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Overview
 Linear Programming: 

 Example and introduction to basic LP, including duality
 Primal and dual simplex algorithms
 Computational progress in linear programming
 Implementing the dual simplex algorithm
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Overview
 Mixed-Integer Programming: 

 Introduction
 Branch and Bound
 Computational landscape
 Heuristics
 Presolve and cuts
 Parallel MIP

 From Planning to Operations
 Real-time Optimization – 3 Examples
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An Example
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Diet Problem*

Bob wants to plan a nutritious diet, but he is on a 
limited budget, so he wants to spend as little money as 
possible.  His nutritional requirements are as follows:

1. 2000 kcal

2. 55 g protein

3. 800 mg calcium

* From Linear Programming, by Vaŝek Chvátal
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Nutritional values

Diet Problem

Bob is considering the following foods: 
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Variables

Diet Problem

We can represent the number of servings of 
each type of food in the diet by the 
variables:

x1 servings of oatmeal

x2 servings of chicken

x3 servings of eggs

x4 servings of milk

x5 servings of cherry pie

x6 servings of pork and beans
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Nutritional values

Diet Problem

Bob is considering the following foods: 

x1
x2
x3
x4
x5
x6

KCAL constraint:
110x1 +  205x2 +  160x3 +  160x4 +  420x5 +  260x6 ≥ 2000
(110x1 = kcals in oatmeal)
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LP formulation

Diet Problem

110x1 +  205x2 +  160x3 +  160x4 +  420x5 +  260x6 ≥ 2000
4x1 +    32x2 +   13x3 +      8x4 +     4x5 +    14x6 ≥ 55
2x1 +    12x2 +   54x3 +  285x4 +   22x5 +    80x6 ≥ 800

Minimize

subject to:

0,,,,, 654321 ≥xxxxxx

Cost

Nutritional requirements

Bounds

0.3x1 + 2.40x2 + 1.30x3 + 0.90x4 + 2.0x5 + 1.9x6 
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Solution

Diet Problem

When we solve the preceding LP we get a solution 
value of $6.71, which is achieved with the following 
menu:

14.24 servings of oatmeal

0 servings of chicken     

0 servings of eggs 

2.71 servings of milk

0 servings of cherry pie

0 servings of pork and beans

Vorführender
Präsentationsnotizen
Now run CPLEX to see what it looks like.



The Pill Salesman

Diet Problem

A pill salesman offers Bob energy, protein, and 
calcium pills to fulfill his nutritional needs. We will 
represent the costs of each of the pills as follows:

y1 cost (in dollars) of 1 kcal energy pill

y2 cost (in dollars) of 1 g protein pill

y3 cost (in dollars) of 1mg calcium pill



How can I guarantee I won’t make a bad deal?

Diet Problem

110x1 +  205x2 +  160x3 +  160x4 +  420x5 +  260x6 ≥ 2000     y1  kcal
4x1 +    32x2 +   13x3 +      8x4 +     4x5 +    14x6 ≥ 55     y2  protein
2x1 +    12x2 +   54x3 +  285x4 +   22x5 +    80x6 ≥ 800     y3  calcium

Nutritional requirements

x1 = servings of oatmeal: The cost of the nutrients in one serving of  
oatmeal shouldn’t exceed the cost of just buying one serving of oatmeal:

110y1 +   4y2  +     2y3 ≤ 0.3  (4 y2 = cost of protein in oatmeal) 

Minimize Cost
0.3x1 + 2.40x2 + 1.30x3 + 0.90x4 + 2.0x5 + 1.9x6



The salesman’s requirements

Diet Problem

The pill salesman wants to make as much money as possible, given 
Bob’s constraints.  He knows Bob wants 2000 kcal, 55g protein, and 800 
mg calcium, so his problem is as follows:

Maximize  2000y1 + 55y2 + 800y3

Subject to    110y1 +   4y2  +     2y3 ≤ 0.3
205y1 + 32y2  +   12y3 ≤ 2.4
160y1 + 13y2  +   54y3 ≤ 1.3
160y1 +   8y2  + 285y3 ≤ 0.9
420y1 +   4y2  +   22y3 ≤ 2.0
260y1 + 14y2  +   80y3 ≤ 1.9

y1, y2, y3 ≥ 0



Solution

Diet Problem

Solving this LP gives us the following pill prices:
$0.27   for 1 kcal energy pill

$0.00   for 1 g protein pill

$0.16   for 1mg calcium pill

Total cost = 0.27 (2000) + 0.16 (800) = $6.71

THE SAME AS THE LOWEST COST DIET!

