Cutting Planes and Primal Heuristics
CO@Work Berlin

Timo Berthold and Kati Wolter

09/30/2009
Cutting Planes and Primal Heuristics

CO@Work Berlin

Timo Berthold and Kati Wolter

09/30/2009
\[\mathcal{F}_{IP} := \{ x \in \mathbb{Z}_+^n : Ax \leq b \} \]

\[\mathcal{F}_{LP} := \{ x \in \mathbb{R}_+^n : Ax \leq b \} \]
Observation

- $\text{conv}(\mathcal{F}_{IP})$ is a polyhedron
- IP can be formulated as LP

Problems with $\text{conv}(\mathcal{F}_{IP})$:
- linear description not known
- large nr. of constraints needed
General Cutting Plane Method

Observation

- \(\text{conv}(\mathcal{F}_{\text{IP}}) \) is a polyhedron
- IP can be formulated as LP

Problems with \(\text{conv}(\mathcal{F}_{\text{IP}}) \):

- linear description not known
- large nr. of constraints needed

\[
\min \{ c^T x : x \in \text{conv}(\mathcal{F}_{\text{IP}}) \}
\]
General Cutting Plane Method

Observation

- \(\text{conv}(\mathcal{F}_{IP}) \) is a polyhedron
- IP can be formulated as LP

Problems with \(\text{conv}(\mathcal{F}_{IP}) \):

- linear description not known
- large nr. of constraints needed

\[
\min \{ c^T x : x \in \text{conv}(\mathcal{F}_{IP}) \}
\]

\[
\mathcal{F}_{LP} \supseteq \mathcal{F} \supseteq \text{conv}(\mathcal{F}_{IP})
\]

\[
\min \{ c^T x : x \in \mathcal{F}_{LP} \} \leq \min \{ c^T x : x \in \mathcal{F} \} = \min \{ c^T x : x \in \text{conv}(\mathcal{F}_{IP}) \}
\]
Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{LP}$
2. Solve
 \[
 \begin{align*}
 \min & \quad c^T x \\
 \text{s.t.} & \quad x \in \mathcal{F}
 \end{align*}
 \]
3. If $x^* \in \mathcal{F}_{IP}$: Stop
4. Add inequality to \mathcal{F} that is ...
 - valid for $\text{conv}(\mathcal{F}_{IP})$ but
 - violated by x^*.
5. Goto 2.
General Cutting Plane Method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{LP}$
2. Solve
 \[
 \min c^T x \\
 \text{s.t. } x \in \mathcal{F}
 \]
3. If $x^* \in \mathcal{F}_{IP}$: Stop
4. Add inequality to \mathcal{F} that is ...
 - valid for $\text{conv}(\mathcal{F}_{IP})$ but
 - violated by x^*.
5. Goto 2.
General Cutting Plane Method

Algorithm

1. $F \leftarrow F_{LP}$

2. Solve

\[
\min c^T x \\
\text{s.t.} \quad x \in F
\]

3. If $x^* \in F_{IP}$: Stop

4. Add inequality to F that is ...
 - valid for $\text{conv}(F_{IP})$ but
 - violated by x^*.

5. Goto 2.
General Cutting Plane Method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{LP}$

2. Solve

 $\min \ c^T x$
 s.t. $x \in \mathcal{F}$

3. If $x^* \in \mathcal{F}_{IP}$: Stop

4. Add inequality to \mathcal{F} that is ...
 - valid for $\text{conv}(\mathcal{F}_{IP})$ but
 - violated by x^*.

5. Goto 2.
Algorithm

1. \(F \leftarrow F_{LP} \)
2. Solve
 \[
 \begin{align*}
 \min & \quad c^T x \\
 \text{s.t.} & \quad x \in F
 \end{align*}
 \]
3. If \(x^* \in F_{IP} \): Stop
4. Add inequality to \(F \) that is ...
 - valid for \(\text{conv}(F_{IP}) \) but
 - violated by \(x^* \).
5. Goto 2.
Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{LP}$
2. Solve
 \[\min c^T x \quad \text{s.t.} \quad x \in \mathcal{F} \]
3. If $x^* \in \mathcal{F}_{IP}$: Stop
4. Add inequality to \mathcal{F} that is ...
 - valid for $\text{conv}(\mathcal{F}_{IP})$ but
 - violated by x^*.
5. Goto 2.
Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{\text{LP}}$

2. Solve

 \[
 \text{min } c^T x \\
 \text{s.t. } x \in \mathcal{F}
 \]

3. If $x^* \in \mathcal{F}_{\text{IP}}$: Stop

4. Add inequality to \mathcal{F} that is ...
 - valid for $\text{conv}(\mathcal{F}_{\text{IP}})$ but
 - violated by x^*.

5. Goto 2.
General Cutting Plane Method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{LP}$
2. Solve
 \[
 \min c^T x \\
 \text{s.t. } x \in \mathcal{F}
 \]
3. If $x^* \in \mathcal{F}_{IP}$: Stop
4. Add inequality to \mathcal{F} that is ...
 ▶ valid for $\text{conv}(\mathcal{F}_{IP})$ but
 ▶ violated by x^*.
5. Goto 2.
Algorithm

1. \(\mathcal{F} \leftarrow \mathcal{F}_{\text{LP}} \)

2. Solve
 \[
 \min c^T x \\
 \text{s.t. } x \in \mathcal{F}
 \]

3. If \(x^* \in \mathcal{F}_{\text{IP}} \): Stop

4. Add inequality to \(\mathcal{F} \) that is ...
 - valid for \(\text{conv}(\mathcal{F}_{\text{IP}}) \) but
 - violated by \(x^* \).

5. Goto 2.
Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{\text{LP}}$

2. Solve

$$\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad x \in \mathcal{F}
\end{align*}$$

3. If $x^* \in \mathcal{F}_{\text{IP}}$: Stop

4. Add inequality to \mathcal{F} that is ...
 - valid for $\text{conv}(\mathcal{F}_{\text{IP}})$ but
 - violated by x^*.

5. Goto 2.
General Cutting Plane Method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{LP}$

2. Solve

 $$\min c^T x \quad \text{s.t.} \quad x \in \mathcal{F}$$

3. If $x^* \in \mathcal{F}_{IP}$: Stop

4. Add inequality to \mathcal{F} that is ...
 - valid for $\text{conv}(\mathcal{F}_{IP})$ but
 - violated by x^*.

5. Goto 2.
Algorithm

1. \(\mathcal{F} \leftarrow \mathcal{F}_{\text{LP}} \)
2. Solve
 \[
 \min \ c^T x \\
 \text{s.t.} \quad x \in \mathcal{F}
 \]
3. If \(x^* \in \mathcal{F}_{\text{IP}} \): Stop
4. Add inequality to \(\mathcal{F} \) that is ...
 - valid for \(\text{conv}(\mathcal{F}_{\text{IP}}) \) but
 - violated by \(x^* \).
5. Goto 2.
Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{LP}$

2. Solve

 $$\min \ c^T x$$

 s.t. \quad x \in \mathcal{F}

3. If $x^* \in \mathcal{F}_{IP}$: Stop

4. Add inequality to \mathcal{F} that is ...
 - valid for $\text{conv}(\mathcal{F}_{IP})$ but
 - violated by x^*.

5. Goto 2.
General Cutting Plane Method

Algorithm

1. \(\mathcal{F} \leftarrow \mathcal{F}_{LP} \)

2. Solve

\[
\min c^T x \\
\text{s.t. } x \in \mathcal{F}
\]

3. If \(x^* \in \mathcal{F}_{IP} \): Stop

4. Add inequality to \(\mathcal{F} \) that is ... ▶ valid for \(\text{conv}(\mathcal{F}_{IP}) \) but ▶ violated by \(x^* \).

5. Goto 2.
Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{\text{LP}}$

2. Solve
 $$\min \ c^T x \quad \text{s.t.} \quad x \in \mathcal{F}$$

3. If $x^* \in \mathcal{F}_{\text{IP}}$: Stop

4. Add inequality to \mathcal{F} that is ...
 - valid for $\text{conv}(\mathcal{F}_{\text{IP}})$ but
 - violated by x^*.

5. Goto 2.
Cutting Plane Separation in SCIP

Techniques

▷ General cuts:
 ◀ complemented MIR cuts
 ◀ Gomory mixed integer cuts
 ◀ strong Chvátal-Gomory cuts
 ◀ \(\{0, \frac{1}{2}\}\)-cuts
 ◀ implied bound cuts

▷ Problem specific cuts:
 ◀ 0-1 knapsack problem
 ◀ stable set problem
 ◀ 0-1 single node flow problem
 ◀ multi-commodity-flow problem

Results

▷ Very important component
▷ In particular, c-MIR cuts
▷ Coordination important
Techniques

- **General cuts:**
 - complemented MIR cuts
 - Gomory mixed integer cuts
 - strong Chvátal-Gomory cuts
 - \{0, \frac{1}{2}\}-cuts
 - implied bound cuts

- **Problem specific cuts:**
 - 0-1 knapsack problem
 - stable set problem
 - 0-1 single node flow problem
 - multi-commodity-flow problem

Results

- Very important component
- In particular, c-MIR cuts
- Coordination important
Cuts for the 0-1 Knapsack Problem

Feasible region: \((b \in \mathbb{Z}_+, a_j \in \mathbb{Z}_+ \ \forall j \in N)\)

\[
X^{BK} := \{ x \in \{0, 1\}^n : \sum_{j \in N} a_j x_j \leq b \}
\]

Minimal Cover: \(C \subseteq N\)

\[
\begin{align*}
\sum_{j \in C} a_j &> b \\
\sum_{j \in C \setminus \{i\}} a_j &\leq b \ \forall \ i \in C
\end{align*}
\]

Minimal Cover Inequality

\[
\sum_{j \in C} x_j \leq |C| - 1
\]

Minimal cover:
\(C = \{2, 3, 4\}\)

