 1
x ∈ {0, 1}n

Benjamin Hiller (ZIB) Online optimization 10/01/2009 25 / 64

Tour-based model: Details

û1

u1

û2

u2 r1

r2

r3

t1 t2 t3 t4 . . . tN
1 0 0 1 . . . r1
0 1 0 0 . . . r2

A 1 1 0 0 . . . r3
1 0 1 0 . . . u1
0 1 0 0 . . . u2

cT ct1 ct2 ct3 ct4 . . . ctN
xT xt1 xt2 xt3 xt4 . . . xtN

obtain set partitioning IP: min cTx
Ax = 1
x ∈ {0, 1}n

Benjamin Hiller (ZIB) Online optimization 10/01/2009 25 / 64

The reoptimization algorithm

Online problem
REPLAN strategy: When new information becomes known, compute new dispatch
by solving an instance of the offline problem (the snapshot problem).

Offline problem

I extremely many feasible tours (= columns of A)
⇒ dynamic column generation

I column generation using Branch&Bound with special search strategy
I initial IP model contains

I return-home tour for each unit
I single request tour for each partner
I a feasible dispatch from a simple best-insertion heuristic based on the

current dispatch

⇒ reasonable dual prices

Benjamin Hiller (ZIB) Online optimization 10/01/2009 26 / 64

The reoptimization algorithm

Online problem
REPLAN strategy: When new information becomes known, compute new dispatch
by solving an instance of the offline problem (the snapshot problem).

Offline problem

I extremely many feasible tours (= columns of A)
⇒ dynamic column generation

I column generation using Branch&Bound with special search strategy
I initial IP model contains

I return-home tour for each unit
I single request tour for each partner
I a feasible dispatch from a simple best-insertion heuristic based on the

current dispatch

⇒ reasonable dual prices

Benjamin Hiller (ZIB) Online optimization 10/01/2009 26 / 64

The reoptimization algorithm

Online problem
REPLAN strategy: When new information becomes known, compute new dispatch
by solving an instance of the offline problem (the snapshot problem).

Offline problem

I extremely many feasible tours (= columns of A)
⇒ dynamic column generation

I column generation using Branch&Bound with special search strategy

I initial IP model contains
I return-home tour for each unit
I single request tour for each partner
I a feasible dispatch from a simple best-insertion heuristic based on the

current dispatch

⇒ reasonable dual prices

Benjamin Hiller (ZIB) Online optimization 10/01/2009 26 / 64

The reoptimization algorithm

Online problem
REPLAN strategy: When new information becomes known, compute new dispatch
by solving an instance of the offline problem (the snapshot problem).

Offline problem

I extremely many feasible tours (= columns of A)
⇒ dynamic column generation

I column generation using Branch&Bound with special search strategy
I initial IP model contains

I return-home tour for each unit
I single request tour for each partner
I a feasible dispatch from a simple best-insertion heuristic based on the

current dispatch

⇒ reasonable dual prices

Benjamin Hiller (ZIB) Online optimization 10/01/2009 26 / 64

The reoptimization algorithm

Online problem
REPLAN strategy: When new information becomes known, compute new dispatch
by solving an instance of the offline problem (the snapshot problem).

Offline problem

I extremely many feasible tours (= columns of A)
⇒ dynamic column generation

I column generation using Branch&Bound with special search strategy
I initial IP model contains

I return-home tour for each unit
I single request tour for each partner
I a feasible dispatch from a simple best-insertion heuristic based on the

current dispatch
⇒ reasonable dual prices

Benjamin Hiller (ZIB) Online optimization 10/01/2009 26 / 64

Data and simulation setup

I ADAC provided production data of several days
⇒ input for our online simulation

I reoptimization everytime a new request arrived
I computation time ZIBDIP: 10 seconds
I computer: Xeon 2.4 GHz, 2 GB RAM
I details and further results in [Hiller, Krumke, Rambau ’06]

Benjamin Hiller (ZIB) Online optimization 10/01/2009 27 / 64

Snapshot solution quality over the day

0

3

6

9

12

15

08:00 10:00 12:00 14:00 16:00
0

0.5

1

1.5

2

2.5

3

3.5

g
a
p

in
%

lo
a
d

ra
ti

o

Benjamin Hiller (ZIB) Online optimization 10/01/2009 28 / 64

Comparison with heuristics over the day

90

105

120

135

150

165

180

08:00 10:00 12:00 14:00 16:00

c
o
s
t

in
%

re
la

ti
v
e

to
Z

IB
D

IP
ZIBDIP

BESTINSERT

2-OPT

90

105

120

135

150

08:00 10:00 12:00 14:00 16:00

c
o
s
t

in
%

re
la

ti
v
e

to
Z

IB
D

IP

ZIBDIP

BESTINSERT

2-OPT

Benjamin Hiller (ZIB) Online optimization 10/01/2009 29 / 64

Comparison waiting times (in minutes)

5

10

15

20

25

30

0 50 100 150 200 250 300

fr
a
c
ti

o
n

in
%

ZIBDIP

BESTINSERT

2-OPT

5

10

15

20

0 50 100 150 200 250 300

fr
a
c
ti

o
n

in
%

ZIBDIP

BESTINSERT

2-OPT

Benjamin Hiller (ZIB) Online optimization 10/01/2009 30 / 64

Outline

Recap: Online optimization

Theoretical framework: Online Dial-a-Ride problems and competitive
analysis

Online Optimization in Practice: Reoptimization Algorithms
Dispatching the service vehicles of ADAC
Controlling cargo elevators in a distribution center
Controlling passenger elevators in high-rise buildings

Theory again: The Online Bin Coloring problem

Benjamin Hiller (ZIB) Online optimization 10/01/2009 31 / 64

Movie

Benjamin Hiller (ZIB) Online optimization 10/01/2009 32 / 64

Application #2: Controlling cargo elevators in a
distribution center

Application: elevators in a Herlitz high rack warehouse

idealized setup in [Friese, Rambau ’06]:
I global queue for every floor
I local queue for every elevator on each floor
I pallet takes fixed time to travel from global to each local queue

