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Dual Simplex Algorithm
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Some Motivation

Dual simplex vs. primal (2002):   Dual 2.7x faster
 Best algorithm of  MIP
 There isn’t much in books about implementing the 

dual.

Vorführender
Präsentationsnotizen
In fact, in contrast to 3 years ago, when barrier dominated for large model:  Now each of the three algorithms win in a significant number of cases!
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Dual Simplex Algorithm
(Lemke, 1954:  Commercial codes ~1990)

Input:  A dual feasible basis B and vectors 
XB = AB

-1b and   DN = cN – AN
TB-TcB.

 Step 1: (Pricing) If XB ≥ 0, stop, B is optimal;  else let
i = argmin{XBk : k∈{1,…,m}}.

 Step 2: (BTRAN) Solve BTz = ei.  Compute αN=-AN
Tz.

 Step 3: (Ratio test) If αN ≤ 0, stop, (D) is unbounded; else, let 
j = argmin{Dk/αk: αk > 0}.

 Step 4: (FTRAN) Solve  ABy = Aj.
 Step 5: (Update) Set Bi=j.  Update XB (using y) and DN (using αN)
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Implementing the Dual 
Simplex Algorithm
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Implementation Issues for Dual Simplex

1. Finding an initial feasible basis, or the concluding 
that there is none

2. Pricing:  Dual steepest edge
3. Solving the linear systems

 LU factorization and factorization update
 BTRAN and FTRAN – exploiting sparsity

4. Numerically stable ratio test: Bound shifting and 
perturbation

5. Bound flipping:  Exploiting “boxed” variables to 
combine many iterations into one.
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Issue 0
Preparation:  Bounds on Variables

In practice, simplex algorithms need to accept LPs in the following form:

Minimize         cTx
Subject to  Ax = b

l ≤ x ≤ u
(PBD)

where l is an n-vector of lower bounds and u an n-vector of upper bounds.
In general, l is allowed to have -∞ entries and u is allowed to have +∞ entries.  
(Note that (PBD) is in standard form if lj = 0, uj = +∞ ∀ j.)   Assuming all 
upper and lower bounds are finite, the corresponding dual is:

Maximize      bTπ + lTr – uTs
Subject to     ATπ + r - s = c

π free, r ≥ 0, s ≥ 0
(DBD)
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(Issue 0 – Bounds on variables)
Basic Solution

A basis for (PBD) is a triple (B,L,U) where B is an ordered m-
element subset of {1,…,n} (as before), (B,L,U) is a partition of 
{1,…,n}, lj > -∞ ∀ j∈L, and uj < +∞ ∀ j∈U.  N = L∪U is the set of
nonbasic variables.  The associated primal basic solution X is 
given by XL = lL, XU = uU and

XB = AB
-1(b – ALlL – AUuU).

This solution is primal feasible if
lB ≤ XB ≤ uB.

The associated dual basic variables are π, rL, and sU with values:  
Π = AB

-TcB, RL = cL – AL
TΠ, and SU = -cU + AU

TΠ.   It is dual 
feasible if 

RL ≥ 0  and  SU ≥ 0.
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(Issue 0 – Bounds on variables)
The Full Story

 Modify simplex algorithm 
 Only the “Pricing” and “Ratio Test” steps must be 

changed substantially
 The complicated part is the ratio test

 Reference:  See Chvátal for the primal

Vorführender
Präsentationsnotizen
Dual now involves two cases, and each case involes two cases (or formulas).  So, in a sense, it’s 4 times as complicated.
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Issue 1
The Initial Feasible Basis – Phase I

 Two parts to the solution
1. Finding some initial basis (probably not feasible)
2. Modified simplex algorithm to find a feasible basis

Reference for Primal: R.E. Bixby (1992). 
“Implementing the simplex method: the initial basis”, 
ORSA Journal on Computing 4, 267—284.
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(Issue 1 – Initial feasible basis)
Initial Basis

 Primal and dual bases are the same.  We begin in the context of the 
primal.   Consider

 Assumption:  Every variable has some finite bound.
 Trick:  Add artificial variables xn+1,…,xn+m:

where  lj = uj = 0 for j = n+1,…,n+m. 
 Initial basis: B = (n+1,…,n+m) and for each j ∉ B, pick some 

finite bound and place j in L or U, as appropriate.