Duality Theorem (John von Neumann, 1954):   
These two linear programs will always give the same values



Diet Problem

Things to Remember:

The values of the “dual” variables (“shadow 
prices”), which are always available as part of 
LP solution, give the marginal value of 
corresponding  resources.
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Some Basic Theory
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Where c∈Rn, b∈Rm, A∈Rm×n, and x is a vector of 
n variables.  cTx is known as the objective 
function, Ax=b as the constraints, and x ≥ 0 as 
the nonnegativity conditions.  b is called the 
right-hand side.

(P)
Minimize         cTx
Subject to  Ax = b

x ≥ 0

A linear program (LP) in standard form is an 
optimization problem of the form

Linear Program – Definition

Vorführender
Präsentationsnotizen
So the crucial things are:  (1) everything is linear, and (2) x>=0.  Without nonnegativity (which is why we give it a name), this would just be linear algebra – and easy.  Hence, LP is sometimes known as linear algebra for inequalities.
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In this context, (P) is referred to as the primal 
linear program. 

(D)
Maximize         bTπ
Subject to  ATπ ≤ c

π free

The dual (or adjoint) linear program
corresponding to (P) is the optimization problem

Minimize         cTx
Subject to  Ax = b

x ≥ 0

Primal

Dual Linear Program – Definition



19

If bTπ = cTx, then x is optimal for (P) and  π is 
optimal for (D);  moreover, if either (P) or (D) is 
unbounded,  then the other problem is infeasible. 

bTπ ≤ cTx

Let x be feasible for (P) and π feasible for (D). 
Then

Weak Duality Theorem  
(von Neumann 1947)

Proof:

πTAxπTb =

Ax = b

≤ cTx

πTA ≤ cT &  x ≥ 0

MinimizeMaximize

▆

Vorführender
Präsentationsnotizen
This is an incredibly important theorem, attributed by many to von Neumann.  It implies LP in NP intersect co-NP, and it is why everyone believed that LP could be solved in polynomial time.
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Solving Linear Programs
 Three types of algorithms are available

 Primal simplex algorithms (Dantzig 1947)
 Dual simplex algorithms (Lemke 1954)

 Developed in context of game theory

 Primal-dual log barrier algorithms
 Interior-point algorithms (Karmarkar 1989)
 Reference:   Primal-Dual Interior Point Methods, S. 

Wright, 1997, SIAM

Primary focus: Dual simplex algorithms
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Basic Solutions – Definition

Let B be an ordered set of m distinct indices 
(B1,…,Bm) taken from {1,…,n}. B is called a basis
for (P) if AB is nonsingular.  The variables xB are 
known as the basic variables and the variables 
xN as the non-basic variables, where N = 
{1,…,n}\B.   The corresponding basic solution
X∈ Rn is given by XN=0 and XB=AB

-1 b.  B is 
called (primal) feasible if XB ≥ 0.

Note:   AX = b  ⇒ ABXB + ANXN = b  ⇒ AB XB = b  ⇒ XB = AB
-1b

Vorführender
Präsentationsnotizen
This is an absolutely key notion.  We will see shortly that “basic solutions” have a nice geometric interpretation.



22

Primal Simplex Algorithm
(Dantzig, 1947)

Input:  A feasible basis B and vectors 
XB = AB

-1b and   DN = cN – AN
TB-TcB.

 Step 1: (Pricing) If DN ≥ 0, stop, B is optimal;  else let 
j = argmin{Dk : k∈N}.

