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Preliminaries

Goals:
I Repetition of polyhedral theory
I Usage of software

I Porta
I Polymake (+ JavaView)

I Combinatorial optimization and polyhedra

You will find all the examples + tutorial on the virtual machine
~/COatWork-Data/0922/porta

~/COatWork-Data/0922/polymake
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H-description of Polyhedra

Halfspace Description

I Polyhedron: Intersection of finitely many
halfspaces:

P (A, b) = {x ∈ Rd : Ax ≤ b}
A ∈ Rm×d, b ∈ Rm.

I Polytope: bounded polyhedron
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V-description of Polyhedra

Vertex description

I Polyhedron: P (A, b) can be written as

P (A, b) = conv(V ) + cone(E)
V = {v1, . . . , vk}, E = {e1, . . . , e`}

I Polytope: P (A, b) can be written as

P (A, b) = conv(V )

I H- and V-description are not unique !
I There exist non-redundant descriptions.

In this lecture we will mainly consider full-dimensional polytopes
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Examples: Platonic Solids

Cube Octahedron

Tetrahedron Dodecahedron Icosahedron

Regular polytopes – visualization with Polymake/JavaView
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Faces

P polyhedron in Rd.
I Face of polyhedron P :

F = {x ∈ P : aTx = c},

for valid inequality aTx ≤ c
with a ∈ Rd, c ∈ R

Face F is a
I vertex if dimF = 0
I edge if dimF = 1
I facet if dimF = dim(P )− 1
I Empty set and P are trivial faces
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Example: d-cube

d-cube:

Cd :={x ∈ Rd : −1 ≤ xi ≤ 1, i = 1, . . . , d}
= conv({−1, 1}d)

I 2d vertices
I d · 2d−1 edges
I 2 · d facets
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Example: d-crosspolytope

d-crosspolytope:

C∆
d := conv{e1,−e1, . . . , ed,−ed}

={x ∈ Rd : aTx ≤ 1, a ∈ {−1, 1}d}

I 2d facets
I d · 2d−1 ridges
I 2 · d vertices
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Problems related to polyhedra

I Given H-description, how to derive a V-description ?
I Given V-description, how to derive an H-description ?
I What is the dimension of my polyhedron ?
I What is the dimension of the face defined by my inequality ?
I How many vertices/facets (faces of dimension n) has my polyhedron ?
I How can I visualize my polyhedron ?

... Porta and Polymake come into play
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Porta and Polymake – Overview

Porta Polymake

Dimension (polyhedra,faces) X X
H → V X X
V → H X X
Enumeration of integral solutions X (X)
Advanced polyhedral properties
(Combinatorics, Topology) – X
Visualization – X
Scripting, Interactive User Interface – X

I So why using Porta ? : It is easy to use! Input/Output is “handy”
I Polymake is more complex, for visualization you need JavaView
I Transformation: porta2poly, lp2poly, lp2porta
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Porta – Input/Output files
Porta developers:

I Thomas Christof (University Heidelberg)
I Andreas Löbel (ZIB)

Porta commands:
I traf – Tranforms H→ V and V→ H
I fmel – Projects your polyhedron
I vint – Enumerates all integral points in your polyhedron
I dim, fctp, posie, iespo, iespo, portsort

For help type:
> man porta (man traf, man fmel, man vint)

All computations in rational arithmetic
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Porta – Input/Output files

I 3-cube with one vertex
being cut off

I 7 facets
I 10 vertices
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Porta – Input/Output files

I H-description: cube_cut.ieq

DIM=3
VALID_POINT

0 0 0
INEQUALITIES_SECTION
(1) +x1 <= 1
(2) +x1 >= -1
(3) +x2 >= -1
(4) +x2 <= 1
(5) +x3 <= 1
(6) +x3 >= -1
(7) +x1 + x2 + x3 <= 8/3
END

I V-description: cube_cut.poi

DIM = 3
CONV_SECTION
( 1) -1 1 1
( 2) 1 -1 1
( 3) 1 1 -1
( 4) -1 -1 1
( 5) -1 1 -1
( 6) 1 -1 -1
( 7) -1 -1 -1
( 8) 2/3 1 1
( 9) 1 2/3 1
(10) 1 1 2/3
END
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Porta – traf – Transformation

traf is the central command of Porta

H-description → V-description
(ieq → poi):

> traf cube_cut.ieq

Output: file cube_cut.ieq.poi

V-description → H-description
(poi → ieq):

> traf cube_cut.poi

Output: file cube_cut.poi.ieq

Transformation yields non-redundant systems

I All vertices
I All extreme rays

I All facet defining inequalities
I Description of affine hull
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Porta – traf – Transformation

Which vertex belongs to which facet ?