Minimal cover inequality:
\(x_2 + x_3 + x_4 \leq 2\)
Theorem:

If $C \subseteq N$ is a minimal cover for X^{BK}, then the minimal cover inequality

$$\sum_{j \in C} x_j \leq |C| - 1$$

defines a facet of

$$\text{conv}(X^{BK} \cap \{ x \in \{0,1\}^n : x_j = 0 \text{ for all } j \in N \setminus C \}).$$

Use sequential up-lifting to strengthen minimal cover inequalities.
Sequential Up-lifting

$X^{BK} = \{ x \in \{0, 1\}^4 : 5x_1 + 6x_2 + 2x_3 + 2x_4 \leq 8 \}$

$C = \{2, 3, 4\}$

$\sum_{j \in C} x_j \leq 2$ valid for $X^{BK} \cap \{ x \in \{0, 1\}^4 : x_1 = 0 \}$

(I) $\sum_{j \in C} x_j + \alpha_1 x_1 \leq 2$ valid for X^{BK}
Sequential Up-lifting

- $X^{BK} = \{ x \in \{0, 1\}^4 : 5x_1 + 6x_2 + 2x_3 + 2x_4 \leq 8 \}$
- $C = \{2, 3, 4\}$

$$\sum_{j \in C} x_j \leq 2 \quad \text{valid for } X^{BK} \cap \{ x \in \{0, 1\}^4 : x_1 = 0 \}$$

$$(I) \sum_{j \in C} x_j + \alpha_1 x_1 \leq 2 \quad \text{valid for } X^{BK}$$

Step 1: Inequality (I) is valid for $X^{BK} \cap \{ x \in \{0, 1\}^4 : x_1 = 0 \}$
Sequential Up-lifting

- $X^{BK} = \{ x \in \{0, 1\}^4 : 5x_1 + 6x_2 + 2x_3 + 2x_4 \leq 8 \}$
- $C = \{2, 3, 4\}$

\[
\sum_{j \in C} x_j \leq 2 \quad \text{valid for } X^{BK} \cap \{ x \in \{0, 1\}^4 : x_1 = 0 \}
\]

\[
(I) \quad \sum_{j \in C} x_j + \alpha_1 x_1 \leq 2 \quad \text{valid for } X^{BK}
\]

Step 1: Inequality (I) is valid for $X^{BK} \cap \{ x \in \{0, 1\}^4 : x_1 = 0 \}$

\[
\Leftrightarrow \sum_{j \in C} x_j + \alpha_1 \cdot 0 \leq 2 \quad \text{is valid for } X^{BK} \cap \{ x \in \{0, 1\}^4 : x_1 = 0 \}
\]
Sequential Up-lifting

▷ $X^{BK} = \{ x \in \{0, 1\}^4 : 5x_1 + 6x_2 + 2x_3 + 2x_4 \leq 8 \}$

▷ $C = \{2, 3, 4\}$

$$\sum_{j \in C} x_j \leq 2 \quad \text{valid for } X^{BK} \cap \{ x \in \{0, 1\}^4 : x_1 = 0 \}$$

(l) $$\sum_{j \in C} x_j + \alpha_1 x_1 \leq 2 \quad \text{valid for } X^{BK}$$

Step 1: Inequality (l) is valid for $X^{BK} \cap \{ x \in \{0, 1\}^4 : x_1 = 0 \}$

$$\Leftrightarrow \sum_{j \in C} x_j + \alpha_1 \cdot 0 \leq 2 \quad \text{is valid for } X^{BK} \cap \{ x \in \{0, 1\}^4 : x_1 = 0 \}$$

$$\Leftrightarrow \alpha_1 \in [-\infty, \infty]$$
Sequential Up-lifting

- $X^{BK} = \{x \in \{0, 1\}^4 : 5x_1 + 6x_2 + 2x_3 + 2x_4 \leq 8\}$
- $C = \{2, 3, 4\}$

\[
\sum_{j \in C} x_j \leq 2 \quad \text{valid for } X^{BK} \cap \{x \in \{0, 1\}^4 : x_1 = 0\},
\]

(I) \[
\sum_{j \in C} x_j + \alpha_1 x_1 \leq 2 \quad \text{valid for } X^{BK}
\]

Step 2: Inequality (I) is valid for $X^{BK} \cap \{x \in \{0, 1\}^4 : x_1 = 1\}$
Sequential Up-lifting

$X^{BK} = \{ x \in \{0, 1\}^4 : 5x_1 + 6x_2 + 2x_3 + 2x_4 \leq 8 \}$

$C = \{2, 3, 4\}$

\[
\sum_{j \in C} x_j \leq 2 \quad \text{valid for } X^{BK} \cap \{ x \in \{0, 1\}^4 : x_1 = 0 \}
\]

(I) \[
\sum_{j \in C} x_j + \alpha_1 x_1 \leq 2 \quad \text{valid for } X^{BK}
\]

Step 2: Inequality (I) is valid for $X^{BK} \cap \{ x \in \{0, 1\}^4 : x_1 = 1 \}$

\[\Leftrightarrow \sum_{j \in C} x_j + \alpha_1 \cdot 1 \leq 2 \quad \text{is valid for } \{ x \in \{0, 1\}^4 : 6x_2 + 2x_3 + 2x_4 \leq 8 - 5 \}\]
Sequential Up-lifting

$\setminus X^B = \{x \in \{0, 1\}^4 : 5x_1 + 6x_2 + 2x_3 + 2x_4 \leq 8\}$

$\setminus C = \{2, 3, 4\}$

$$\sum_{j \in C} x_j \leq 2 \quad \text{valid for } X^B \cap \{x \in \{0, 1\}^4 : x_1 = 0\}$$

$$(l) \quad \sum_{j \in C} x_j + \alpha_1 x_1 \leq 2 \quad \text{valid for } X^B$$

Step 2: Inequality (l) is valid for $X^B \cap \{x \in \{0, 1\}^4 : x_1 = 1\}$

$$\iff \sum_{j \in C} x_j + \alpha_1 \cdot 1 \leq 2 \text{ is valid for } \{x \in \{0, 1\}^4 : 6x_2 + 2x_3 + 2x_4 \leq 8 - 5\}$$

$$\iff \max\{\sum_{j \in C} x_j : 6x_2 + 2x_3 + 2x_4 \leq 3, \ x \in \{0, 1\}^4 \} + \alpha_1 \cdot 1 \leq 2$$
Sequential Up-lifting

\[X^{BK} = \{ x \in \{0, 1\}^4 : 5x_1 + 6x_2 + 2x_3 + 2x_4 \leq 8 \} \]

\[C = \{2, 3, 4\} \]

\[\sum_{j \in C} x_j \leq 2 \quad \text{valid for } X^{BK} \cap \{ x \in \{0, 1\}^4 : x_1 = 0 \} \]

\((I) \quad \sum_{j \in C} x_j + \alpha_1 x_1 \leq 2 \quad \text{valid for } X^{BK} \)

Step 2: Inequality (I) is valid for \(X^{BK} \cap \{ x \in \{0, 1\}^4 : x_1 = 1 \} \)

\[\sum_{j \in C} x_j + \alpha_1 \cdot 1 \leq 2 \quad \text{is valid for } \{ x \in \{0, 1\}^4 : 6x_2 + 2x_3 + 2x_4 \leq 8 - 5 \} \]

\[\Rightarrow \max\{ \sum_{j \in C} x_j : 6x_2 + 2x_3 + 2x_4 \leq 3, \ x \in \{0, 1\}^4 \} + \alpha_1 \cdot 1 \leq 2 \]

\[\Rightarrow 1 + \alpha_1 \leq 2 \Rightarrow \alpha_1 \leq 1 \]
Sequential Up-lifting

- $X^{BK} = \{x \in \{0, 1\}^4 : 5x_1 + 6x_2 + 2x_3 + 2x_4 \leq 8\}$
- $C = \{2, 3, 4\}$

\[\sum_{j \in C} x_j \leq 2 \quad \text{valid for } X^{BK} \cap \{x \in \{0, 1\}^4 : x_1 = 0\}\]

(l) \[\sum_{j \in C} x_j + \alpha_1 x_1 \leq 2 \quad \text{valid for } X^{BK}\]

Step 1: Inequ. (l) valid for $X^{BK} \cap \{x \in \{0, 1\}^4 : x_1 = 0\}$ for all $\alpha_1 \in [-\infty, \infty]$

Step 2: Inequ. (l) valid for $X^{BK} \cap \{x \in \{0, 1\}^4 : x_1 = 1\}$ for all $\alpha_1 \leq 1$

Result: Inequ. (l) valid for X^{BK} for all $\alpha_1 \leq 1$
Sequential Up-lifting

- (j_1, \ldots, j_t) lifting sequence of the variables in $\mathcal{N}\setminus\mathcal{C}$
- $X^i := X^{BK} \cap \{x \in \{0, 1\}^n : x_{j_{i+1}} = \ldots = x_{j_t} = 0\}$

\[
\begin{align*}
\sum_{j \in \mathcal{C}} x_j & \leq |\mathcal{C}| - 1 \quad \text{valid for } X^0 \\
\sum_{j \in \mathcal{C}} x_j + \alpha_{j_1} x_{j_1} & \leq |\mathcal{C}| - 1 \quad \text{valid for } X^1 \\
& \vdots \\
\sum_{j \in \mathcal{C}} x_j + \sum_{k=1}^{t} \alpha_{j_k} x_{j_k} & \leq |\mathcal{C}| - 1 \quad \text{valid for } X^t = X^{BK}
\end{align*}
\]

Different lifting sequences may lead to different inequalities!