Benjamin Hiller (ZIB) Online optimization 10/01/2009 33 / 64

Overview on considered control algorithms

Assign-first, route-second algorithms

FIFO elevator assignment according to round-robin; each elevator serves
its requests in FIFO order

NN request is assigned to the elevator having least load including the
new request; elevator serves nearest request next

REPLAN elevator assignment as NN; requests scheduled optimally w. r. t.
completion time

Integrated algorithms

Reopt-2-OPT determines dispatch using a 2-exchange-heuristic
Reopt-ZIBDIP determines dispatch using modified ADAC algorithm

ZIBDIP

The simulated elevator system features 5 elevators and 16 floors.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 34 / 64

Overview on considered control algorithms

Assign-first, route-second algorithms

FIFO elevator assignment according to round-robin; each elevator serves
its requests in FIFO order

NN request is assigned to the elevator having least load including the
new request; elevator serves nearest request next

REPLAN elevator assignment as NN; requests scheduled optimally w. r. t.
completion time

Integrated algorithms

Reopt-2-OPT determines dispatch using a 2-exchange-heuristic
Reopt-ZIBDIP determines dispatch using modified ADAC algorithm

ZIBDIP

The simulated elevator system features 5 elevators and 16 floors.
Benjamin Hiller (ZIB) Online optimization 10/01/2009 34 / 64

Results

average waiting time (seconds)

FIFO 2206

NN 137

Replan 1036

Reopt-2-Opt 55

Reopt-ZIBDIP 51

maximum waiting time (seconds)

FIFO 4696

NN 1468

Replan 8203

Reopt-2-Opt 224

Reopt-ZIBDIP 224

I extremely high waiting times are due to instability of the system:
number of unserved requests is ever-increasing

I control algorithm has a strong influence on the load a system can
handle:
FIFO 8 elevators needed
NN 6 elevators needed
Reopt-ZIBDIP 5 elevators needed

I for much more detailed results see [Friese, Rambau ’06]:

Benjamin Hiller (ZIB) Online optimization 10/01/2009 35 / 64

Results

I extremely high waiting times are due to instability of the system:
number of unserved requests is ever-increasing

I control algorithm has a strong influence on the load a system can
handle:
FIFO 8 elevators needed
NN 6 elevators needed
Reopt-ZIBDIP 5 elevators needed

I for much more detailed results see [Friese, Rambau ’06]:

Benjamin Hiller (ZIB) Online optimization 10/01/2009 35 / 64

Results

I extremely high waiting times are due to instability of the system:
number of unserved requests is ever-increasing

I control algorithm has a strong influence on the load a system can
handle:
FIFO 8 elevators needed
NN 6 elevators needed
Reopt-ZIBDIP 5 elevators needed

I for much more detailed results see [Friese, Rambau ’06]:

Benjamin Hiller (ZIB) Online optimization 10/01/2009 35 / 64

Results

I extremely high waiting times are due to instability of the system:
number of unserved requests is ever-increasing

I control algorithm has a strong influence on the load a system can
handle:
FIFO 8 elevators needed
NN 6 elevators needed
Reopt-ZIBDIP 5 elevators needed

I for much more detailed results see [Friese, Rambau ’06]:

Benjamin Hiller (ZIB) Online optimization 10/01/2009 35 / 64

Outline

Recap: Online optimization

Theoretical framework: Online Dial-a-Ride problems and competitive
analysis

Online Optimization in Practice: Reoptimization Algorithms
Dispatching the service vehicles of ADAC
Controlling cargo elevators in a distribution center
Controlling passenger elevators in high-rise buildings

Theory again: The Online Bin Coloring problem

Benjamin Hiller (ZIB) Online optimization 10/01/2009 36 / 64

Application #3: Controlling passenger elevators in
high-rise buildings

Elements: floors, elevators, passengers,
travel calls

Task
Serve all travel calls.

Goal
Small waiting and travel times.

Waiting time:
time for passenger to wait

Travel time:
time for passenger to arrive at destination

Benjamin Hiller (ZIB) Online optimization 10/01/2009 37 / 64

Conventional System

Two-step input for each passenger:
I Outside car: landing call providing

I start floor
I travel direction
I landing call release time

unknown: number of passengers, actual
passenger arrival times, destination floor(s)

I Inside car: car call providing
I destination floor

unknown: number of passengers

Benjamin Hiller (ZIB) Online optimization 10/01/2009 38 / 64

Conventional System

Two-step input for each passenger:
I Outside car: landing call providing

I start floor
I travel direction
I landing call release time

unknown: number of passengers, actual
passenger arrival times, destination floor(s)

I Inside car: car call providing
I destination floor

unknown: number of passengers

Benjamin Hiller (ZIB) Online optimization 10/01/2009 38 / 64

Destination Call System

Outside car:
destination call providing

I start floor
I destination floor
I release time

Known at destination call release time:
I destination floor
I number of passengers∗

I actual arrival time of each passenger∗

No possibility to confirm destination inside car (no panel).

Benjamin Hiller (ZIB) Online optimization 10/01/2009 39 / 64

Destination Call System

Outside car:
destination call providing

I start floor
I destination floor
I release time

Known at destination call release time:
I destination floor
I number of passengers∗

I actual arrival time of each passenger∗

No possibility to confirm destination inside car (no panel).