 Step 2: (FTRAN) Solve ABy=Aj.
 Step 3: (Ratio test) If y ≤ 0, stop, (P) is unbounded; else, let

i = argmin{XBk/yk: yk > 0}.
 Step 4: (BTRAN) Solve  AB

Tz = ei.
 Step 5: (Update) Compute αN=-AN

Tz.  Let Bi=j.  Update XB
(using y) and DN (using αN)

Note: xj is called the entering variable and xBi the leaving variable.   
The DN values are known as reduced costs – like partial derivatives 
of the objective function relative to the nonbasic variables.

Vorführender
Präsentationsnotizen
There is a lot to remember here.    A key feature is that this algorithm is really very combinatorial:  Basis  switch one variable in, one out  new basis, repeat.
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Dual Simple Algorithm – Setup
Simplex algorithms apply to problems with 
constraints in equality form.  We convert (D) 
to this form by adding the dual slacks d:

Maximize    bTπ
Subject to   ATπ + d = c

π free, d ≥ 0 ⇔ ATπ ≤ c
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Dual Simple Algorithm – Setup
Simplex algorithms apply to problems with 
constraints in equality form.  We convert (D) 
to this form by adding the dual slacks d:

Maximize    bTπ
Subject to   ATπ + d = c

π free, d ≥ 0

Given a basis B, the corresponding dual basic
solution Π,D is determined as follows: 

DB=0  ⇒ Π = AB
-TcB ⇒ DN=cN – AN

TΠ.

B is dual feasible if DN ≥ 0.

=AB
T   IB 0

AN
T 0  IN

π
dB
dN

cB

cN
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An Important Fact
If X and Π,D are the respective primal and 
dual basic solutions determined by a basis B, 
then

Π Tb = cTX.
Hence, by weak duality, if B is both primal and 
dual feasible, then X is optimal for (P) and Π is 
optimal for (D).

Proof: cTX = cB
TXB (since XN=0)

= Π TABXB (since Π = AB
-TcB)

= Π Tb (since ABXB=b) ▆
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Dual Simplex Algorithm
(Lemke, 1954)

Input:  A dual feasible basis B and vectors 
XB = AB

-1b and   DN = cN – AN
TB-TcB.

 Step 1: (Pricing) If XB ≥ 0, stop, B is optimal;  else let
i = argmin{XBk : k∈{1,…,m}}.

 Step 2: (BTRAN) Solve AB
Tz = ei.  Compute αN=-AN

Tz.
 Step 3: (Ratio test) If αN ≤ 0, stop, (D) is unbounded; else, let 

j = argmin{Dk/αk: αk > 0}.
 Step 4: (FTRAN) Solve  ABy = Aj.
 Step 5: (Update) Set Bi=j.  Update XB (using y) and DN (using αN)

Note: dBi is the entering variable and dj is the leaving variable.  
(Expressed in terms of the primal:  xBi is the leaving variable and xj is 
the entering variable)
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Simplex Algorithms
Input:  A primal feasible basis B 

and vectors 
XB=AB

-1b &  DN=cN – AN
TAB

-TcB.

 Step 1: (Pricing) If DN ≥ 0, stop, 
B is optimal;  else, let 

j = argmin{Dk : k∈N}.
 Step 2: (FTRAN) Solve ABy=Aj.
 Step 3: (Ratio test) If y ≤ 0, stop, 

(P) is unbounded; else, let
i = argmin{XBk/yk: yk > 0}.

 Step 4: (BTRAN) Solve  AB
Tz = 

ei.
 Step 5: (Update) Compute  αN  = 

-AN
Tz.  Let Bi=j.  Update XB(using y) and DN (using αN)

Input:  A dual feasible basis B and 
vectors 

XB=AB
-1b &  DN=cN – AN

TAB
-TcB.