Use sequential up- and down-lifting!
Sequential Up-lifting

- \((j_1, \ldots, j_t)\) lifting sequence of the variables in \(N \setminus C\)
- \(X^i := X^{BK} \cap \{x \in \{0, 1\}^n : x_{j_{i+1}} = \ldots = x_{j_t} = 0\}\)

\[
\sum_{j \in C} x_j \leq |C| - 1 \quad \text{valid for } X^0
\]
\[
\sum_{j \in C} x_j + \alpha_{j_1} x_{j_1} \leq |C| - 1 \quad \text{valid for } X^1
\]
\[
\vdots
\]
\[
\sum_{j \in C} x_j + \sum_{k=1}^{t} \alpha_{j_k} x_{j_k} \leq |C| - 1 \quad \text{valid for } X^t = X^{BK}
\]

- Different lifting sequences may lead to different inequalities!
- Use sequential up- and down-lifting!
Sequential Up- and Down-lifting

Theorem:

If $C \subseteq N$ is a minimal cover for X^{BK} and (C_1, C_2) is any partition of C with $C_1 \neq \emptyset$, then inequality

$$\sum_{j \in C_1} x_j \leq |C_1| - 1$$

defines a facet of

$$\text{conv}(X^{BK} \cap \{x \in \{0,1\}^n : x_j = 0 \text{ for all } j \in N \setminus C, \\
\hspace{3cm} x_j = 1 \text{ for all } j \in C_2\}).$$

- **Up-lifting:** variables in $N \setminus C$
- **Down-lifting:** variables in C_2
Outline of the Separation Algorithm

Step 1 (Initial cover)

- Determine an initial cover C for X^{BK}

Step 2 (Minimal cover and partition)

- Make the initial cover minimal by removing vars from C
- Find a partition (C_1, C_2) of C with $C_1 \neq \emptyset$

Step 3 (Lifting)

- Determine a lifting sequence of the variables in $N \setminus C_1$
- Lift the inequality $\sum_{j \in C_1} x_j \leq |C_1| - 1$ using sequential up- and down-lifting
Cutting Plane Separation in SCIP

Techniques

- **General cuts:**
 - complemented MIR cuts
 - Gomory mixed integer cuts
 - strong Chvátal-Gomory cuts
 - \(\{0, \frac{1}{2}\}\)-cuts
 - implied bound cuts

- **Problem specific cuts:**
 - 0-1 knapsack problem
 - stable set problem
 - 0-1 single node flow problem
 - multi-commodity-flow problem

Results

- Very important component
- In particular, c-MIR cuts
- Coordination important
Cuts for the Stable Set Problem

Stable set polytope for graph $G = (V, E)$:

$$\text{conv} \left(\{ x \in \{0, 1\}^{|V|} : x_u + x_v \leq 1 \text{ for all } (u, v) \in E \} \right)$$

Stable Set: $S \subseteq V$

 diabetic $\forall u, v \in S : (u, v) \notin E$

Stable set
Cuts for the Stable Set Problem

Stable set polytope for graph $G = (V, E)$:

$$\text{conv}(\{ x \in \{0, 1\}^{\vert V \vert} : x_u + x_v \leq 1 \text{ for all } (u, v) \in E \})$$

Stable Set: $S \subseteq V$

- $\forall u, v \in S : (u, v) \notin E$

Clique: $C \subseteq V$

- $\forall u, v \in C : (u, v) \in E$

Clique

1, 2
3, 4
5, 6
7, 8
Cuts for the Stable Set Problem

Stable set polytope for graph $G = (V, E)$:

$$\text{conv}(\{ x \in \{0, 1\}^{|V|} : x_u + x_v \leq 1 \text{ for all } (u, v) \in E \})$$

Stable Set: $S \subseteq V$

- $\forall u, v \in S : (u, v) \notin E$

Clique: $C \subseteq V$

- $\forall u, v \in C : (u, v) \in E$

\Rightarrow Clique inequality: $\sum_{j \in C} x_j \leq 1$ is valid for stable set polytope.
Conflict Graph: $G = (V, E)$

V: node for every binary variable x_j and for its complement $\bar{x}_j := 1 - x_j$

E: $(x_i, x_j) \in E \iff$ In any feasible MIP solution, x_i and x_j cannot be one at the same time

\rightarrow Feasible MIP solution corresponds to stable set in conflict graph

\rightarrow Stable set polytope on conflict graph is relaxation of MIP’s feasible region
Cutting Plane Separation in SCIP

Techniques

▷ **General cuts:**
 - complemented MIR cuts
 - Gomory mixed integer cuts
 - strong Chvátal-Gomory cuts
 - \(\{0, \frac{1}{2}\} \)-cuts
 - implied bound cuts

▷ **Problem specific cuts:**
 - 0-1 knapsack problem
 - stable set problem
 - 0-1 single node flow problem
 - multi-commodity-flow problem

Results

▷ Very important component
▷ In particular, c-MIR cuts
▷ Coordination important
Mixed Integer Rounding (MIR) Cut

Elementary mixed integer set:

\[X := \{ (x, s) \in \mathbb{Z} \times \mathbb{R} : x \leq b + s \quad (I) \]
\[s \geq 0 \quad (II) \} \]
Elementary mixed integer set:

\[X := \{ (x, s) \in \mathbb{Z} \times \mathbb{R} : x \leq b + s \ (I) \ s \geq 0 \ (II) \} \]

Inequalities (I) and (II) do not suffice to describe \(\text{conv}(X) \).
Disjunctive argument:

- If an inequality is valid for X^1 and for X^2, it is also valid for $X^1 \cup X^2$.
Mixed Integer Rounding (MIR) Cut

Disjunctive argument:

- If an inequality is valid for X^1 and for X^2, it is also valid for $X^1 \cup X^2$.

Here:

- X^1: Add $x \geq \lceil b \rceil$ (III)
- X^2: Add $x \leq \lfloor b \rfloor$ (IV)
Inequality valid for X^1 and for X^2:

\[x \leq \lfloor b \rfloor + \frac{s}{1-f_b} \]

(\text{I}) + f_b(\text{III}) \quad \text{and} \quad (\text{II}) + (1-f_b)(\text{IV})
Mixed Integer Rounding (MIR) Cut

Inequality valid for $X^1 \cup X^2 = X$:

$$x \leq \lfloor b \rfloor + \frac{s}{1 - f_b}$$

MIR inequality

Inequality valid for $X^1 \cup X^2 = X$:

$$x \leq \lfloor b \rfloor + \frac{s}{1 - f_b}$$

MIR inequality
Complemented MIR (C-MIR) Cut

Mixed knapsack set:

\[
\{ (x, s) \in \mathbb{Z}_+^n \times \mathbb{R}_+ : \\
\sum_{j \in N} a_j x_j \leq b + s \\
x_j \leq u_j \quad j \in N \}
\]
Complemented MIR (C-MIR) Cut

MIR inequality:

$$\sum_{j \in N} F_{f_b}(a_j)x_j \leq \lfloor b \rfloor + \frac{s}{1 - f_b}$$
Complemented MIR (C-MIR) Cut

MIR inequality:
\[
\sum_{j \in N} F_{f_b}(a_j) x_j \leq \lfloor b \rfloor + \frac{s}{1 - f_b}
\]

C-MIR inequality:
- Divide by $\delta \in \mathbb{Q}_+ \setminus \{0\}$
- Complement some integer vars ($x_j = u_j - \bar{x}_j$)
- MIR inequality
Example

\[
\sum_{j \in N} a_j x_j \leq b + s
\]

\[\Rightarrow\]

\[
\sum_{j \in N} F_{f_b}(a_j) x_j \leq \lfloor b \rfloor + \frac{s}{1 - f_b}
\]
Example

\[\sum_{j \in N} a_j x_j \leq b + s \]

\[\iff \sum_{j \in N} F_{f_b}(a_j) x_j \leq \lfloor b \rfloor + \frac{s}{1 - f_b} \]

1\(x_1 + 4x_2 \leq \frac{11}{2} + s \)

Bounds: \(x_1, x_2 \leq 2\)
Example

\[\sum_{j \in N} a_j x_j \leq b + s \]

\[\sum_{j \in N} b_j x_j \leq \lfloor b \rfloor + \frac{s}{1 - f_b} \]

\[1 x_1 + 4 x_2 \leq \frac{11}{2} + s \]

Bounds: \(x_1, x_2 \leq 2 \)

For \(\delta = 1 \):
Example

$$\sum_{j \in \mathbb{N}} a_j x_j \leq b + s$$

$$\Rightarrow$$

$$\sum_{j \in \mathbb{N}} F_{f_b}(a_j) x_j \leq \lfloor b \rfloor + \frac{s}{1 - f_b}$$

$$1x_1 + 4x_2 \leq \frac{11}{2} + s$$

Bounds: $$x_1, x_2 \leq 2$$

For $$\delta = 1$$:

$$f_{\frac{11}{2}} = \frac{11}{2} - \left\lfloor \frac{11}{2} \right\rfloor = \frac{1}{2}$$
Example

\[\sum_{j \in N} a_j x_j \leq b + s \]

\[\sum_{j \in N} F_{f_b}(a_j) x_j \leq \lfloor b \rfloor + \frac{s}{1 - f_b} \]

1\(x_1 + 4x_2 \leq \frac{11}{2} + s \)

Bounds: \(x_1, x_2 \leq 2\)

For \(\delta = 1\):

\[f_{\frac{11}{2}} = \frac{11}{2} - \lfloor \frac{11}{2} \rfloor = \frac{1}{2} \]
Example

\[\sum_{j \in N} a_j x_j \leq b + s \]

\[\sum_{j \in N} F_{f_b}(a_j) x_j \leq \lceil b \rceil + \frac{s}{1 - f_b} \]

1x₁ + 4x₂ ≤ \frac{11}{2} + s

Bounds: x₁, x₂ ≤ 2

For δ = 1:

\[f_{\frac{11}{2}} = \frac{11}{2} - \left\lfloor \frac{11}{2} \right\rfloor = \frac{1}{2} \]
Example

\[
\sum_{j \in N} a_j x_j \leq b + s \quad \Rightarrow \quad \sum_{j \in N} F_{f_b}(a_j) x_j \leq \lfloor b \rfloor + \frac{s}{1 - f_b}
\]

\[
1x_1 + 4x_2 \leq \frac{11}{2} + s
\]