Benjamin Hiller (ZIB) Online optimization 10/01/2009 39 / 64

Two Variants of Destination Call Systems

Immediate Assignment (IA)
I after issuing a call, the passenger is immediately assigned to a

serving elevator
I used by ThyssenKrupp, Schindler, Kollmorgen Steuerungstechnik

Delayed Assignment (DA)
I issuing a call and assignment of an elevator are separate steps
I each elevator signals shortly before arrival the floors it is going to

serve, i. e., which passenger should board
I not yet implemented

Benjamin Hiller (ZIB) Online optimization 10/01/2009 40 / 64

Two Variants of Destination Call Systems

Immediate Assignment (IA)
I after issuing a call, the passenger is immediately assigned to a

serving elevator
I used by ThyssenKrupp, Schindler, Kollmorgen Steuerungstechnik

Delayed Assignment (DA)
I issuing a call and assignment of an elevator are separate steps
I each elevator signals shortly before arrival the floors it is going to

serve, i. e., which passenger should board
I not yet implemented

Benjamin Hiller (ZIB) Online optimization 10/01/2009 40 / 64

Properties of passenger elevator systems

1. A passenger never moves in opposite direction of his travel direction
(no turns)

I Passenger boards only if elevator departs in travel direction
I Elevator control has to ensure drop stops before changing direction

2. Elevator stops at a floor: no control which passengers board car
I enough capacity: all (assigned) waiting passengers with matching

travel direction / destination floor board
I not enough capacity: an arbitrary unknown subset; remaining

passengers reissue travel call

Benjamin Hiller (ZIB) Online optimization 10/01/2009 41 / 64

Properties of passenger elevator systems

1. A passenger never moves in opposite direction of his travel direction
(no turns)

I Passenger boards only if elevator departs in travel direction
I Elevator control has to ensure drop stops before changing direction

2. Elevator stops at a floor: no control which passengers board car
I enough capacity: all (assigned) waiting passengers with matching

travel direction / destination floor board
I not enough capacity: an arbitrary unknown subset; remaining

passengers reissue travel call

Benjamin Hiller (ZIB) Online optimization 10/01/2009 41 / 64

Request model for elevator schedules

We employ a general model for elevator schedules applicable to all
systems (conventional, IA, DA).

Request A set of calls that an elevator has to pickup together.
A request expresses that these calls can only be served by the same
elevator.

c1 : 1→ 5
c2 : 1→ 6
c3 : 1→ 5

IA r = {c1, c2, c3}
IA r1 = {c1, c2}

r2 = {c3}
DA r1 = {c1, c3}

r2 = {c2}

Benjamin Hiller (ZIB) Online optimization 10/01/2009 42 / 64

Request model for elevator schedules

We employ a general model for elevator schedules applicable to all
systems (conventional, IA, DA).

Request A set of calls that an elevator has to pickup together.
A request expresses that these calls can only be served by the same
elevator.

c1 : 1→ 5
c2 : 1→ 6
c3 : 1→ 5

IA r = {c1, c2, c3}
IA r1 = {c1, c2}

r2 = {c3}
DA r1 = {c1, c3}

r2 = {c2}

Benjamin Hiller (ZIB) Online optimization 10/01/2009 42 / 64

Request model for elevator schedules

We employ a general model for elevator schedules applicable to all
systems (conventional, IA, DA).

Request A set of calls that an elevator has to pickup together.
A request expresses that these calls can only be served by the same
elevator.

c1 : 1→ 5
c2 : 1→ 6
c3 : 1→ 5

IA r = {c1, c2, c3}
IA r1 = {c1, c2}

r2 = {c3}
DA r1 = {c1, c3}

r2 = {c2}

Benjamin Hiller (ZIB) Online optimization 10/01/2009 42 / 64

Request model for elevator schedules

We employ a general model for elevator schedules applicable to all
systems (conventional, IA, DA).

Request A set of calls that an elevator has to pickup together.
A request expresses that these calls can only be served by the same
elevator.

c1 : 1→ 5
c2 : 1→ 6
c3 : 1→ 5

IA r = {c1, c2, c3}
IA r1 = {c1, c2}

r2 = {c3}
DA r1 = {c1, c3}

r2 = {c2}

Benjamin Hiller (ZIB) Online optimization 10/01/2009 42 / 64

Request model for elevator schedules

We employ a general model for elevator schedules applicable to all
systems (conventional, IA, DA).

Request A set of calls that an elevator has to pickup together.
A request expresses that these calls can only be served by the same
elevator.

c1 : 1→ 5
c2 : 1→ 6
c3 : 1→ 5

IA r = {c1, c2, c3}

IA r1 = {c1, c2}
r2 = {c3}

DA r1 = {c1, c3}
r2 = {c2}

Benjamin Hiller (ZIB) Online optimization 10/01/2009 42 / 64

Request model for elevator schedules

We employ a general model for elevator schedules applicable to all
systems (conventional, IA, DA).

Request A set of calls that an elevator has to pickup together.
A request expresses that these calls can only be served by the same
elevator.

c1 : 1→ 5
c2 : 1→ 6
c3 : 1→ 5

IA r = {c1, c2, c3}

IA r1 = {c1, c2}
r2 = {c3}

DA r1 = {c1, c3}
r2 = {c2}

Benjamin Hiller (ZIB) Online optimization 10/01/2009 42 / 64

Request model for elevator schedules

We employ a general model for elevator schedules applicable to all
systems (conventional, IA, DA).

Request A set of calls that an elevator has to pickup together.
A request expresses that these calls can only be served by the same
elevator.

c1 : 1→ 5
c2 : 1→ 6
c3 : 1→ 5

IA r = {c1, c2, c3}
IA r1 = {c1, c2}

r2 = {c3}

DA r1 = {c1, c3}
r2 = {c2}

Benjamin Hiller (ZIB) Online optimization 10/01/2009 42 / 64

Exact Approach via Set Partitioning

I compute dispatch by solving set partitioning formulation

min
∑

S∈S
cSxS cost cS of a schedule S is weighted

sum of waiting and travel times

∑

S∈S : r∈S
xS = 1 r ∈ Ru

every unassigned request
r ∈ Ru is served

∑

S∈Se

xS = 1 e ∈ E every elevator e gets a feasible
schedule S ∈ Se

xS ∈ {0, 1} S ∈ S feasible schedule S can be used
or not

I pricing problem: find a minimum cost feasible schedule, serving all
requests assigned to this elevator plus some subset of the
unassigned requests (reward: dual price)