Minimize         cTx
Subject to  Ax = b

l ≤ x ≤ u
(PBD)

Ax + I = b
xn+1

.

.
xn+m

Vorführender
Präsentationsnotizen
See Gurobi example.
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(Issue 1 – Initial feasible basis)
Solving the Phase I

 If the initial basis is not dual feasible, we consider the problem:

 This problem is “locally linear”:  Define κ∈Rn by κj = 1 if Dj < 0, and 0
otherwise.   Let 

K = {j: Dj < 0}  and  K = {j: Dj ≥ 0}
Then our problem becomes

 Apply dual simplex, and whenever dj for j∈K becomes 0, move it to K.

Maximize  Σ (dj : dj < 0)
Subject to  ATπ + d = c

Maximize   κTd
Subject to  ATπ + d = c 

dK ≤ 0, dK ≥ 0



 Imagine performing the ratio test to determine which 
dj will leave the basis  given some dBi is entering:  

Case 1:  dj < 0 and hits 0       Case 2:  dj > 0 and hits 0

 Consider Case 2.  Then a further increase in dBi will 
make dj < 0.
 This can be handled by updating K.   But is it desirable?
 Update formula for “reduced cost”: 

new_reduced_cost = old_reduced_cost ± yi

 If the reduced cost does not change sign,  we have a cheap 
update  and can continue the step. 
 Note that this also improves numerical stability

(Issue 1 – Initial feasible basis)
Solving the Phase I – a Refinement

14

Vorführender
Präsentationsnotizen
Need to give matrix inverse update formula.
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Issue 2
Pricing

 The texbook rule:  Choose the largest primal violation 
is TERRIBLE:  For a problem in standard form

j = argmin{XBi : i = 1,…,m}
 Geometry is wrong: Maximizes rate of change 

relative to axis; better to do relative to edge.
 Goldfard and Forrest 1992 suggested the following 

steepest-edge alternative
j = argmin{XBi /ηi : i = 1,…,m}

where ηi = ||ei
TAB

-1||2,  and gave an efficient update.
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(Issue 2 – Pricing)
Dual Steepest Edge

 Idea:  Compute the rate of change of the objective per 
unit movement along the “corresponding” edge of the 
polyhedron of feasible solutions.

 Setup
 Assume the problem is in standard form with a dual 

basic feasible solution specified by a basis B.
 dBi = entering variable
XBi < 0
dBi = θ > 0 ⇒ ∆objective = - θ XBi > 0
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(Issue 2 – Pricing)
Dual Steepest Edte

 Old solution vector:
dB =  0        dN = DN π = Π

 New solution vector:
dB =  θ ei dN = DN – θ αN π = Π – θ z

where αN=-AN
Tz and AB

Tz = ei.
 Hence the change in the solution vector for θ =1 is 

given by

∆dB = ei       ∆dN = - ∆αN ∆π = z
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(Issue 2 – Pricing)
Dual Steepest Edge

 Hence the change in the solution vector for θ =1 is 
given by

∆dB = ei       ∆dN = - ∆αN ∆π = z
And so the rate of change of the objective per unit 
movement along the edge is given by

xBi / sqrt(ei
Tei + αN

TαN + zTz)
 Goldfarb and Forrest observation:    Projection onto the 

space of the π variables gives equally good iteration 
counts and is much simpler to compute

xBi/sqrt(zTz) = xBi/||ei
TAB

-1||2
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Pricing: Greatest infeasibility