Bounds: \(x_1, x_2 \leq 2\)

\[
1x_1 + 4x_2 \leq 5 + 2s
\]

For \(\delta = 4\), \(x_1 = 2 - \bar{x}_1\):
Example

\[\sum_{j \in N} a_j x_j \leq b + s \]
\[\iff \sum_{j \in N} F_{f_b}(a_j) x_j \leq \lfloor b \rfloor + \frac{s}{1 - f_b} \]

1\(x_1 + 4x_2 \leq \frac{11}{2} + s \)

Bounds: \(x_1, x_2 \leq 2\)

For \(\delta = 4, x_1 = 2 - \bar{x}_1\):

\[-\frac{1}{4} \bar{x}_1 + x_2 \leq \frac{7}{8} + \frac{1}{4} s \]
Example

\[\sum_{j \in N} a_j x_j \leq b + s \]

\[\Rightarrow \]

\[\sum_{j \in N} F_{f_b}(a_j) x_j \leq \lfloor b \rfloor + \frac{s}{1 - f_b} \]

1\(x_1 + 4x_2 \leq \frac{11}{2} + s \)

Bounds: \(x_1, x_2 \leq 2\)

For \(\delta = 4\), \(x_1 = 2 - \bar{x}_1\):

\(\triangleright\) \(- \frac{1}{4} \bar{x}_1 + x_2 \leq \frac{7}{8} + \frac{1}{4} s\)

\(\triangleright\) \(f_{\frac{7}{8}} = \frac{7}{8} - \left\lfloor \frac{7}{8} \right\rfloor = \frac{7}{8}\)
Example

$$\sum_{j \in N} a_j x_j \leq b + s \quad \sim \rightarrow \quad \sum_{j \in N} F_{f_b}(a_j) x_j \leq \lfloor b \rfloor + \frac{s}{1 - f_b}$$

$$1x_1 + 4x_2 \leq \frac{11}{2} + s \quad \sim \rightarrow \quad 1x_1 + 4x_2 \leq 5 + 2s$$

For $\delta = 4, \quad x_1 = 2 - \bar{x}_1$:

\begin{itemize}
 \item $-\frac{1}{4} \bar{x}_1 + x_2 \leq \frac{7}{8} + \frac{1}{4} s$
 \item $f_{\frac{7}{8}} = \frac{7}{8} - \lfloor \frac{7}{8} \rfloor = \frac{7}{8}$
\end{itemize}
Example

\[\sum_{j \in N} a_j x_j \leq b + s \]

\[\implies \sum_{j \in N} F_{f_b}(a_j) x_j \leq \lfloor b \rfloor + \frac{s}{1 - f_b} \]

1\(x_1 + 4x_2 \leq \frac{11}{2} + s \)

Bounds: \(x_1, x_2 \leq 2\)

\[1x_1 + 4x_2 \leq 5 + 2s \]

\[-1\bar{x}_1 + 1x_2 \leq 0 + 2s \]

For \(\delta = 4\), \(x_1 = 2 - \bar{x}_1\):

\[-\frac{1}{4} \bar{x}_1 + x_2 \leq \frac{7}{8} + \frac{1}{4} s \]

\[f_{\frac{7}{8}} = \frac{7}{8} - \lfloor \frac{7}{8} \rfloor = \frac{7}{8} \]
Example

\[\sum_{j \in N} a_j x_j \leq b + s \]

\[\sum_{j \in N} F_{f_b}(a_j) x_j \leq \lfloor b \rfloor + \frac{s}{1 - f_b} \]

\[1x_1 + 4x_2 \leq \frac{11}{2} + s \]

Bounds: \(x_1, x_2 \leq 2 \)

\[1x_1 + 4x_2 \leq 5 + 2s \]

\[1x_1 + 1x_2 \leq 2 + 2s \]

For \(\delta = 4, \ x_1 = 2 - \bar{x}_1 \):

\[-\frac{1}{4} \bar{x}_1 + x_2 \leq \frac{7}{8} + \frac{1}{4} s \]

\[f_{\frac{7}{8}} = \frac{7}{8} - \lfloor \frac{7}{8} \rfloor = \frac{7}{8} \]
Outline of the Separation Algorithm

Compl. and scale → Mixed knapsack relax. → Apply MIR cut
Outline of the Separation Algorithm

Compl. and scale → Mixed knapsack relax. → Apply MIR cut
Linear combination of constraints defining the mixed integer set
Outline of the Separation Algorithm

Mixed integer set → Aggregation heur. → Mixed integer relax.

C-MIR cut

Compl. and scale → Mixed knapsack relax. → Apply MIR cut
Perform bound substitution for all real vars
(e.g., $y_j = l_j + \bar{y}_j$)

Relax corresponding set to a mixed knapsack set
Outline of the Separation Algorithm

1. Mixed integer set
2. Aggregation heur.
4. Bound subst. heur.
5. Cut generation heur.
6. C-MIR cut
7. Mixed knapsack relax.
8. Compl. and scale
10. Apply MIR cut
Outline of the Separation Algorithm

Mixed integer set → Aggregation heur. → Mixed integer relax.

Bound subst. heur. → Cut generation heur. → C-MIR cut

Mixed knapsack relax. → Mixed knapsack relax. → Compl. and scale → Apply MIR cut

\{ (x, s) \in \mathbb{Z}_+^n \times \mathbb{R}_+ : \sum_{j \in N} a_j x_j \leq b + s \}

\quad x_j \leq u_j \quad j \in N \}
Outline of the Separation Algorithm

- Mixed integer set
 - Aggregation heur.
 - Bound subst. heur.
 - Mixed integer relax.
 - Mixed knapsack relax.
 - Cut generation heur.
 - C-MIR cut

- Compl. and scale
 - Mixed knapsack relax.
 - Apply MIR cut

T. Berthold and K. Wolter (ZIB)
Outline of the Separation Algorithm

Mixed integer set → Aggregation heur. → Mixed integer relax.

Mixed integer relax. → Bound subst. heur. → C-MIR cut

Mixed knapsack relax. → Cut generation heur. → Mixed knapsack relax. → Apply MIR cut

- Complement some integer vars
- Divide constraint by $\delta \in \mathbb{Q}_+ \setminus \{0\}$
Outline of the Separation Algorithm

1. Mixed integer set
2. Aggregation heur.
4. Bound subst. heur.
5. Cut generation heur.
6. C-MIR cut
7. Compl. and scale
8. Mixed knapsack relax.
9. Apply MIR cut
Outline of the Separation Algorithm

Compl. and scale → Mixed knapsack relax. → Apply MIR cut

$$\sum_{j \in N} F_{f_b}(a_j) x_j \leq \lfloor b \rfloor + \frac{s}{1 - f_b}$$
Outline of the Separation Algorithm

1. Mixed integer set
2. Aggregation heur.
5. Mixed knapsack relax.
6. Cut generation heur.
7. C-MIR cut
8. Compl. and scale
10. Apply MIR cut
Techniques

- **General cuts:**
 - complemented MIR cuts
 - Gomory mixed integer cuts
 - strong Chvátal-Gomory cuts
 - \(\{0, \frac{1}{2}\}\)-cuts
 - implied bound cuts

- **Problem specific cuts:**
 - 0-1 knapsack problem
 - stable set problem
 - 0-1 single node flow problem
 - multi-commodity-flow problem

Results

- Very important component
- In particular, c-MIR cuts
- Coordination important
Single node with ...

△ external demand of b
△ inflow arcs $j \in N_1$
△ outflow arcs $j \in N_2$
0-1 Single Node Flow Set

Single node with ...
- external demand of b
- inflow arcs $j \in N_1$
- outflow arcs $j \in N_2$

Flow has to satisfy ...
- flow conservation constraint
- capacities on open arcs

\[
\sum_{j \in N_1} y_j - \sum_{j \in N_2} y_j \leq b
\]
\[
0 \leq y_j \leq u_j x_j
\]
\[
x_j \in \{0, 1\}
\]
\[\{ (x, y) \in \{0, 1\}^n \times \mathbb{R}^n : \sum_{j \in N_1} y_j - \sum_{j \in N_2} y_j \leq b, \quad 0 \leq y_j \leq u_j x_j \text{ for all } j \in N \} \]

- \((N_1, N_2)\) partition of \(N = \{1, \ldots, n\}\)
- \(b \in \mathbb{Q}\) and \(u \in \mathbb{Q}_+^n\)
Basic Structure

Set of arcs s.t. flow conservation constraint is violated, if ...

- only these arcs are open
- for each open arc: flow equals capacity
Basic Structure

Set of arcs s.t. flow conservation constraint is violated, if ...