Benjamin Hiller (ZIB) Online optimization 10/01/2009 43 / 64

Exact Approach via Set Partitioning

I compute dispatch by solving set partitioning formulation

min
∑

S∈S
cSxS cost cS of a schedule S is weighted

sum of waiting and travel times

∑

S∈S : r∈S
xS = 1 r ∈ Ru

every unassigned request
r ∈ Ru is served

∑

S∈Se

xS = 1 e ∈ E every elevator e gets a feasible
schedule S ∈ Se

xS ∈ {0, 1} S ∈ S feasible schedule S can be used
or not

I pricing problem: find a minimum cost feasible schedule, serving all
requests assigned to this elevator plus some subset of the
unassigned requests (reward: dual price)

Benjamin Hiller (ZIB) Online optimization 10/01/2009 43 / 64

Branch &Bound Pricing Algorithm

r1 = {c1 : 2→ 4}, r2 = {c2 : 1→ 5}

1
A = {r1},O = {r2}

2

4

1

5

drop: c2

pickup: r2

drop: c1

pickup: r1

1

5

2

4

drop: c1

pickup: r1

drop: c2

2

4

5

drop: c2

drop: c1

pickup: r1

pickup: r2

Benjamin Hiller (ZIB) Online optimization 10/01/2009 44 / 64

Branch &Bound Pricing Algorithm

r1 = {c1 : 2→ 4}, r2 = {c2 : 1→ 5}

1
A = {r1},O = {r2}

2

4

1

5

drop: c2

pickup: r2

drop: c1

pickup: r1

1

5

2

4

drop: c1

pickup: r1

drop: c2

2

4

5

drop: c2

drop: c1

pickup: r1

pickup: r2

Node labels:
A Set of not yet picked up

assigned requests.
O Set of not yet picked up

optional requests.

I a node represents a partial
schedule

I a node is feasible if the
corresponding schedule is
feasible

Branching
I drop call
I pick up request

Benjamin Hiller (ZIB) Online optimization 10/01/2009 44 / 64

Branch &Bound Pricing Algorithm

r1 = {c1 : 2→ 4}, r2 = {c2 : 1→ 5}

1
A = {r1},O = {r2}

2

4

1

5

drop: c2

pickup: r2

drop: c1

pickup: r1

1

5

2

4

drop: c1

pickup: r1

drop: c2

2

4

5

drop: c2

drop: c1

pickup: r1

pickup: r2

Node labels:
A Set of not yet picked up

assigned requests.
O Set of not yet picked up

optional requests.

I a node represents a partial
schedule

I a node is feasible if the
corresponding schedule is
feasible

Branching
I drop call
I pick up request

Benjamin Hiller (ZIB) Online optimization 10/01/2009 44 / 64

Branch &Bound Pricing Algorithm

r1 = {c1 : 2→ 4}, r2 = {c2 : 1→ 5}

1
A = {r1},O = {r2}

2

4

1

5
drop: c2

pickup: r2

drop: c1

pickup: r1

1

5

2

4
drop: c1

pickup: r1

drop: c2

2

4

5
drop: c2

drop: c1

pickup: r1

pickup: r2

Node labels:
A Set of not yet picked up

assigned requests.
O Set of not yet picked up

optional requests.

I a node represents a partial
schedule

I a node is feasible if the
corresponding schedule is
feasible

Branching
I drop call
I pick up request

Benjamin Hiller (ZIB) Online optimization 10/01/2009 44 / 64

Branch &Bound Pricing Algorithm

r1 = {c1 : 2→ 4}, r2 = {c2 : 1→ 5}

1
A = {r1},O = {r2}

2

4

1

5
drop: c2

pickup: r2

drop: c1

pickup: r1

1

5

2

4
drop: c1

pickup: r1

drop: c2

2

4

5
drop: c2

drop: c1

pickup: r1

pickup: r2

1 2
c1

4
c1

1 2
c1

4
c1

1
c2

5
c2

1
c2

5
c2

2
c1

4
c1

1
c2

2
c1

4
c1

5
c2

Benjamin Hiller (ZIB) Online optimization 10/01/2009 44 / 64

Greedy Lower Bounds

Example partial schedule in some node in the search tree:

1 15 10 8 7 1
s1 s2 s3 s4 s5 s6

5

8

I similar bounds for the travel time of each call
 bounds on cost for each request

I comparing cost bound with dual price allows additional pruning

Benjamin Hiller (ZIB) Online optimization 10/01/2009 45 / 64

Greedy Lower Bounds

Example partial schedule in some node in the search tree:

1 15 10 8 7 1
s1 s2 s3 s4 s5 s6

5

8

request 1 : 5→ 2:

t+(1) ≥ s5.ArrivalTime + τdrv(7, 5)

I similar bounds for the travel time of each call
 bounds on cost for each request

I comparing cost bound with dual price allows additional pruning

Benjamin Hiller (ZIB) Online optimization 10/01/2009 45 / 64

Greedy Lower Bounds

Example partial schedule in some node in the search tree:

1 15 10 8 7 1
s1 s2 s3 s4 s5 s6

5

8

request 2 : 8→ 9:

t+(2) ≥ s6.ArrivalTime + τdrv(1, 8)

I similar bounds for the travel time of each call
 bounds on cost for each request

I comparing cost bound with dual price allows additional pruning

Benjamin Hiller (ZIB) Online optimization 10/01/2009 45 / 64

Greedy Lower Bounds

Example partial schedule in some node in the search tree:

1 15 10 8 7 1
s1 s2 s3 s4 s5 s6

5

8

request 2 : 8→ 9:

t+(2) ≥ s6.ArrivalTime + τdrv(1, 8)

I similar bounds for the travel time of each call
 bounds on cost for each request

I comparing cost bound with dual price allows additional pruning

Benjamin Hiller (ZIB) Online optimization 10/01/2009 45 / 64

Greedy Lower Bounds

Example partial schedule in some node in the search tree:

1 15 10 8 7 1
s1 s2 s3 s4 s5 s6

5

8

request 2 : 8→ 9:

t+(2) ≥ s6.ArrivalTime + τdrv(1, 8)

I similar bounds for the travel time of each call
 bounds on cost for each request

I comparing cost bound with dual price allows additional pruning

Benjamin Hiller (ZIB) Online optimization 10/01/2009 45 / 64

Simulation Model

I realistic time model: acceleration, maximum speed, . . .
I waiting time of elevator at a floor depends on the number of

passengers entering/leaving
I elevators stay at floor visited last if no further calls are assigned
I elevators cannot stop or reverse direction halfway between floors
I first-come-first-served boarding: at each stop, passengers enter

elevator car in order of increasing waiting time

Benjamin Hiller (ZIB) Online optimization 10/01/2009 46 / 64

Simulation Data

I building with a group of 5 elevators
serving 25 floors

I three entrance floors, two of which are
only served by two elevators

I common types of traffic
Up traffic (U): all calls start from entrance
floors

Interfloor traffic (I): uniformly distributed
start/destination floors

Down traffic (D): all calls to entrance floors
I here: one hour Real Up peak traffic with

varying intensities

Benjamin Hiller (ZIB) Online optimization 10/01/2009 47 / 64

Simulation Data

I building with a group of 5 elevators
serving 25 floors

I three entrance floors, two of which are
only served by two elevators

I common types of traffic
Up traffic (U): all calls start from entrance
floors

Interfloor traffic (I): uniformly distributed
start/destination floors

Down traffic (D): all calls to entrance floors

I here: one hour Real Up peak traffic with
varying intensities

Benjamin Hiller (ZIB) Online optimization 10/01/2009 47 / 64

Simulation Data

I building with a group of 5 elevators
serving 25 floors

I three entrance floors, two of which are
only served by two elevators

I common types of traffic
Up traffic (U): all calls start from entrance
floors

Interfloor traffic (I): uniformly distributed
start/destination floors

Down traffic (D): all calls to entrance floors
I here: one hour Real Up peak traffic with

varying intensities

Benjamin Hiller (ZIB) Online optimization 10/01/2009 47 / 64

System Comparison: Waiting Times

evaluate control algorithms using median α0.5, 90% quantile α0.9, and
average ∅ of waiting time

scenario conventional IA system DA system
α0.5 α0.9 ∅ α0.5 α0.9 ∅ α0.5 α0.9 ∅

Real Up 80% 6 22 9 11 26 12 10 25 11
Real Up 100% 7 25 10 12 34 15 9 28 12
Real Up 144% 176 436 202 16 47 20 8 37 15
Real Up 168% 493 1181 535 42 161 65 – – –

waiting times in seconds

Benjamin Hiller (ZIB) Online optimization 10/01/2009 48 / 64

System Comparison: Waiting Times

evaluate control algorithms using median α0.5, 90% quantile α0.9, and
average ∅ of waiting time

scenario conventional IA system DA system
α0.5 α0.9 ∅ α0.5 α0.9 ∅ α0.5 α0.9 ∅

Real Up 80% 6 22 9 11 26 12 10 25 11
Real Up 100% 7 25 10 12 34 15 9 28 12
Real Up 144% 176 436 202 16 47 20 8 37 15
Real Up 168% 493 1181 535 42 161 65 – – –

waiting times in seconds

Benjamin Hiller (ZIB) Online optimization 10/01/2009 48 / 64

System Comparison: Travel Times

scenario conventional IA system DA system
α0.5 α0.9 ∅ α0.5 α0.9 ∅ α0.5 α0.9 ∅

Real Up 80% 61 113 65 45 73 47 44 71 45
Real Up 100% 71 129 75 54 86 55 50 84 52
Real Up 144% 260 515 279 72 116 74 69 112 71
Real Up 168% 566 1253 611 106 235 127 – – –

travel times in seconds

Benjamin Hiller (ZIB) Online optimization 10/01/2009 49 / 64

Snapshot Solution Quality

Solution quality for snapshot problems solved for each new call
gap integrality gap between LP solution after complete pricing and final
cost of the dispatch

time total solution time including pricing and solving IP to optimality
|Ru| number of unassigned requests

quantile IA system (Real Up 168%) DA system (Real Up 144%)
gap [%] time [s] |Ru| gap [%] time [s] |Ru|

α0.5 0.0 0.01 1 0.0 0.13 7
α0.75 0.0 0.02 1 0.0 0.27 10
α0.9 0.0 0.15 2 0.0 2.09 13
α1.0 0.1 1.21 5 0.7 2540.52 21

Benjamin Hiller (ZIB) Online optimization 10/01/2009 50 / 64

Snapshot Solution Quality

Solution quality for snapshot problems solved for each new call
gap integrality gap between LP solution after complete pricing and final
cost of the dispatch

time total solution time including pricing and solving IP to optimality
|Ru| number of unassigned requests

quantile IA system (Real Up 168%) DA system (Real Up 144%)
gap [%] time [s] |Ru| gap [%] time [s] |Ru|

α0.5 0.0 0.01 1 0.0 0.13 7
α0.75 0.0 0.02 1 0.0 0.27 10
α0.9 0.0 0.15 2 0.0 2.09 13
α1.0 0.1 1.21 5 0.7 2540.52 21

Benjamin Hiller (ZIB) Online optimization 10/01/2009 50 / 64

Conclusions

I destination call systems are offer higher capacity than conventional systems

I DA systems allow to improve over both IA and conventional systems
I proven optimal dispatch often found in seconds, even for high intensity

traffic
=⇒ real-time compliant for IA systems

I for DA systems computation times still too long for practical use; but
already useful for assessing quality of heuristics

Benjamin Hiller (ZIB) Online optimization 10/01/2009 51 / 64

Conclusions

I destination call systems are offer higher capacity than conventional systems
I DA systems allow to improve over both IA and conventional systems

I proven optimal dispatch often found in seconds, even for high intensity
traffic
=⇒ real-time compliant for IA systems