 Step 1: (Pricing) If XB ≥ 0, stop, 
B is optimal;  else, let

i = argmin{XBk : k∈{1,…,m}}.
 Step 2: (BTRAN) Solve AB

Tz = 
ei.  Compute αN=-AN

Tz.
 Step 3: (Ratio test) If αN ≤ 0, 

stop, (D) is unbounded; else, let
j = argmin{Dk/αk: αk > 0}.

 Step 4: (FTRAN) Solve  ABy = 
Aj.

 Step 5: (Update) Set Bi=j.  
Update XB (using y) and DN (using 
αN)
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Correctness:  
Dual Simplex Algorithm

 Termination criteria
 Optimality
 Unboundedness 

 Other issues
 Finding starting dual feasible basis, or showing that no 

feasible solution exists
 Input conditions are preserved (i.e., that B is still a 

feasible basis)
 Finiteness

(DONE – by “An Important Fact” !!!)
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Summary:
What we have done and what we have to do

 Done
 Defined primal and dual linear programs
 Proved the weak duality theorem
 Introduced the concept of a basis
 Stated primal and dual simplex algorithms

 To do (for dual simplex algorithm)
 Show correctness
 Describe key implementation ideas
 Motivate
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Dual Unboundedness
(⇒ primal infeasible)

 We carry out a key calculation
 As noted earlier, in an iteration of the dual

 The idea:  Currently dBi = 0, and XBi < 0 has motivated 
us to increase dBi to θ > 0, leaving the other 
components of dB at 0 (the object being to increase the 
objective).  Letting d,π be the corresponding dual 
solution as a function of θ, we obtain

dB =  θ ei dN = DN – θ αN π = Π – θ z,
where αN and z are as computed in the algorithm.

dBi enters basis
dj leaves basis in

Maximize    bTπ
Subject to   ATπ + d = c

π free, d ≥ 0
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(Dual Unboundedness – cont.)

 Letting d,π be the corresponding dual solution as a 
function of θ.  Using αN and z from dual algorithm,

dB =  θ ei dN = DN – θ αN π = π – θ z.
 Using θ > 0 and XBi < 0 yields

new_objective = πT b =  (π – θ z)T b 
=  πT b – θ XBi
=  old_objective – θ XBi  >  old_objective

 Conclusion 1: If αN ≤ 0, then dN ≥ 0 ∀ θ > 0 ⇒ (D) 
is unbounded.

 Conclusion 2: If αN not≤ 0, then 
dN ≥ 0 ⇒ θ ≤ Dj /αj   ∀ αj > 0 

⇒ θmax = min{Dj /αj: αj > 0}
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(Dual Unboundedness – cont.)

 Finiteness: If DB > 0 for all dual feasible bases B, then 
the dual simplex method is finite:   The dual objective 
strictly increases at each iteration ⇒ no basis repeats, 
and there are a finite number of bases.

 There are various approaches to guaranteeing finiteness 
in general:
 Bland’s Rule:  Purely combinatorial, bad in practice.
 CPLEX & Gurobi:   A perturbation is introduced to 

guarantee   DB > 0.
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Graphical Interpretation of 
Simplex Algorithms
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x

y

(0.882,0.706)

Feasible
Solutions

Objective =  0.9 * 0.882 + 0.73 * 0.706
=  13.1 million

(0,6)

(1,0)

(0,1)

(3,0)

(0,1.5)

(2,0)

A Graphical Solution

(0,0)

Maximize    0.90 x + 0.73 y   (OBJECTIVE)
Subject To  

Constraint 1: 0.42 x + 0.07 y <= 4200000
Constraint 2: 0.13 x + 0.39 y <= 3900000
Constraint 3: 0.35 x + 0.44 y <= 7000000

x >= 0
y >= 0
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A graphical representation

The Simplex Algorithm

We now look at a graphical representation of the simplex method 
as it solves the following problem:

Maximize   3x1 + 2x2 + 2x3

Subject to     x1 +   x3 ≤ 8
x1 +    x2  ≤ 7
x1 +  2x2  ≤ 12

x1, x2, x3 ≥ 0
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The Primal Simplex Algorithm

x1

x2

x3

(0,0,8) (0,6,8)