▷ only these arcs are open
▷ for each open arc: flow equals capacity

Flow cover \((C_1, C_2)\):

▷ \(C_1 \subseteq N_1\) and \(C_2 \subseteq N_2\)

\[
\sum_{j \in C_1} u_j - \sum_{j \in C_2} u_j = b + \lambda,
\]

where \(\lambda > 0\).
Generalized Flow Cover Inequality (GFCI)

Basis:

- Flow cover \((C_1, C_2)\)
- Sets \(L_i \subseteq N_i \setminus C_i\) for \(i = 1, 2\)
- Constant \(\bar{u} \geq \max\{\lambda, \max_{j \in C_1} u_j\}\)
Generalized Flow Cover Inequality (GFCI)

Basis:
- Flow cover \((C_1, C_2)\)
- Sets \(L_i \subseteq N_i \setminus C_i\) for \(i = 1, 2\)
- Constant \(\bar{u} \geq \max\{\lambda, \max_{j \in C_1} u_j\}\)

Emphasized special cases:
- SGFCI: \(\bar{u} = \infty, L_1 = \emptyset\)
- EGFCI: \(\bar{u} = \max_{j \in C_1} u_j > \lambda\)
Generalized Flow Cover Inequality (GFCI)

SGFCI ($\bar{u} = \infty$, $L_1 = \emptyset$):

$$\sum_{j \in C_1} y_j + (u_j - \lambda)^+ (1 - x_j) - \sum_{j \in C_2} u_j - \sum_{j \in L_2} \min\{u_j, \lambda\} x_j - \sum_{j \in N_2 \setminus (C_2 \cup L_2)} y_j \leq b$$

EGFCI ($\bar{u} = \max_{j \in C_1} u_j > \lambda$):

$$\sum_{j \in C_1} y_j + (u_j - \lambda)^+ (1 - x_j) - \sum_{j \in C_2} u_j - \min\{\lambda, (u_j - \bar{u} + \lambda)^+\} (1 - x_j) + \sum_{j \in L_1} y_j - (\max\{\bar{u}, u_j\} - \lambda) x_j - \sum_{j \in L_2} \min\{u_j, \max\{u_j - \bar{u} + \lambda, \lambda\}\} x_j - \sum_{j \in N_2 \setminus (C_2 \cup L_2)} y_j \leq b$$
Example

\[y_1 \leq 4x_1 \]
\[y_2 \leq 4x_2 \]
\[y_3 \leq 2x_3 \]
\[y_4 \leq 2x_4 \]
\[y_5 \leq 6x_5 \]
\[y_6 \leq 6x_6 \]
\[y_7 \leq 2x_7 \]
Example

Flow cover:
\[C_1 = \{1, 2, 3\}, \quad C_2 = \{5\}, \quad \lambda = 2 \]
Example

\begin{align*}
y_1 & \leq 4x_1 \\
y_2 & \leq 4x_2 \\
y_3 & \leq 2x_3 \\
y_4 & \leq 2x_4 \\
y_5 & \leq 6x_5 \\
y_6 & \leq 6x_6 \\
y_7 & \leq 2x_7
\end{align*}

Flow cover:
\[C_1 = \{1, 2, 3\}, \quad C_2 = \{5\}, \quad \lambda = 2 \]

Sets: \(L_1 = \emptyset, \quad L_2 = \{6\} \)
Example

Flow cover:
\[C_1 = \{1, 2, 3\}, \quad C_2 = \{5\}, \quad \lambda = 2 \]

Sets: \(L_1 = \emptyset, \quad L_2 = \{6\} \)

SGFCI (\(\bar{u} = \infty, \quad L_1 = \emptyset \)):

\[
\begin{align*}
\sum_{j \in C_1} y_j + (u_j - \lambda)^+ (1 - x_j) \\
- \sum_{j \in C_2} u_j \\
- \sum_{j \in L_2} \min\{u_j, \lambda\} x_j \\
- \sum_{j \in N_2 \setminus (C_2 \cup L_2)} y_j \\
\leq b
\end{align*}
\]

EGFCI (\(\bar{u} = \max_{j \in C_1} u_j > \lambda \)):

\[
\begin{align*}
\sum_{j \in C_1} y_j + (u_j - \lambda)^+ (1 - x_j) \\
- \sum_{j \in C_2} u_j - \min\{\lambda, (u_j - \bar{u} + \lambda)^+\} (1 - x_j) \\
+ \sum_{j \in L_1} y_j - (\max\{\bar{u}, u_j\} - \lambda) x_j \\
- \sum_{j \in L_2} \min\{u_j, \max\{u_j - \bar{u} + \lambda, \lambda\}\} x_j \\
- \sum_{j \in N_2 \setminus (C_2 \cup L_2)} y_j \\
\leq b
\end{align*}
\]
\begin{align*}
y_1 &\leq 4x_1 \\
y_2 &\leq 4x_2 \\
y_3 &\leq 2x_3 \\
y_4 &\leq 2x_4 \\
y_5 &\leq 6x_5 \\
y_6 &\leq 6x_6 \\
y_7 &\leq 2x_7
\end{align*}

\text{Flow cover:}
\begin{align*}
C_1 &= \{1, 2, 3\}, \quad C_2 = \{5\}, \quad \lambda = 2 \\
\text{Sets:} \quad L_1 = \emptyset, \quad L_2 = \{6\}
\end{align*}

\text{SGFCI (} \bar{u} = \infty, \ L_1 = \emptyset \text{):}
\begin{align*}
\sum_{j \in C_1} y_j + (u_j - \lambda)^+ (1 - x_j) \\
- \sum_{j \in C_2} u_j \\
- \sum_{j \in L_2} \min\{u_j, \lambda\} x_j \\
- \sum_{j \in N_2 \setminus (C_2 \cup L_2)} y_j \\
\leq b
\end{align*}

\text{EGFCI (} \bar{u} = 4 > 2 \text{):}
\begin{align*}
\sum_{j \in C_1} y_j + (u_j - \lambda)^+ (1 - x_j) \\
- \sum_{j \in C_2} u_j - \min\{\lambda, (u_j - \bar{u} + \lambda)^+\} (1 - x_j) \\
+ \sum_{j \in L_1} y_j - (\max\{\bar{u}, u_j\} - \lambda) x_j \\
- \sum_{j \in L_2} \min\{u_j, \max\{u_j - \bar{u} + \lambda, \lambda\}\} x_j \\
- \sum_{j \in N_2 \setminus (C_2 \cup L_2)} y_j \\
\leq b
\end{align*}
Flow cover:
\(C_1 = \{1, 2, 3\}, \ C_2 = \{5\}, \ \lambda = 2 \)

Sets: \(L_1 = \emptyset, \ L_2 = \{6\} \)

SGFCI \((\bar{u} = \infty, \ L_1 = \emptyset)\):
\[
\begin{align*}
y_1 + 2 (1 - x_1) + \\
y_2 + 2 (1 - x_2) + y_3 \\
- \sum_{j \in C_2} u_j \\
- \sum_{j \in L_2} \min\{u_j, \lambda\} x_j \\
- \sum_{j \in N_2 \setminus (C_2 \cup L_2)} y_j \\
\leq b
\end{align*}
\]

EGFCI \((\bar{u} = 4 > 2)\):
\[
\begin{align*}
y_1 + 2 (1 - x_1) + \\
y_2 + 2 (1 - x_2) + y_3 \\
- \sum_{j \in C_2} u_j - \min\{\lambda, (u_j - \bar{u} + \lambda)^+\} (1 - x_j) \\
+ \sum_{j \in L_1} y_j - (\max\{\bar{u}, u_j\} - \lambda) x_j \\
- \sum_{j \in L_2} \min\{u_j, \max\{u_j - \bar{u} + \lambda, \lambda\}\} x_j \\
- \sum_{j \in N_2 \setminus (C_2 \cup L_2)} y_j \\
\leq b
\end{align*}
\]
Example

Flow cover:
\[C_1 = \{1, 2, 3\}, \ C_2 = \{5\}, \ \lambda = 2 \]

Sets: \(L_1 = \emptyset, \ L_2 = \{6\} \)

SGFCI (\(\bar{u} = \infty, \ L_1 = \emptyset \)): \[
y_1 + 2 (1 - x_1) + \]
\[
y_2 + 2 (1 - x_2) + y_3\]
\[
- 6\]
\[
- \sum_{j \in L_2} \min\{u_j, \lambda\} x_j\]
\[
- \sum_{j \in N_2 \setminus (C_2 \cup L_2)} y_j\]
\[
\leq b\]

EGFCI (\(\bar{u} = 4 > 2 \)): \[
y_1 + 2 (1 - x_1) + \]
\[
y_2 + 2 (1 - x_2) + y_3\]
\[
- 6 + 2 (1 - x_5)\]
\[
+ \sum_{j \in L_1} y_j - (\max\{\bar{u}, u_j\} - \lambda) x_j\]
\[
- \sum_{j \in L_2} \min\{u_j, \max\{u_j - \bar{u} + \lambda, \lambda\}\} x_j\]
\[
- \sum_{j \in N_2 \setminus (C_2 \cup L_2)} y_j\]
\[
\leq b\]

T. Berthold and K. Wolter (ZIB)
Example

Flow cover:
$C_1 = \{1, 2, 3\}, \ C_2 = \{5\}, \ \lambda = 2$

Sets: $L_1 = \emptyset, L_2 = \{6\}$

SGFCI ($\bar{u} = \infty, \ L_1 = \emptyset$):

\[
y_1 + 2(1 - x_1) + \\
y_2 + 2(1 - x_2) + y_3 \\
- 6 \\
- \sum_{j \in L_2} \min\{u_j, \lambda\} \ x_j \\
- \sum_{j \in N_2 \setminus (C_2 \cup L_2)} y_j \\
\leq b
\]

EGFCI ($\bar{u} = 4 > 2$):

\[
y_1 + 2(1 - x_1) + \\
y_2 + 2(1 - x_2) + y_3 \\
- 6 + 2(1 - x_5) \\
- \sum_{j \in L_2} \min\{u_j, \max\{u_j - \bar{u} + \lambda, \lambda\}\} \ x_j \\
- \sum_{j \in N_2 \setminus (C_2 \cup L_2)} y_j \\
\leq b
\]
Example

Flow cover:
\[C_1 = \{1, 2, 3\}, \quad C_2 = \{5\}, \quad \lambda = 2 \]

Sets: \(L_1 = \emptyset, \quad L_2 = \{6\} \)

SGFCI \((\bar{u} = \infty, \quad L_1 = \emptyset)\):

\[
y_1 + 2(1 - x_1) + \\
y_2 + 2(1 - x_2) + y_3 \\
- 6 \\
- 2x_6 \\
- \sum_{j \in N_2 \setminus (C_2 \cup L_2)} y_j \\
\leq b
\]

EGFCI \((\bar{u} = 4 > 2)\):

\[
y_1 + 2(1 - x_1) + \\
y_2 + 2(1 - x_2) + y_3 \\
- 6 + 2(1 - x_5) \\
- 4x_6 \\
- \sum_{j \in N_2 \setminus (C_2 \cup L_2)} y_j \\
\leq b
\]
Example