I for DA systems computation times still too long for practical use; but
already useful for assessing quality of heuristics

Benjamin Hiller (ZIB) Online optimization 10/01/2009 51 / 64

Conclusions

I destination call systems are offer higher capacity than conventional systems
I DA systems allow to improve over both IA and conventional systems
I proven optimal dispatch often found in seconds, even for high intensity

traffic
=⇒ real-time compliant for IA systems

I for DA systems computation times still too long for practical use; but
already useful for assessing quality of heuristics

Benjamin Hiller (ZIB) Online optimization 10/01/2009 51 / 64

Conclusions

I destination call systems are offer higher capacity than conventional systems
I DA systems allow to improve over both IA and conventional systems
I proven optimal dispatch often found in seconds, even for high intensity

traffic
=⇒ real-time compliant for IA systems

I for DA systems computation times still too long for practical use; but
already useful for assessing quality of heuristics

Benjamin Hiller (ZIB) Online optimization 10/01/2009 51 / 64

Outline

Recap: Online optimization

Theoretical framework: Online Dial-a-Ride problems and competitive
analysis

Online Optimization in Practice: Reoptimization Algorithms
Dispatching the service vehicles of ADAC
Controlling cargo elevators in a distribution center
Controlling passenger elevators in high-rise buildings

Theory again: The Online Bin Coloring problem

Benjamin Hiller (ZIB) Online optimization 10/01/2009 52 / 64

Online Bin Coloring [Krumke et al ’01]

Task
Put a sequence of n colored items into m bins, subject to:

I As soon as a bin has B items it is replaced by an empty one (but no
earlier).

I Items must be packed without knowledge of future items, i. e., online.
I Items may not be rearranged between the bins.

Goal
Minimize the maximum number of colors in a bin (colorfulness).

Benjamin Hiller (ZIB) Online optimization 10/01/2009 53 / 64

Online Bin Coloring [Krumke et al ’01]

Task
Put a sequence of n colored items into m bins, subject to:

I As soon as a bin has B items it is replaced by an empty one (but no
earlier).

I Items must be packed without knowledge of future items, i. e., online.
I Items may not be rearranged between the bins.

Goal
Minimize the maximum number of colors in a bin (colorfulness).

Benjamin Hiller (ZIB) Online optimization 10/01/2009 53 / 64

Three Algorithms

sequence for m = 2, B = 3: 1 2 3 4 5 6 7 8 9 10

ONEBIN Put all items in first bin. 1 2 3 4 5 6 7 8 9 101:
2:

FIXEDCOLORS Assign each bin
equally many colors. Put only
items with one of those colors in
the bin.

1 2 5 6 7 8

3 4 9 10

1:
2:

GREEDYFIT Put an item with a
new color in a bin which
currently has least colorfulness.

1 3 5 7 9

2 4 6 8 10

1:
2:

Benjamin Hiller (ZIB) Online optimization 10/01/2009 54 / 64

Three Algorithms

sequence for m = 2, B = 3: 1 2 3 4 5 6 7 8 9 10

ONEBIN Put all items in first bin. 1 2 3 4 5 6 7 8 9 101:
2:

FIXEDCOLORS Assign each bin
equally many colors. Put only
items with one of those colors in
the bin.

1 2 5 6 7 8

3 4 9 10

1:
2:

GREEDYFIT Put an item with a
new color in a bin which
currently has least colorfulness.

1 3 5 7 9

2 4 6 8 10

1:
2:

Benjamin Hiller (ZIB) Online optimization 10/01/2009 54 / 64

Three Algorithms

sequence for m = 2, B = 3: 1 2 3 4 5 6 7 8 9 10

ONEBIN Put all items in first bin. 1 2 3 4 5 6 7 8 9 101:
2:

FIXEDCOLORS Assign each bin
equally many colors. Put only
items with one of those colors in
the bin.

1 2 5 6 7 8

3 4 9 10

1:
2:

GREEDYFIT Put an item with a
new color in a bin which
currently has least colorfulness.

1 3 5 7 9

2 4 6 8 10

1:
2:

Benjamin Hiller (ZIB) Online optimization 10/01/2009 54 / 64

Three Algorithms

sequence for m = 2, B = 3: 1 2 3 4 5 6 7 8 9 10

ONEBIN Put all items in first bin. 1 2 3 4 5 6 7 8 9 101:
2:

FIXEDCOLORS Assign each bin
equally many colors. Put only
items with one of those colors in
the bin.

1 2 5 6 7 8

3 4 9 10

1:
2:

GREEDYFIT Put an item with a
new color in a bin which
currently has least colorfulness.

1 3 5 7 9

2 4 6 8 10

1:
2:

Benjamin Hiller (ZIB) Online optimization 10/01/2009 54 / 64

Competitive Analysis Results [Krumke et al ’01]

I GREEDYFIT has competitive ratio not greater than 3m, but greater or
equal to 2m.

I ONEBIN has competitive ratio at most 2m− 1.

I simulations (random data): GREEDYFIT significantly better than
ONEBIN

I from now on: sequence is constructed by choosing each color
independently according to distribution γ

Benjamin Hiller (ZIB) Online optimization 10/01/2009 55 / 64

Competitive Analysis Results [Krumke et al ’01]

I GREEDYFIT has competitive ratio not greater than 3m, but greater or
equal to 2m.

I ONEBIN has competitive ratio at most 2m− 1.

I simulations (random data): GREEDYFIT significantly better than
ONEBIN

I from now on: sequence is constructed by choosing each color
independently according to distribution γ

Benjamin Hiller (ZIB) Online optimization 10/01/2009 55 / 64

Competitive Analysis Results [Krumke et al ’01]

I GREEDYFIT has competitive ratio not greater than 3m, but greater or
equal to 2m.

I ONEBIN has competitive ratio at most 2m− 1.