(2,5,6)

(0,6,0)

(2,5,0)(7,0,1)

(7,0,0)

Maximize  z = 3x1 + 2x2 + 2x3

z = 0

z = 21

z = 23

Optimal!

z = 28

Add slacks:   Initial basis B = (4,5,6)
Maximize   3x1 + 2x2 + 2x3  + 0x4 + 0x5 + 0x6

Subject to     x1 +   x3 +    x4 =    8
x1 +    x2  +   x5 =    7
x1 +  2x2  +   x6 =  12

x1, x2, x3,x4,x5,x6 ≥ 0

x1 enters, x5 leaves basis
D1 = rate of change of z relative to x1 = 21/7=3
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Computational History 
of 

Linear Programming
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“A certain wide class of practical problems appears to be just 
beyond the range of modern computing machinery.  These 
problems occur in everyday life; they run the gamut from some 
very simple situations that confront an individual to those 
connected with the national economy as a whole.  Typically, these 
problems involve a complex of different activities in which one 
wishes to know which activities to emphasize in order to carry out 
desired objectives under known limitations.”

George B. Dantzig, 1948



The Early History 

 1947 – George Dantzig 
 Introduced LP and recognized it as more than a conceptual tool:  

Computing answers important.
 Invents simplex method for solving linear programs
 First LP solved:  Laderman, 9 cons., 77 vars., 120 MAN-DAYS.

 1951 – First computer code for solving LPs
 1960 – LP commercially viable

 Used largely by oil companies

39



The Decade of the 70’s

 Interest in optimization flowered
 Large scale planning applications particularly popular

 Significant difficulties emerged
 Building applications was very expensive and very risky

 3-4 year development cycles
 Developers and application owners had to be multi-faceted experts
 Technology just wasn’t ready:   LP was slow and Mixed Integer Programming 

was impossible.

 Result:  Disillusionment and much of that 
disillusionment persists to this day.
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The Decade of the 80’s

 Mid 80’s:  
 There was perception was that LP software had progressed about as far 

as it could

 There were several key developments 
 IBM PC introduced in 1981

 Brought personal computing to business

 Relational databases developed.  ERP systems introduced.
 1984, major theoretical breakthrough in LP  (Karmarkar, Interior Point 

Methods, front page New York Times)

 The last 20 years:  Remarkable progress
 We now have three algorithms:  Primal & Dual Simplex, Barrier (interior points)

41
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Example:  A Production Planning Model
401,640 constraints   1,584,000 variables

Solution time line (2.0 GHz P4):
1988 (CPLEX 1.0):         Houston, 13 Nov 2002

Vorführender
Präsentationsnotizen
All the primal simplex algorithm!!!
bench9000h.sav.gz
History:  Started 1.0 run on 13 November, left on trip.  Presentation on 21st in Berlin (~1 week later), presentation 28th  near Stuttgard (another week), next week three presentations in Holland, back in US on 6th December, had presentation in DC on 16 December.   Fortunately, finished on 12th.
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Example:  A Production Planning Model
401,640 constraints   1,584,000 variables

Solution time line (2.0 GHz P4):
1988 (CPLEX 1.0):   8.0 days (Berlin, 21 Nov) 

Vorführender
Präsentationsnotizen
All the primal simplex algorithm!!!
bench9000h.sav.gz
History:  Started 1.0 run on 13 November, left on trip.  Presentation on 21st in Berlin (~1 week later), presentation 28th  near Stuttgard (another week), next week three presentations in Holland, back in US on 6th December, had presentation in DC on 16 December.   Fortunately, finished on 12th.
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Example:  A Production Planning Model
401,640 constraints   1,584,000 variables

Solution time line (2.0 GHz P4):
1988 (CPLEX 1.0):   15.0 days (Dagstuhl, 28 Nov) 