Flow cover:
$C_1 = \{1, 2, 3\}, \quad C_2 = \{5\}, \quad \lambda = 2$

Sets: $L_1 = \emptyset, \quad L_2 = \{6\}$

SGFCI ($\bar{u} = \infty, \quad L_1 = \emptyset$):

\[
y_1 + 2 (1 - x_1) + y_2 + 2 (1 - x_2) + y_3 - 6 - 2x_6 - y_7 \leq b
\]

EGFCI ($\bar{u} = 4 > 2$):

\[
y_1 + 2 (1 - x_1) + y_2 + 2 (1 - x_2) + y_3 - 6 + 2 (1 - x_5) - 4x_6 - y_7 \leq b
\]
Example

Flow cover:
\[C_1 = \{1, 2, 3\}, \ C_2 = \{5\}, \ \lambda = 2 \]

Sets: \(L_1 = \emptyset, \ L_2 = \{6\} \)

\[\text{SGFCI} (\bar{u} = \infty, \ L_1 = \emptyset): \]
\[y_1 + 2(1 - x_1) + \]
\[y_2 + 2(1 - x_2) + y_3 \]
\[- 6 \]
\[- 2x_6 \]
\[- y_7 \]
\[\leq 2 \]

\[\text{EGFCI} (\bar{u} = 4 > 2): \]
\[y_1 + 2(1 - x_1) + \]
\[y_2 + 2(1 - x_2) + y_3 \]
\[- 6 + 2(1 - x_5) \]
\[- 4x_6 \]
\[- y_7 \]
\[\leq 2 \]
C-MIR Flow Cover Inequality (C-MIRFCI)

Basis:
- Flow cover \((C_1, C_2)\)
- Sets \(L_i \subseteq N_i \setminus C_i\) for \(i = 1, 2\)
- Constant \(\bar{u} > \lambda\)
C-MIR Flow Cover Inequality (C-MIRFCI)

1. Mixed integer set → Aggregation heur.
4. Cut generation heur. → C-MIR cut
5. Mixed knapsack relax. → Compl. and scale
6. Apply MIR cut

T. Berthold and K. Wolter (ZIB)
C-MIR Flow Cover Inequality (C-MIRFCI)

0-1 SNF set

Compl. and scale → Mixed knapsack relax. → Apply MIR cut

T. Berthold and K. Wolter (ZIB)
C-MIR Flow Cover Inequality (C-MIRFCI)

0-1 SNF set

Compl. and scale → Mixed knapsack relax. → Apply MIR cut
Substitute \(y_j = \begin{cases} u_j x_j - \bar{y}_j & : j \in C_1 \cup C_2 \cup L_1 \cup L_2 \\ 0 + \bar{y}_j & : \text{otherwise} \end{cases} \)
Complement all integer vars in $U = C_1 \cup C_2$

Divide constraint by $\delta = \bar{u}$
C-MIR Flow Cover Inequality (C-MIRFCI)

0-1 SNF set

Compl. and scale → Mixed knapsack relax. → Apply MIR cut
C-MIR Flow Cover Inequality (C-MIRFCI)

- Mixed knapsack relax.
- Bound subst. heur.
- Cut generation heur.
- C-MIRFCI

- 0-1 SNF set

- Compl. and scale
- Mixed knapsack relax.
- Apply MIR cut

T. Berthold and K. Wolter (ZIB)
Dominance Relations

Lifted SGFCI → SGFCI

\((\bar{u} = \infty, L_1 = \emptyset) \)

\[L_1 = \emptyset \]

C-MIRFCI

\((\bar{u} = \max_{j \in C_1 \cup L_2} u_j > \lambda) \)

Lifted FCi → EGFCI

\((\bar{u} = \max_{j \in C_1} u_j > \lambda) \)

C-MIRFCI

\((\bar{u} = \max_{j \in C_1} u_j > \lambda) \)
Outline of the Separation Algorithm

For each MIP row:

1. Construct 0-1 SNF relaxation

- Similar to the procedure of Van Roy and Wolsey 1986
- Considers SCIP specific variable bounds
Outline of the Separation Algorithm

For each MIP row:

1. Construct 0-1 SNF relaxation
2. Determine flow cover \((C_1, C_2)\)

Upper bound on violation of weakened SGFCIs:

\[
\max \left\{ \sum_{j \in N_1} (x_j^* - 1)z_j + \sum_{j \in N_2} x_j^* z_j : \right. \\
\left. \sum_{j \in N_1} u_j z_j - \sum_{j \in N_2} u_j z_j > b, \right. \\
\left. z_j \in \{0, 1\} \text{ for all } j \in N \right\}
\]
Outline of the Separation Algorithm

For each MIP row:

1. Construct 0-1 SNF relaxation
2. Determine flow cover \((C_1, C_2)\)

Default:

- Exact algorithm (after scaling)

Alternatives:

- Heuristic
- Select algo depending on rhs of scaled cons

Extension:

- Fixing strategy
Outline of the Separation Algorithm

For each MIP row:
1. Construct 0-1 SNF relaxation
2. Determine flow cover \((C_1, C_2)\)
3. For different values of \(\bar{u}\):

 - Default:
 - Lifted SGFCI
 - SGFCI \((\bar{u} = \infty, L_1 = \emptyset)\)
 - \(L_1 = \emptyset\)
 - EGFCI \((\bar{u} = \max_{j \in C_1} u_j > \lambda)\)
 - Extended candidate set:
 - \(u_j > \lambda\) for all \(j \in N\)
 - \(\lambda + 1\)
 - \(\max_{j \in N} u_j + 1 > \lambda\)
Outline of the Separation Algorithm

For each MIP row:

1. Construct 0-1 SNF relaxation
2. Determine flow cover \((C_1, C_2)\)
3. For different values of \(\bar{u}\):
 - Determine sets
 \(L_i \subseteq N_i \setminus C_i\) for \(i = 1, 2\)

▷ Chosen by comparison.
Outline of the Separation Algorithm

For each MIP row:

1. Construct 0-1 SNF relaxation
2. Determine flow cover \((C_1, C_2)\)
3. For different values of \(\bar{u}\):
 - Determine sets \(L_i \subseteq N_i \setminus C_i\) for \(i = 1, 2\)
 - Derive c-MIRFCI
Outline of the Separation Algorithm

For each MIP row:

1. Construct 0-1 SNF relaxation
2. Determine flow cover \((C_1, C_2)\)
3. For different values of \(\bar{u}\):
 - Determine sets \(L_i \subseteq N_i \setminus C_i\) for \(i = 1, 2\)
 - Derive c-MIRFCI
4. Select most violated cut
Cutting Plane Separation in SCIP

Techniques

- **General cuts:**
 - complemented MIR cuts
 - Gomory mixed integer cuts
 - strong Chvátal-Gomory cuts
 - \(\{0, \frac{1}{2}\} \)-cuts
 - implied bound cuts

- **Problem specific cuts:**
 - 0-1 knapsack problem
 - stable set problem
 - 0-1 single node flow problem
 - multi-commodity-flow problem

Results

- Very important component
- In particular, c-MIR cuts
- Coordination important
Cut Selection Strategy

- **Efficacy**, i.e., distance of the hyperplane to the LP solution

- **Orthogonality** with respect to the other cuts

- **Parallelism** with respect to the objective function

⇒ **Select** cuts with largest value of

\[
\begin{align*}
& e_r + w_o \cdot o_r + w_p \cdot p_r
\end{align*}
\]
Cut Selection Strategy

- **Efficacy**, i.e., distance of the hyperplane to the LP solution
 \[e_r \]
- **Orthogonality** with respect to the other cuts
 \[o_r \]
- **Parallelism** with respect to the objective function
 \[p_r \]

\[\Rightarrow \text{Select cuts with largest value of } e_r + w_o o_r + w_p p_r \]

Consequence

- Cut as deep as possible into the current LP polyhedron
- Select cuts that are pairwise almost orthogonal
- Prefer cuts that are close to being parallel to the objective function
Cut Selection Strategy

- **Efficacy**, i.e., distance of the hyperplane to the LP solution
- **Orthogonality** with respect to the other cuts
- **Parallelism** with respect to the objective function

⇒ **Select** cuts with largest value of $e_r + w_o o_r + w_p p_r$

Weights of the criteria can be adjusted

- **ORTHOFAC** = 1.0
- **OBJPARALFAC** = 0.0001
Implementation in SCIP

Separators
▷ provide general cuts
▷ provide problem specific cuts

Constraint handlers
▷ feasibility check for given solution
▷ provide linear relaxation
 (in advance or on the fly)
▷ additional problem specific cuts
Separator or Constraint Handler?

Type of cuts?

- General cuts
 - Separator
 - c-MIR, GMI, ...

- Problem specific cuts
 - Can constraint be expressed by "small" number of existing constraint types?

Can you represent and process constraint in a more efficient way?
Separator or Constraint Handler?

Type of cuts?

- General cuts
 - c-MIR, GMI, ...
- Problem specific cuts
 - Can constraint be expressed by "small" number of existing constraint types?
 - Yes
 - Can you represent and process constraint in a more efficient way?
 - Yes
 - Constraint handler: TSP
 - No
 - Constraint handler: TSP
Separator or Constraint Handler?

Type of cuts?

- General cuts
 - Separator
 - c-MIR, GMI, ...
- Problem specific cuts
 - Can constraint be expressed by "small" number of existing constraint types?
 - Yes
 - Can you represent and process constraint in a more efficient way?
 - Yes
 - Constraint handler
 - No
 - Separator
 - No
 - Constraint handler

- TSP

- 0-1 KP

T. Berthold and K. Wolter (ZIB) Cuts and Heuristics 09/30/2009 34 / 57
Cutting Planes and **Primal Heuristics**

CO@Work Berlin

Timo Berthold and Kati Wolter

09/30/2009
What are primal heuristics?