I simulations (random data): GREEDYFIT significantly better than
ONEBIN

I from now on: sequence is constructed by choosing each color
independently according to distribution γ

Benjamin Hiller (ZIB) Online optimization 10/01/2009 55 / 64

New idea for analysis: Use stochastic dominance

Stochastic Dominance
Let X and Y be random variables with distribution functions FX and FY .
X is stochastically dominated by Y , written X ≤st Y , if

FX (x) ≥ FY (x) for all x ∈ R.

1.0

FX (x)
FY (x)

Benjamin Hiller (ZIB) Online optimization 10/01/2009 56 / 64

Example: Stochastic Dominance for Bin Colorfulness

Colorfulness distribution for m = 3, B = 5, C = 15

#Items FIXEDCOLORS GREEDYFIT
5 0.028, 0.657, 0.971, 1.000, 1.000 0.094, 1.000, 1.000, 1.000, 1.000

10 0.054, 0.619, 0.975, 1.000 0.189, 0.981, 1.000, 1.000
20 0.001, 0.192, 0.896, 1.000 0.009, 0.725, 0.999, 1.000
40 0.021, 0.766, 1.000 0.429, 0.999, 1.000
80 0.560, 1.000 0.149, 0.998, 1.000

160 0.299, 1.000 0.018, 0.993, 1.000
1000 1.000 0.956, 1.000

Shown is the cumulative distribution function!

Benjamin Hiller (ZIB) Online optimization 10/01/2009 57 / 64

Example: Stochastic Dominance for Bin Colorfulness

Colorfulness distribution for m = 3, B = 5, C = 15

#Items FIXEDCOLORS GREEDYFIT
5 0.028, 0.657, 0.971, 1.000, 1.000 0.094, 1.000, 1.000, 1.000, 1.000

10 0.054, 0.619, 0.975, 1.000 0.189, 0.981, 1.000, 1.000
20 0.001, 0.192, 0.896, 1.000 0.009, 0.725, 0.999, 1.000
40 0.021, 0.766, 1.000 0.429, 0.999, 1.000
80 0.560, 1.000 0.149, 0.998, 1.000

160 0.299, 1.000 0.018, 0.993, 1.000
1000 1.000 0.956, 1.000

Shown is the cumulative distribution function!

Benjamin Hiller (ZIB) Online optimization 10/01/2009 57 / 64

A Stochastic Dominance Result

Theorem ([Hiller, Vredeveld ’08])
Assume that the color sequence Σ is generated by choosing each color
independently at random according to color distribution γ. Then

GF(Σ) ≤st OB(Σ).

Proof involves some probability tools . . .
I Markov chains
I stopping times
I mixtures of probability distributions
I couplings

. . . but it is straightforward.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 58 / 64

Consequences of the result

I X ≤st Y =⇒ E [X] ≤ E [Y]

I X ≤st Y =⇒ f(X) ≤st f(Y) for every non-decreasing function f
I better average competitive ratio, i. e., E[GFn]

E[OPTn] ≤
E[OBn]
E[OPTn]

I stochastic dominance for the uniform distribution is equivalent to a
bijective analysis [Angelopoulos et al ’07] result:

There is a bijective
map φ on the sequences s. t.

GF(σ) ≤ OB(φ(σ)) ∀σ

3σ1:
GF

4
OB

2σ2: 3
3σ3: 4
4σ4: 3
2σ5: 2

φ

Benjamin Hiller (ZIB) Online optimization 10/01/2009 59 / 64

Consequences of the result

I X ≤st Y =⇒ E [X] ≤ E [Y]
I X ≤st Y =⇒ f(X) ≤st f(Y) for every non-decreasing function f

I better average competitive ratio, i. e., E[GFn]
E[OPTn] ≤

E[OBn]
E[OPTn]

I stochastic dominance for the uniform distribution is equivalent to a
bijective analysis [Angelopoulos et al ’07] result:

There is a bijective
map φ on the sequences s. t.

GF(σ) ≤ OB(φ(σ)) ∀σ

3σ1:
GF

4
OB

2σ2: 3
3σ3: 4
4σ4: 3
2σ5: 2

φ

Benjamin Hiller (ZIB) Online optimization 10/01/2009 59 / 64

Consequences of the result

I X ≤st Y =⇒ E [X] ≤ E [Y]
I X ≤st Y =⇒ f(X) ≤st f(Y) for every non-decreasing function f
I better average competitive ratio, i. e., E[GFn]

E[OPTn] ≤
E[OBn]
E[OPTn]

I stochastic dominance for the uniform distribution is equivalent to a
bijective analysis [Angelopoulos et al ’07] result:

There is a bijective
map φ on the sequences s. t.

GF(σ) ≤ OB(φ(σ)) ∀σ

3σ1:
GF

4
OB

2σ2: 3
3σ3: 4
4σ4: 3
2σ5: 2

φ

Benjamin Hiller (ZIB) Online optimization 10/01/2009 59 / 64

Consequences of the result

I X ≤st Y =⇒ E [X] ≤ E [Y]
I X ≤st Y =⇒ f(X) ≤st f(Y) for every non-decreasing function f
I better average competitive ratio, i. e., E[GFn]

E[OPTn] ≤
E[OBn]
E[OPTn]

I stochastic dominance for the uniform distribution is equivalent to a
bijective analysis [Angelopoulos et al ’07] result:

There is a bijective
map φ on the sequences s. t.

GF(σ) ≤ OB(φ(σ)) ∀σ

3σ1:
GF

4
OB

2σ2: 3
3σ3: 4
4σ4: 3
2σ5: 2

φ

Benjamin Hiller (ZIB) Online optimization 10/01/2009 59 / 64

Consequences of the result

I X ≤st Y =⇒ E [X] ≤ E [Y]
I X ≤st Y =⇒ f(X) ≤st f(Y) for every non-decreasing function f
I better average competitive ratio, i. e., E[GFn]

E[OPTn] ≤
E[OBn]
E[OPTn]

I stochastic dominance for the uniform distribution is equivalent to a
bijective analysis [Angelopoulos et al ’07] result:

There is a bijective
map φ on the sequences s. t.