Dual simplex - Optimal:  Objective =    1.1266396047e+07
Solution time = 1339.86 sec.  Iterations = 771647 (0)

Pricing: Goldfarb-Forrest steepest-edge

Dual simplex - Optimal:  Objective =    1.1266396047e+07
Solution time =   24.48 sec.  Iterations = 18898 (0)

Example:  Pricing
Model:  dfl001
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Issue 3
Solving FTRAN, BTRAN

 Computing  LU factorization: See Suhl & Suhl 
(1990). “Computing sparse LU factorization for large-
scale linear programming basis”, ORSA Journal on 
Computing 2, 325-335.

 Updating the Factorization: Forrest-Tomlin update 
is the method of choice.  See Chvátal Chapter 24.

 Exploiting sparsity: This is the main recent 
development.
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(Issue 3 – Solving FTRAN & BTRAN)

We must solve two linear systems per iterstion:
FTRAN     BTRAN 

ABy = Aj AB
Tz = ei

where
AB =  basis matrix         (very sparse)
Aj =  entering column  (very sparse)
ei =  unit vector           (very sparse)

⇒ y an  z are typically very sparse

Example: Model pla85900 (from TSP)
Constraints          85900
Variables           144185
Average |y|            15.5
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AB = L
U

Triangular solve: Lw=Aj (ABy = L(Uy) = Aj)
w

×

×
×

×

×

L w Aj

Graph structure: Define an acyclic digraph D = ({1,…,m}, E)
where (i,j)∈E ⇔ lij ≠ 0 and i ≠ j.
Solving using D: Let X = {i∈V: Aij ≠ 0}. Compute

X = {j∈V: ∃ a directed path from j to X}.   
X can be computed in time linear in |E(X)|+|X|.

update

update
=

Known in
advance

Need to find
w/o searching



23

PDS Models
“Patient Distribution System”:  Carolan, Hill, Kennington, Niemi, Wichmann, An 

empirical evaluation of the KORBX algorithms for military airlift applications, Operations 
Research 38 (1990), pp. 240-248

MODEL   ROWS
pds02 2953
pds06 9881
pds10 16558
pds20 33874
pds30  49944
pds40  66844   
pds50  83060
pds60  99431
pds70 114944

CPLEX1.0
1988
0.4      
26.4      
208.9     
5268.8    
15891.9   
58920.3   
122195.9   
205798.3   
335292.1 

CPLEX5.0 
1997
0.1      
2.4    
13.0      
232.6     
1154.9     
2816.8     
8510.9    
7442.6    
21120.4

CPLEX8.0  
2002
0.1      
0.9     
2.6     
20.9    
39.1    
79.3    
114.6   
160.5   
197.8 

SPEEDUP
1.08.0

4.0
29.3
80.3                     
247.3
406.4
743.0
1066.3
1282.2
1695.1 

Primal
Simplex

Dual
Simplex

Dual
Simplex

Vorführender
Präsentationsnotizen
Rather than just looking at averages, it’s nice to see at least one example.  
Pds-20 would have taken 2 months on machines available in 1988.   Pds70 would have taken 10 years!
JUST DUE TO ALGORITHM!

Label columns:  Primal  Dual

Mention version 8.0 is coming out.
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Not just faster -- Growth with size:
Quadratic then  & Linear now !
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Vorführender
Präsentationsnotizen
Can I get the time-period idea into the slide.