Do you have a good idea how to construct a feasible solution for your problem?

Primal heuristic
What are primal heuristics?

Do you have a good idea how to construct a feasible solution for your problem?

Primal heuristic

Primal heuristics...

▷ are incomplete methods which
▷ often find good solutions
▷ within a reasonable time
▷ without any warranty!

⇝ Integrate into exact solver
Why use primal heuristics inside an exact solver?

- Able to prove feasibility of the model
- Often nearly optimal solutions suffice in practice
- Feasible solutions guide remaining search process

Characteristics
Primal Heuristics

Why use primal heuristics inside an exact solver?
- Able to prove feasibility of the model
- Often nearly optimal solutions suffice in practice
- Feasible solutions guide remaining search process

Characteristics
- Main goal: feasible solutions
- Keep control of effort!
- Use as much information as you can get
Useful Information

Statistics & points

- **Variables’ locking numbers:**
 - Potentially violated rows

- **Variables’ pseudocosts:**
 - Average objective change

- **Special points:**
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions
Useful Information

Statistics & points

▷ Variables’ locking numbers:
 Potentially violated rows

▷ Variables’ pseudocosts:
 Average objective change

▷ Special points:
 ▶ LP optimum at root node
 ▶ Current LP solution
 ▶ Current best solution
 ▶ Other known solutions
Useful Information

Statistics & points

▷ Variables’ locking numbers:
 Potentially violated rows

▷ Variables’ pseudocosts:
 Average objective change

▷ Special points:
 ▶ LP optimum at root node
 ▶ Current LP solution
 ▶ Current best solution
 ▶ Other known solutions
Useful Information

Statistics & points

- Variables’ locking numbers:
 Potentially violated rows

- Variables’ pseudocosts:
 Average objective change

- Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions

```c
int nlocks = SCIPvarGetNLocksUp(var);
```
Useful Information

Statistics & points

- **Variables’ locking numbers:**
 - Potentially violated rows

- **Variables’ pseudocosts:**
 - Average objective change

- **Special points:**
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions

```c
int nlocks = SCIPvarGetNLocksDown(var);
```
Useful Information

Statistics & points

- Variables’ locking numbers:
 Potentially violated rows

- Variables’ pseudocosts:
 Average objective change

- Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions

```c
int nlocks = SCIPvarGetNLocksDown(var);
```
Useful Information

Statistics & points

- **Variables’ locking numbers:**
 - Potentially violated rows

- **Variables’ pseudocosts:**
 - Average objective change

- **Special points:**
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions

```c
int nlocks = SCIPvarGetNLocksUp(var);
```
Useful Information

Statistics & points

- **Variables’ locking numbers:**
 - Potentially violated rows

- **Variables’ pseudocosts:**
 - Average objective change

- **Special points:**
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions

[Diagram of a convex hull with points marked.]
Useful Information

Statistics & points

- Variables’ locking numbers:
 - Potentially violated rows

- Variables’ pseudocosts:
 - Average objective change

- Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions

SCIP_Real pscost = SCIPgetVarPseudocost(scip, var, delta);
Useful Information

Statistics & points

▷ Variables’ locking numbers:
 Potentially violated rows

▷ Variables’ pseudocosts:
 Average objective change

▷ Special points:
 ▶ LP optimum at root node
 ▶ Current LP solution
 ▶ Current best solution
 ▶ Other known solutions

SCIP_Real pscost = SCIPgetVarPseudocost(scip, var, delta);
Useful Information

Statistics & points

- **Variables’ locking numbers:**
 Potentially violated rows

- **Variables’ pseudocosts:**
 Average objective change

- **Special points:**
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions
Useful Information

Statistics & points

- Variables’ locking numbers:
 Potentially violated rows
- Variables’ pseudocosts:
 Average objective change
- Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions

SCIP_Real rootsolval = SCIPvarGetRootSol(var);
Useful Information

Statistics & points

- Variables’ locking numbers:
 - Potentially violated rows
- Variables’ pseudocosts:
 - Average objective change
- Special points:
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions

SCIP_Real solval = SCIPgetSolVal(scip, NULL, var);
Useful Information

Statistics & points

- **Variables’ locking numbers:**
 - Potentially violated rows

- **Variables’ pseudocosts:**
 - Average objective change

- **Special points:**
 - LP optimum at root node
 - Current LP solution
 - **Current best solution**
 - Other known solutions

```c
SCIP_Sol* bestsol = SCIPgetBestSol(scip);
SCIP_Real solval = SCIPgetSolVal(scip, bestsol, var);
```
Useful Information

Statistics & points

- **Variables’ locking numbers:**
 - Potentially violated rows

- **Variables’ pseudocosts:**
 - Average objective change

- **Special points:**
 - LP optimum at root node
 - Current LP solution
 - Current best solution
 - Other known solutions

```c
SCIP_Sol** sols = SCIPgetSols(scip);
SCIP_Real solval = SCIPgetSolVal(scip, sols[i], var);
```
Categories

Two main categories

- **Start heuristics**
 - Applied early in the search process
 - Often at root node
 - Mostly start from LP optimum

- **Improvement heuristics**
 - Require feasible solution
 - Normally at most once for each incumbent
Categories

<table>
<thead>
<tr>
<th>Two main categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Start heuristics</td>
</tr>
<tr>
<td>▶ Applied early in the search process</td>
</tr>
<tr>
<td>▶ Often at root node</td>
</tr>
<tr>
<td>▶ Mostly start from LP optimum</td>
</tr>
<tr>
<td>▶ Improvement heuristics</td>
</tr>
<tr>
<td>▶ Require feasible solution</td>
</tr>
<tr>
<td>▶ Normally at most once for each incumbent</td>
</tr>
</tbody>
</table>

#define HEUR_FREQQOS 0
Categories

Two main categories

- **Start heuristics**
 - Applied early in the search process
 - often at root node
 - Mostly start from LP optimum

- **Improvement heuristics**
 - Require feasible solution
 - Normally at most once for each incumbent

```c
if( SCIPgetLPSolstat(scip) != SCIP_LPSOLSTAT_OPTIMAL )
    return SCIP_OKAY;
```
Categories

Two main categories

- **Start heuristics**
 - Applied early in the search process
 - Often at root node
 - Mostly start from LP optimum

- **Improvement heuristics**
 - Require feasible solution
 - Normally at most once for each incumbent

```c
if( SCIPgetNSols(scip) <= 0 )
    return SCIP_OKAY;
```
Two main categories

- **Start heuristics**
 - Applied early in the search process
 - often at root node
 - Mostly start from LP optimum

- **Improvement heuristics**
 - Require feasible solution
 - Normally at most once for each incumbent

```c
struct SCIP_HeurData
{
    SCIP_SOL* lastsol;
}
```
Heuristic Timings

Domain Propagation

Constraint Enforcement

Primal Heuristics

LP Solving

Solve LP

Pricing

Separation

Domain Propagation
Heuristic Timings

```
#define HEUR_TIMING SCIP_HEURTIMING_AFTERNODE
```

T. Berthold and K. Wolter (ZIB)
Heuristic Timings

Primal Heuristics

Domain Propagation

LP Solving

Solve LP

Pricing

Separation

Domain Propagation

Constraint Enforcement

#define HEUR_TIMING SCIP_HEURTIMING_BeforeNode
Heuristic Timings

Primal Heuristics

Domain Propagation

LP Solving

Solve LP

Pricing

Heurs

Separation

Domain Propagation

Constraint Enforcement

Primal Heuristics

#define HEUR_TIMING SCIP_HEURTIMING_DURINGLPOOP

T. Berthold and K. Wolter (ZIB) Cuts and Heuristics 09/30/2009 40 / 57
Primal Heuristics

Approaches

- **Rounding**: Change fractional to integral values
- **Diving**: simulate DFS in the branch-and-bound tree using some special branching rule
- **Objective diving**: manipulate objective function (instead of bounds)
- **Large Neighborhood Search**: solve some sub-MIP
- **Pivoting**: manipulate simplex algorithm
- **Combinatorial**: use special polyhedral properties
Primal Heuristics

Approaches

- **Rounding**: Change fractional to integral values
- **Diving**: simulate DFS in the branch-and-bound tree using some special branching rule
- **Objective diving**: manipulate objective function (instead of bounds)
- **Large Neighborhood Search**: solve some sub-MIP
- **Pivoting**: manipulate simplex algorithm
- **Combinatorial**: use special polyhedral properties
Guideline: Stay feasible!

Features

- **Simple Rounding** always stays feasible,
- Rounding may violate constraints,
- **Shifting** may unfix integers,
- **Integer Shifting** finally solves an LP.
Guideline: Stay feasible!

Features

- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers,
- Integer Shifting finally solves an LP.
Guideline: Stay feasible!

Features

- Simple Rounding **always stays feasible**,
- Rounding may violate constraints,
- Shifting may unfix integers,
- Integer Shifting finally solves an LP.
Guideline: Stay feasible!

Features

- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers,
- Integer Shifting finally solves an LP.
Guideline: Stay feasible!

Features

- **Simple Rounding** always stays feasible,
- Rounding **may violate constraints**,
- **Shifting** may unfix integers,
- **Integer Shifting** finally solves an LP.
Guideline: Stay feasible!

Features

- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers,
- Integer Shifting finally solves an LP.
Guideline: Stay feasible!

Features

- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers,
- Integer Shifting finally solves an LP.
Guideline: Stay feasible!

Features

- Simple Rounding always stays feasible,
- Rounding may violate constraints,
- Shifting may unfix integers,
- Integer Shifting finally solves an LP.
Guideline: Stay feasible!

Features

- **Simple Rounding** always stays feasible,
- Rounding may violate constraints,
- **Shifting** may unfix integers,
- Integer Shifting finally solves an LP.
Guideline: Stay feasible!