Vorführender
Präsentationsnotizen
All the primal simplex algorithm!!!
bench9000h.sav.gz
History:  Started 1.0 run on 13 November, left on trip.  Presentation on 21st in Berlin (~1 week later), presentation 28th  near Stuttgard (another week), next week three presentations in Holland, back in US on 6th December, had presentation in DC on 16 December.   Fortunately, finished on 12th.
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Example:  A Production Planning Model
401,640 constraints   1,584,000 variables

Solution time line (2.0 GHz P4):
1988 (CPLEX 1.0):   19.0 days (Amsterdam, 2 Dec) 

Vorführender
Präsentationsnotizen
All the primal simplex algorithm!!!
bench9000h.sav.gz
History:  Started 1.0 run on 13 November, left on trip.  Presentation on 21st in Berlin (~1 week later), presentation 28th  near Stuttgard (another week), next week three presentations in Holland, back in US on 6th December, had presentation in DC on 16 December.   Fortunately, finished on 12th.
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Example:  A Production Planning Model
401,640 constraints   1,584,000 variables

Solution time line (2.0 GHz P4):
1988 (CPLEX 1.0):   23.0 days (Houston, 6 Dec) 

Vorführender
Präsentationsnotizen
All the primal simplex algorithm!!!
bench9000h.sav.gz
History:  Started 1.0 run on 13 November, left on trip.  Presentation on 21st in Berlin (~1 week later), presentation 28th  near Stuttgard (another week), next week three presentations in Holland, back in US on 6th December, had presentation in DC on 16 December.   Fortunately, finished on 12th.



47

Example:  A Production Planning Model
401,640 constraints   1,584,000 variables

Solution time line (2.0 GHz P4):
1988 (CPLEX 1.0): 29.8 days

Speedup: >43500x

1997 (CPLEX 5.0): 1.5 hours
2002 (CPLEX 8.0): 86.7 seconds
2003 (February): 59.1 seconds

Vorführender
Präsentationsnotizen
All the primal simplex algorithm!!!
bench9000h.sav.gz
History:  Started 1.0 run on 13 November, left on trip.  Presentation on 21st in Berlin (~1 week later), presentation 28th  near Stuttgard (another week), next week three presentations in Holland, back in US on 6th December, had presentation in DC on 16 December.   Fortunately, finished on 12th.
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Progress in LP: 1988 – 2004

 Not possible for one test to cover 15+ years:  
Combined several tests.

 The biggest single test:
 Assembled 680 real LPs
 Test runs:  Using a time limit (4 days per LP) two chosen 

methods would be compared as follows:
 Run method 1:  Generate 680 solve times
 Run method 2:  Generate 680 solve times
 Compute 680 ratios and form GEOMETRIC MEAN (not 

arithmetic mean!)

Vorführender
Präsentationsnotizen
Caso3.50:  735445 consts., 2583213 vars., 6783640 nzs
                 1051 seconds with 8.0
                > 1,556,000 seconds (18 days) with cplex 1.0
	296.21 seconds on diamond1 w/ cplex11 (601778 iterations)
	117.15 seconds on gurobi5 w/ Gurobi 2.0 (625849 iterations)
	198.26 seconds on gurobi5 w/ Gurobi 1.1 (436061 iterations)
Drop.50:   766470 rows, 2464820 columns, 10796670 nzs
	22555.95 seconds on diamond1 w/ cplex11 (2203024 iterations)
	756.67 seconds on gurobi5 w/ Gurobi 2.0 (2096057 iterations)
	3585.66 seconds on gurobi5 w/ Gurobi 1.1 (1216550 iterations)
Drop.5:  78870 rows, 255320 columns, 1108620 nzs
	211.55 seconds on diamond1 w/ cplex11 (131588 iterations)
	23.64 seconds on gurobi5 w/ Gurobi 2.0 (185541 iterations)
	43.76 seconds on gurobi5 w/ Gurobi 1.1 (128410 iterations)
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(Operations Research, Jan 2002, pp. 3—15, updated in 2004)

 Algorithms (machine independent):  

Primal versus best of Primal/Dual/Barrier 3,300x

 Machines (workstations →PCs): 1,600x

 NET:  Algorithm × Machine 5,300,000x

(2 months/5300000 ~= 1 second)