25

Issue 4
Ratio Test and Finiteness

The “standard form” dual problem is
Maximize   bTπ
Subject to   ATπ + d = c

d ≥ 0

Feasibility means
d ≥ 0

However, in practice this condition is replaced by
d ≥ - ε e

where eT=(1,…,1) and ε =10-6.  Reason:  Degeneracy.   
In 1972 Paula Harris suggested exploiting this fact to 
improve numerical stability.
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(Issue 4 – Ratio test & finiteness)

Motivation: Feasibility ⇒ step length θ satisfies

DN – θαN ≥ 0

However, the bigger the step length, the bigger the 
change in the objective.  So, we choose

θmax = min{Dj /αj : αj > 0}

Using  ε, we have

θ ε
max = min{(Dj+ε)/αj : αj > 0} > θmax

STD. RATIO TEST jenter = argmin{Dj /αj : αj > 0}

HARRIS RATIO TEST jenter = argmax{αj : Dj /αj ≤ θ ε
max}
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(Issue 4 – Ratio test & finiteness)

 Advantages
 Numerical stability – αjenter = “pivot element”
 Degeneracy – Reduces # of 0-length steps

 Disadvantage
 Djenter < 0  ⇒ objective goes in wrong direction

 Solution:  BOUND SHIFTING
 If Djenter < 0, we replace the lower bound on djenter by 

something less than its current value.
 Note that this shift changes the problem and must be 

removed:  5% of cases, this produces dual infeasibility 
⇒ process is iterated.



28

Problem 'pilot87.sav.gz' read.
Reduced LP has 1809 rows, 4414 columns, and 70191 nonzeros.

Iteration log . . .
Iteration:     1   Scaled dual infeas =             0.697540
Iteration:   733   Scaled dual infeas =             0.000404
Iteration:   790   Dual objective     =          -185.892207
...
Iteration: 16326   Dual objective     =           302.786794
Removing shift (3452).
Iteration: 16417   Scaled dual infeas =             0.207796
Iteration: 16711   Scaled dual infeas =             0.000021
Iteration: 16726   Dual objective     =           296.758656
Elapsed time =  104.36 sec. (17000 iterations).
Iteration: 17072   Dual objective     =           300.965492
...
Iteration: 17805   Dual objective     =           301.706409
Removing shift (76).
Iteration: 17919   Scaled dual infeas =             0.000060
Iteration: 17948   Dual objective     =           301.708660
Elapsed time =  114.42 sec. (18000 iterations).
Removing shift (10).
Iteration: 18029   Scaled dual infeas =             0.000050
Iteration: 18039   Dual objective     =           301.710058
Removing shift (1).

Dual simplex - Optimal:  Objective =   3.0171034733e+002
Solution time =  116.44 sec.  Iterations = 18095 (1137)

Example: Bound-Shifting Removal

Shift 3:  ε = 10-9

Shift 1:  ε = 10-7

Shift 2:  ε = 10-8
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Gurobi Optimizer version 2.0.0
Copyright (c) 2009, Gurobi Optimization, Inc.

Read MPS format model from file cont1.mps.bz2
cont1: 160792 Rows, 80795 Columns, 440387 NonZeros
Optimize a model with 160792 Rows, 80795 Columns and 440387 NonZeros

Presolve removed 40397 rows and 40397 columns
Presolve time: 0.31 sec.
Presolved: 120395 Rows, 40398 Columns, 359593 Nonzeros

Iteration    Objective       Primal Inf.    Dual Inf.      Time
0      handle free variables                          0s

17434    1.6725221e-02   6.416129e+01   0.000000e+00      5s
20749    1.6929624e-02   4.681255e+00   0.000000e+00     10s
...
32371    2.2108293e-02   9.527316e+00   0.000000e+00    101s
32953    2.2381550e-02   3.618798e+01   0.000000e+00    110s
...
37997    2.5924066e-02   1.204414e+02   0.000000e+00    200s
38579    2.6442899e-02   6.255491e+01   0.000000e+00    212s
...
42853    3.0820162e-02   7.662419e+01   0.000000e+00    300s
43400    3.1467196e-02   8.031314e+01   0.000000e+00    311s
...
46184    3.4566856e-02   7.302474e+01   0.000000e+00    372s
46822    3.6248845e-02   1.600513e-01   0.000000e+00    386s
46994    3.6272914e-02   0.000000e+00   0.000000e+00    390s
47222    1.4881820e-02   0.000000e+00   3.185893e+00    400s
47415    1.4864227e-02   0.000000e+00   4.802191e+01    406s
47830    1.4649598e-02   0.000000e+00   7.049439e-01    420s
48267    1.4450227e-02   0.000000e+00   7.578008e+00    431s
48815    1.2095665e-02   0.000000e+00   6.917880e-01    444s
49144    1.0459973e-02   0.000000e+00   6.762116e-01    452s
49241    8.7824861e-03   0.000000e+00   0.000000e+00    471s