Features

- **Simple Rounding** always stays feasible,
- **Rounding** may violate constraints,
- **Shifting** may unfix integers,
- **Integer Shifting** finally solves an LP.
Guideline: Stay feasible!

Features

- **Simple Rounding** always stays feasible,
- **Rounding** may violate constraints,
- **Shifting** may unfix integers,
- **Integer Shifting** finally solves an LP.
Guideline: Stay feasible!

Features

- **Simple Rounding** always stays feasible,
- **Rounding** may violate constraints,
- **Shifting** may unfix integers,
- **Integer Shifting** finally solves an LP.
Guideline: Stay feasible!

Features

- **Simple Rounding** always stays feasible,
- **Rounding** may violate constraints,
- **Shifting** may unfix integers,
- **Integer Shifting** finally solves an LP.
Primal Heuristics

Approaches

- **Rounding**: Change fractional to integral values
- **Diving**: simulate DFS in the branch-and-bound tree using some special branching rule
- **Objective diving**: manipulate objective function (instead of bounds)
- **Large Neighborhood Search**: solve some sub-MIP
- **Pivoting**: manipulate simplex algorithm
- **Combinatorial**: use special polyhedral properties
LNS improvement heuristics

✓ RINS
✓ Local Branching
✓ Mutation
✓ Crossover

Today: LNS Start Heuristic
Algorithm

1. $\bar{x} \leftarrow$ LP optimum;
2. Fix all integral variables: $x_i := \bar{x}_i$ for all $i : \bar{x}_i \in \mathbb{Z}$;
3. Reduce domain of fractional variables: $x_i \in \{\lfloor \bar{x}_i \rfloor; \lceil \bar{x}_i \rceil\};$
4. Solve the resulting sub-MIP
Algorithm

1. \(\bar{x} \leftarrow \) LP optimum;
2. Fix all integral variables:
 \[x_i := \bar{x}_i \quad \text{for all } i : \bar{x}_i \in \mathbb{Z}; \]
3. Reduce domain of fractional variables:
 \[x_i \in \{ \lfloor \bar{x}_i \rfloor; \lceil \bar{x}_i \rceil \}; \]
4. Solve the resulting sub-MIP
Algorithm

1. $\bar{x} \leftarrow \text{LP optimum}$;
2. Fix all integral variables:
 $$x_i := \bar{x}_i \quad \text{for all } i : \bar{x}_i \in \mathbb{Z};$$
3. Reduce domain of fractional variables:
 $$x_i \in \{\lfloor \bar{x}_i \rfloor; \lceil \bar{x}_i \rceil\};$$
4. Solve the resulting sub-MIP
Algorithm

1. \(\bar{x} \leftarrow \) LP optimum;
2. Fix all integral variables:
 \[x_i := \bar{x}_i \quad \text{for all } i : \bar{x}_i \in \mathbb{Z}; \]
3. Reduce domain of fractional variables:
 \[x_i \in \{ \lfloor \bar{x}_i \rfloor ; \lceil \bar{x}_i \rceil \}; \]
4. Solve the resulting sub-MIP
Algorithm

1. $\bar{x} \leftarrow$ LP optimum;
2. Fix all integral variables:
 \[x_i := \bar{x}_i \quad \text{for all } i : \bar{x}_i \in \mathbb{Z}; \]
3. Reduce domain of fractional variables:
 \[x_i \in \{ \lfloor \bar{x}_i \rfloor; \lceil \bar{x}_i \rceil \}; \]
4. Solve the resulting sub-MIP
Observations

- Solutions found by RENS are roundings of \bar{x}
- Yields best possible rounding
- Yields certificate, if no rounding exists

Results

- 82 of 129 test instances are roundable
- RENS finds a global optimum for 23 instances!
- Dominates all other rounding heuristics
Observations

- Solutions found by RENS are roundings of \bar{x}
- Yields best possible rounding
- Yields certificate, if no rounding exists

Results

- 82 of 129 test instances are roundable
- RENS finds a global optimum for 23 instances!
- Dominates all other rounding heuristics
Primal Heuristics

Approaches

- **Rounding**: Change fractional to integral values
- **Diving**: simulate DFS in the branch-and-bound tree using some special branching rule
- **Objective diving**: manipulate objective function (instead of bounds)
- **Large Neighborhood Search**: solve some sub-MIP
- **Pivoting**: manipulate simplex algorithm
- **Combinatorial**: use special polyhedral properties
The Feasibility Pump (Fischetti, Lodi et al.)

Algorithm

1. Solve LP;
2. Round LP optimum;
3. If feasible:
4. Stop!
5. Else:
6. Change objective;
7. Go to 1;
The Feasibility Pump (Fischetti, Lodi et al.)

Algorithm

1. Solve LP;
2. Round LP optimum;
3. If feasible:
4. Stop!
5. Else:
6. Change objective;
7. Go to 1;
Algorithm

1. Solve LP;
2. Round LP optimum;
3. If feasible:
 4. Stop!
5. Else:
 6. Change objective;
7. Go to 1;
The Feasibility Pump (Fischetti, Lodi et al.)

Algorithm

1. Solve LP;
2. Round LP optimum;
3. If feasible:
 4. Stop!
5. Else:
 6. Change objective;
7. Go to 1;
Algorithm

1. Solve LP;
2. Round LP optimum;
3. If feasible:
4. Stop!
5. Else:
6. Change objective;
7. Go to 1;

\[\Delta(x, \tilde{x}) = \sum |x_j - \tilde{x}_j| \]
The Feasibility Pump (Fischetti, Lodi et al.)

Algorithm

1. Solve LP;
2. Round LP optimum;
3. If feasible:
4. Stop!
5. Else:
6. Change objective;
7. Go to 1;

\[\Delta(x, \tilde{x}) = \sum |x_j - \tilde{x}_j| \]
The Feasibility Pump (Fischetti, Lodi et al.)

Algorithm

1. Solve LP;
2. Round LP optimum;
3. If feasible:
4. Stop!
5. Else:
6. Change objective;
7. Go to 1;

\[\Delta(x, \tilde{x}) = \sum |x_j - \tilde{x}_j| \]
Algorithm

1. Solve LP;
2. Round LP optimum;
3. If feasible:
 4. Stop!
5. Else:
 6. Change objective;
7. Go to 1;

![Diagram](image-url)
The Feasibility Pump (Fischetti, Lodi et al.)

Algorithm

1. Solve LP;
2. Round LP optimum;
3. If feasible:
 4. Stop!
5. Else:
6. Change objective;
7. Go to 1;
The Feasibility Pump (Fischetti, Lodi et al.)

Algorithm

1. Solve LP;
2. Round LP optimum;
3. If feasible:
 4. Stop!
5. Else:
 6. Change objective;
7. Go to 1;

\[\Delta(x, \tilde{x}) = \sum |x_j - \tilde{x}_j| \]
Objective Feasibility Pump (Achterberg & B.)

Improvements

- Objective $c^T x$ regarded at each step:
 $$\tilde{\Delta} := (1 - \alpha)\Delta(x) + \alpha c^T x, \text{ with } \alpha \in [0, 1]$$
- Algorithm able to recover from cycling
- Quality of solutions much better

Results
Improvements

- Objective $c^T x$ regarded at each step:
 \[\tilde{\Delta} := (1 - \alpha)\Delta(x) + \alpha c^T x, \text{ with } \alpha \in [0, 1] \]
- Algorithm able to recover from cycling
- Quality of solutions much better

Results

- Finds a solution for 74% of the test instances
- \(\approx 20\% \) more running time
- Optimality gap decreased from 107% to 38%
Feasibility Pump 2.0

- applies propagation after each rounding
- uses specific propagators for special linear constraints
- fewer rounding steps, “more feasible”

Results

- fewer (≈ 50%) iterations, hence better quality, higher success rate
- benefits combine with Objective FP improvements
Feasibility Pump 2.0

- applies propagation after each rounding
- uses specific propagators for special linear constraints
- fewer rounding steps, “more feasible”

Results

- fewer ($\approx 50\%$) iterations, hence
- better quality, higher success rate
- benefits combine with Objective FP improvements
SCIP primal heuristics
SCIP primal heuristics

By approach

- 8 Diving heuristics
- 6 LNS heuristics
- 4 Rounding heuristics

- 4 Combinatorial / Others
- 3 Objective divers
- 2 Problem specific

By category

- 25 start heuristics
- 6 improvement heuristics
- 2 repair heuristics
An Example

The graph shows the performance of different bound calculations over time. The x-axis represents time in seconds, and the y-axis represents bound values. Various lines and markers indicate different bound calculations:
- **Optimal Objective**: Blue line
- **Primal Bound With Heuristics**: Green line
- **Dual Bound With Heuristics**: Red line
- **Primal Bound Without Heuristics**: Green line
- **Dual Bound Without Heuristics**: Red line

Markers indicate the solution found by:
- **Relaxation**
- **Feaspump**
- **Crossover**
- **Rens**

The graph demonstrates how these bounds converge over time, with the optimal objective reaching a lower bound as time increases.
Impact of Different Heuristics

Results for SCIP version 1.1
Default settings ↔ disabling classes of heuristics
35 Instances from MIPLIB2003 which SCIP solves within 1 hour
Results & Conclusion

Single Heuristics

- Deactivating a single heuristic yields 1%-6% degradation
- No heuristic clearly dominating (best one: objective feaspump)
- Coordination important

Overall Effect

- Better pruning, earlier fixing
- 7% less instances without any solution
- 5% more instances solved within one hour
- Only half of the branch-and-bound-nodes
- Only 70% of the solving time
Cutting Planes and Primal Heuristics
CO@Work Berlin

Timo Berthold and Kati Wolter

09/30/2009
Once again,

▷ Heuristically build groups of 3 people (e.g., nearest-neighbor)
 ▷ laptop owner
 ▷ C expert
 ▷ IP expert

▷ Open your mouth, if you get stuck. ;-)