> traf -v cube_cut.ieq

\ facet
\

vertex 1234567
------------------------
1 | ...**.* : 3
2 | *...*.* : 3
3 | *..*..* : 3
4 | .*.**.. : 3
5 | *.*.*.. : 3
6 | *..*.*. : 3
7 | .**.*.. : 3
8 | .*.*.*. : 3
9 | *.*..*. : 3
10 | .**..*. : 3

..............
# | 5445543
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Porta – fmel – Fourier Motzkin Elimination

How to transform a V-description to an H-description ?

Given, v1, . . . , vk ∈ Rd, describe P = conv{v1, . . . , vk} by inequalities in a
higher-dimensional space. Use definition of convex hull:

x = λ1v1 + · · ·+ λkvk

1 = λ1 + · · ·+ λk

0 ≤ λ1, . . . , λk

(the variables are x and λ1, . . . , λk).

I Then project out λ1, . . . , λk by Fourier-Motzkin Elimination (FMEL).
I Idea: Combine +− pairs of inequalities to eliminate λ1 (, λ2, . . . , λk)
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Porta – fmel – Fourier Motzkin Elimination

Some facts:
I The projection of a polyhedron is a polyhedron
I FMEL may square the number of inequalities in every step

(typically many redundant inequalities in between)
I Resulting number of facets can be exponential

(compared to number of vertices in V-description)

V→ H:
Consecutive orthogonal
projection using FMEL

I Fourier-Motzkin-Elimination is expensive
I traf cannot be used for large instances or high dimensions
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Porta – fmel – Fourier Motzkin Elimination
I Explicit projection with Porta: command fmel

Example: Lets project the octahedron “down” (eliminate x1, x2):

octahedron.ieq
DIM=3
ELIMINATION_ORDER
1 2 0
INEQUALITIES_SECTION
+x1 + x2 + x3 <= 1
-x1 + x2 + x3 <= 1
+x1 - x2 + x3 <= 1
+x1 + x2 - x3 <= 1
-x1 - x2 + x3 <= 1
+x1 - x2 - x3 <= 1
-x1 + x2 - x3 <= 1
-x1 - x2 - x3 <= 1

END
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Porta – fmel – Fourier Motzkin Elimination
I Explicit projection with Porta: command fmel

Example: Lets project the octahedron “down” (eliminate x1, x2):

octahedron.ieq
DIM=3
ELIMINATION_ORDER
1 2 0
INEQUALITIES_SECTION
+x1 + x2 + x3 <= 1
-x1 + x2 + x3 <= 1
+x1 - x2 + x3 <= 1
+x1 + x2 - x3 <= 1
-x1 - x2 + x3 <= 1
+x1 - x2 - x3 <= 1
-x1 + x2 - x3 <= 1
-x1 - x2 - x3 <= 1

END

We type
> fmel octahedron.ieq

and get octahedron.ieq.ieq
DIM = 3
INEQUALITIES_SECTION
( 1) <= 1
( 2) +x3 <= 1
( 3) +x3 <= 1
( 4) -x3 <= 1
( 5) -x3 <= 1
END
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Porta – fmel – Fourier Motzkin Elimination
I Explicit projection with Porta: command fmel

Example: Lets project the octahedron “down” (eliminate x1, x2):

octahedron.ieq
DIM=3
ELIMINATION_ORDER
1 2 0
INEQUALITIES_SECTION
+x1 + x2 + x3 <= 1
-x1 + x2 + x3 <= 1
+x1 - x2 + x3 <= 1
+x1 + x2 - x3 <= 1
-x1 - x2 + x3 <= 1
+x1 - x2 - x3 <= 1
-x1 + x2 - x3 <= 1
-x1 - x2 - x3 <= 1

END

We type
> fmel octahedron.ieq

and get octahedron.ieq.ieq
DIM = 3
INEQUALITIES_SECTION
( 1) <= 1
( 2) +x3 <= 1
( 3) +x3 <= 1
( 4) -x3 <= 1
( 5) -x3 <= 1
END

Observe that fmel produces redundant inequalities.
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Porta – fmel – Fourier Motzkin Elimination

> fmel -c octahedron.ieq

switching off redundancy
checks

DIM = 3
INEQUALITIES_SECTION
( 1) <= 1
( 2) <= 1
( 3) <= 1
( 4) +x3 <= 1
( 5) +x3 <= 1
( 6) +x3 <= 1
( 7) -x3 <= 1
( 8) -x3 <= 1
( 9) -x3 <= 1
( 10) +x3 <= 2
( 11) +x3 <= 2
( 12) +x3 <= 2
( 13) +x3 <= 2
( 14) -x3 <= 2
( 15) -x3 <= 2
( 16) -x3 <= 2
( 17) -x3 <= 2
END
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Porta – fmel – Fourier Motzkin Elimination
Side remark

I Elimination order influences the generation of redundant inequalities
I Changing the order my speed up fmel and traf

> traf cube_cut.poi

PORTA - a POlyhedron Representation Transformation Algorithm
. . .

input file cube_cut.poi o.k.
. . .