GF(σ) ≤ OB(φ(σ)) ∀σ

3σ1:
GF

4
OB

2σ2: 3
3σ3: 4
4σ4: 3
2σ5: 2

φ

Benjamin Hiller (ZIB) Online optimization 10/01/2009 59 / 64

Consequences of the result

I X ≤st Y =⇒ E [X] ≤ E [Y]
I X ≤st Y =⇒ f(X) ≤st f(Y) for every non-decreasing function f
I better average competitive ratio, i. e., E[GFn]

E[OPTn] ≤
E[OBn]
E[OPTn]

I stochastic dominance for the uniform distribution is equivalent to a
bijective analysis [Angelopoulos et al ’07] result:

There is a bijective
map φ on the sequences s. t.

GF(σ) ≤ OB(φ(σ)) ∀σ

3σ1:
GF

4
OB

2σ2: 3
3σ3: 4
4σ4: 3
2σ5: 2

φ

Benjamin Hiller (ZIB) Online optimization 10/01/2009 59 / 64

Consequences of the result

I X ≤st Y =⇒ E [X] ≤ E [Y]
I X ≤st Y =⇒ f(X) ≤st f(Y) for every non-decreasing function f
I better average competitive ratio, i. e., E[GFn]

E[OPTn] ≤
E[OBn]
E[OPTn]

I stochastic dominance for the uniform distribution is equivalent to a
bijective analysis [Angelopoulos et al ’07] result:

There is a bijective
map φ on the sequences s. t.

GF(σ) ≤ OB(φ(σ)) ∀σ

3σ1:
GF

4
OB

2σ2: 3
3σ3: 4
4σ4: 3
2σ5: 2

φ

Benjamin Hiller (ZIB) Online optimization 10/01/2009 59 / 64

Consequences of the result

I X ≤st Y =⇒ E [X] ≤ E [Y]
I X ≤st Y =⇒ f(X) ≤st f(Y) for every non-decreasing function f
I better average competitive ratio, i. e., E[GFn]

E[OPTn] ≤
E[OBn]
E[OPTn]

I stochastic dominance for the uniform distribution is equivalent to a
bijective analysis [Angelopoulos et al ’07] result: There is a bijective
map φ on the sequences s. t.

GF(σ) ≤ OB(φ(σ)) ∀σ

3σ1:
GF

4
OB

2σ2: 3
3σ3: 4
4σ4: 3
2σ5: 2

φ

Benjamin Hiller (ZIB) Online optimization 10/01/2009 59 / 64

Summary

Theory

I Competitive analysis and its variants are the main tool to study
online algorithms.

I Different measures and ways of analysis might provide more
useful / interesting results.

Practice
I Exact reoptimization algorithms perform well in practice.
I Mathematical programming techniques can sometimes be used to

obtain really fast algorithms.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 60 / 64

References I

Spyros Angelopoulos, Reza Dorrigiv, and Alejandro López-Ortiz.
On the separation and equivalence of paging strategies.
In SODA 2007, pages 229–237, 2007.

Giorgio Ausiello, Esteban Feuerstein, Stefano Leonardi, Leen
Stougie, and M. Talamo.
Algorithms for the on-line travelling salesman.
Algorithmica, 29(4):560–581, 2001.

Norbert Ascheuer, Sven O. Krumke, and Jörg Rambau.
Online Dial-a-Ride problems: Minimizing the completion time.
In Proceedings of the 17st Symposium on Theoretical Aspects of
Computer Science, volume 1770 of Lecture Notes in Computer
Science, pages 639–650. Springer, 2000.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 61 / 64

References II

Philipp Friese and Jörg Rambau.
Online-optimization of a multi-elevator transport system with
reoptimization algorithms based on set-partitioning models.
Discrete Appl. Math., 154(13):1908–1931, 2006.
also available as ZIB Report 05-03.

Dietrich Hauptmeier, Sven O. Krumke, and Jörg Rambau.
The online Dial-a-Ride problem under reasonable load.
In CIAC 2000, volume 1767 of Lecture Notes in Computer Science,
pages 125–136. Springer, 2000.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 62 / 64

References III

Benjamin Hiller, Sven Oliver Krumke, and Jörg Rambau.
Reoptimization gaps versus model errors in online-dispatching of
service units for ADAC.
Discrete Appl. Math., 154(13):1897–1907, 2006.
Traces of the Latin American Conference on Combinatorics, Graphs
and Applications – A selection of papers from LACGA 2004,
Santiago, Chile.

Benjamin Hiller and Tjark Vredeveld.
Probabilistic analysis of online bin coloring algorithms via stochastic
comparison.
In Proceedings of the 16th Annual European Symposium on
Algorithms, volume 5193 of Lecture Notes in Computer Science,
pages 528–539. Springer, 2008.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 63 / 64

References IV

Sven Oliver Krumke, Willem E. de Paepe, Leen Stougie, and Jörg
Rambau.
Online bin coloring.
In Friedhelm Meyer auf der Heide, editor, Proceedings of the 9th
Annual European Symposium on Algorithms, volume 2161 of Lecture
Notes in Computer Science, pages 74–84, 2001.

Sven Oliver Krumke, Jörg Rambau, and Luis M. Torres.
Realtime-dispatching of guided and unguided automobile service
units with soft time windows.
In Rolf H. Möhring and Rajeev Raman, editors, Proceedings of the
10th Annual European Symposium on Algorithms, volume 2461 of
Lecture Notes in Computer Science, pages 637–648. Springer, 2002.

Benjamin Hiller (ZIB) Online optimization 10/01/2009 64 / 64

	Recap: Online optimization
	Theoretical framework: Online Dial-a-Ride problems and competitive analysis
	Online Optimization in Practice: Reoptimization Algorithms
	Dispatching the service vehicles of ADAC
	Controlling cargo elevators in a distribution center
	Controlling passenger elevators in high-rise buildings

	Theory again: The Online Bin Coloring problem