Progress in LP: 1988—2004

Vorführender
Präsentationsnotizen
14 days/2000000 =~ 0.6 seconds
The speedup:  900 * 800 * (2360/960) = 1,888,000
Two things to note here: 
    for simplex methods (still dominant method):  algorithm > machine
    overall speedup is huge



War of 1812
December 24, 1814:  Treaty of Ghent – “ending the war”
January 8, 1815:  5300 British troops attack New Orleans

50

Vorführender
Präsentationsnotizen
Brits impress us Sailors.   Give us no respect.   Didn’t really view the US as a sovereign state.  After all, we didn’t even have a constitution until 1789.   Before that we used the articles of confederacy.    Also, we used this “war” as an excuse to remove Brit influence in northern hemisphere, invade and attempt to conquer Canada.   That failed,  but we did win the war.   Note that this was the last time (up to Sept 11) when the US was invaded by a foreign power on it’s own soil.

Both start and finish were mistakes.



War of 1812
December 24, 1814:  Treaty of Ghent – “ending the war”
January 8, 1815:  5300 British troops attack New Orleans
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War of 1812
December 24, 1814:  Treaty of Ghent – “ending the war”
January 8, 1815:  5300 British troops attack New Orleans

1865:  Transatlantic telegraph cable completed.  Communication 
time reduced from weeks to seconds, a factor of ~2 million.

New Orleans

Boston

Ghent

Total travel time Ghent-New Orleans:
Approximately 3 weeks

52

Vorführender
Präsentationsnotizen
3 weeks  1 second:  A factor of 1.8 million.  

Andrew Jackson – 7th president of US



53

 Algorithm comparison
 Dual simplex vs. primal: Dual  2.70x  faster
 Dual simplex vs. barrier: Dual  1.06x  faster

 Where are we Today?
 The good news

 “LP is a solved problem in practice”

 But, …. a word of warning
 2% of MIP models are blocked by linear programming
 Little progress in LP computation since 2004 
 LP could become a serious bottleneck in the future

Progress in LP: 1988—2004

Vorführender
Präsentationsnotizen
In fact, in contrast to 3 years ago, when barrier dominated for large model:  Now each of the three algorithms win in a significant number of cases!


	Solving Linear �and �Integer Programs
	Overview
	Overview
	An Example
	Diet Problem*
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Some Basic Theory
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Solving Linear Programs
	Basic Solutions – Definition
	Primal Simplex Algorithm �(Dantzig, 1947)
	Dual Simple Algorithm – Setup
	Dual Simple Algorithm – Setup
	An Important Fact
	Dual Simplex Algorithm �(Lemke, 1954)
	Simplex Algorithms
	Correctness:  �Dual Simplex Algorithm
	Summary:�What we have done and what we have to do
	Dual Unboundedness �( primal infeasible)
	(Dual Unboundedness – cont.)
	(Dual Unboundedness – cont.)
	Graphical Interpretation of �Simplex Algorithms
	Foliennummer 34
	Foliennummer 35
	Foliennummer 36
	Computational History �of �Linear Programming
	Foliennummer 38
	The Early History 
	The Decade of the 70’s
	The Decade of the 80’s
	Example:  A Production Planning Model�401,640 constraints   1,584,000 variables
	Example:  A Production Planning Model�401,640 constraints   1,584,000 variables
	Example:  A Production Planning Model�401,640 constraints   1,584,000 variables
	Example:  A Production Planning Model�401,640 constraints   1,584,000 variables
	Example:  A Production Planning Model�401,640 constraints   1,584,000 variables
	Example:  A Production Planning Model�401,640 constraints   1,584,000 variables
	Progress in LP: 1988 – 2004
	 (Operations Research, Jan 2002, pp. 3—15, updated in 2004)
	Foliennummer 50
	Foliennummer 51
	War of 1812�December 24, 1814:  Treaty of Ghent – “ending the war”�January 8, 1815:  5300 British troops attack New Orleans
	Foliennummer 53