Solved in 49241 iterations and 471.05 seconds
Optimal objective  8.782486112e-03

Switched to Primal
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(Issue 4 – Ratio test & finiteness)

Finiteness: Bound shifting is closely related to the 
“perturbation” method employed if no progress is being 
made in the objective.   

“No progress” ⇒

dj ≥ -ε j = 1,…,n

is replaced by

dj ≥ -ε – εj j = 1,…,n,

where εj is random uniform on [0,ε].

Implementation detail:   For a basis B, we initially perturb 
only the bounds on the variables in dN.    Bound perturbations 
are then introduced for  other dj variables when j enters N for 
the first time.



 If the current basis is not optimal,  then there is a Bi such that 
 Case 1:  XBi < lBi, or
 Case 2:  XBi > uBi.

 Consider Case 2 (Case 1 is similar).  Then the corresponding dual move is 
to consider increasing the dual non-basic variable sBi to some θ > 0, leaving 
all other non-basics at 0.  The resulting values of the basic variables are given 
by
 RL

θ = RL – θ αL ≥ 0
 SU

θ = SU + θ αU ≥ 0

 The maximum step length is then given by 
θmax = min{θmax

r, θmax
r}

where
θmax

r = min{ rj/αj: αj > 0, j ∈ L}  and  θmax
s = min{-sj/αj: αj < 0, j ∈ U}

Issue 5
Bound Flipping

31



 Now suppose that θ max = rj/α j, αj > 0.   Then the normal simplex step 
would be to remove rj from the basis and replace it by sBi.

 However, instead of doing this, we consider replacing rj by sj in the basis, 
which is possible if uj < +∞.  Since rj and sj are dual slacks in the same 
constraint, and have opposite signs, rj becoming negative translates to sj
becoming positive, and preserves dual feasibility.  

 That is, we consider setting L ← L\{j} and U ← U∪{j}.   This is a good 
idea ⇔ the updated_XBi > uBi.   But it is easy to show that 

updated_XBi = XBi + α j (lj – uj) < XBi (since α j > 0).

 So it is easy to determine whether this “flipping” is desirable:  If 
updated_XBi > uBi.  In this case we obtain a cheap basis update and can 
continue with the ratio test.   

Issue 5
Bound Flipping

32
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Problem 'fit2d.sav.gz' read.
Initializing dual steep norms . . .

Iteration log . . .
Iteration:     1   Dual objective     =        -80412.550000
Perturbation started.
Iteration:   203   Dual objective     =        -80412.550000
Iteration:  1313   Dual objective     =        -80412.548666
Iteration:  2372   Dual objective     =        -77028.548350
Iteration:  3413   Dual objective     =        -71980.245530
Iteration:  4316   Dual objective     =        -70657.605570
Iteration:  5151   Dual objective     =        -68994.477061
Iteration:  5820   Dual objective     =        -68472.659371
Removing perturbation.

Dual simplex - Optimal:  Objective =  -6.8464293294e+004
Solution time =   18.74 sec.  Iterations = 5932 (0)

Problem 'fit2d.sav.gz' read.
Initializing dual steep norms . . .

Iteration log . . .
Iteration:     1   Dual objective     =        -77037.550000

Dual simplex - Optimal:  Objective =  -6.8464293294e+004
Solution time =    1.88 sec.  Iterations = 201 (0)

w/o flipping

w/ flipping

Example: Bound Flipping
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