FOURIER - MOTZKIN - ELIMINATION:
. . .

sum of inequalities over all iterations : 41
. . .

number of inequalities : 7
. . .
output written to file cube_cut.poi.ieq
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Porta – fmel – Fourier Motzkin Elimination
Side remark

I Elimination order influences the generation of redundant inequalities
I Changing the order my speed up fmel and traf

> traf -o cube_cut.poi # use elimination heuristic

PORTA - a POlyhedron Representation Transformation Algorithm
. . .

input file cube_cut.poi o.k.
. . .

FOURIER - MOTZKIN - ELIMINATION:
. . .

sum of inequalities over all iterations : 37
. . .
number of inequalities : 7
. . .
output written to file cube_cut.poi.ieq
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Integral Polyhedra and Relaxations

I Integer Programming =
Optimization over integral polytopes

I Convex hull of integral solutions
I H-Description (facets) typically unknown
I V-Description (set of solutions) too large

I Use a Relaxation:

I (LP) relaxation P = P (A, b) = {x : Ax ≤ b}
I Convex hull of integral solutions PI = conv{x : Ax ≤ b, x ∈ Z}

A key concept:
I Find “some interesting” facets. Use them as cutting planes.
I Relax and Cut
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The Stable Set Polytope

I Graph G = (V,E)
I S ⊆ V is a stable set if no two vertices u, v ∈ S

are connected by an edge.
I Incidence vector χS ∈ {0, 1}V with χSv = 1 iff v ∈ S
I Stable set polytope

STAB(G) : = conv{χS : S ⊆ V stable}

= conv{x ∈ {0, 1}V : xu + xv ≤ 1 for all uv ∈ E}
FSTAB(G) : = conv{x ∈ [0, 1]V : xu + xv ≤ 1 for all uv ∈ E}

0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
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Porta – vint – Hunting for Facets

How can I use Porta to find facets of STAB(G) ??

There are two options:
1. Enumerate all vertices (all solutions) (by hand)

I Write them to stable-set.poi
I Call

> traf stable_set.poi
2. Use your LP relaxation

I Write it to stable-set-relax.ieq
I Call

> vint stable-set-relax.ieq # enum. integral solutions
> traf stable-set-relax.poi

Study the resulting H-description and generalize the facets
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Porta – vint – Hunting for Facets
stable-set-relax.ieq
DIM =4
LOWER_BOUNDS
0 0 0 0
UPPER_BOUNDS
1 1 1 1
INEQUALITIES_SECTION
(1) x1 >= 0
(2) x2 >= 0
(3) x3 >= 0
(4) x4 >= 0
(5) x1+x2 <= 1
(6) x2+x3 <= 1
(7) x3+x4 <= 1
(8) x1 +x4 <= 1
(9) x2 +x4 <= 1
END
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Porta – vint – Hunting for Facets

stable-set-relax.ieq
DIM =4
LOWER_BOUNDS
0 0 0 0
UPPER_BOUNDS
1 1 1 1
INEQUALITIES_SECTION
(1) x1 >= 0
(2) x2 >= 0
(3) x3 >= 0
(4) x4 >= 0
(5) x1+x2 <= 1
(6) x2+x3 <= 1
(7) x3+x4 <= 1
(8) x1 +x4 <= 1
(9) x2 +x4 <= 1
END

0. Check for Integrality

> traf stable-set-relax.ieq

stable-set-relax.ieq.poi
DIM = 4
CONV_SECTION
(1) 0 0 0 0
(2) 0 1/2 1/2 1/2
(3) 1/2 1/2 0 1/2
(4) 1/2 1/2 1/2 1/2
(5) 0 0 0 1
(6) 0 0 1 0
(7) 0 1 0 0
(8) 1 0 0 0
(9) 1 0 1 0
END
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Porta – vint – Hunting for Facets
stable-set-relax.ieq
DIM =4
LOWER_BOUNDS
0 0 0 0
UPPER_BOUNDS
1 1 1 1
INEQUALITIES_SECTION
(1) x1 >= 0
(2) x2 >= 0
(3) x3 >= 0
(4) x4 >= 0
(5) x1+x2 <= 1
(6) x2+x3 <= 1
(7) x3+x4 <= 1
(8) x1 +x4 <= 1
(9) x2 +x4 <= 1
END

1. Enumeration

> vint stable-set-relax.ieq

stable-set-relax.poi
DIM = 4
CONV_SECTION
(1) 0 0 0 0
(2) 0 0 0 1
(3) 0 0 1 0
(4) 0 1 0 0
(5) 1 0 0 0
(6) 1 0 1 0
END
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Porta – vint – Hunting for Facets
stable-set-relax.ieq
DIM =4
LOWER_BOUNDS
0 0 0 0
UPPER_BOUNDS
1 1 1 1
INEQUALITIES_SECTION
(1) x1 >= 0
(2) x2 >= 0
(3) x3 >= 0
(4) x4 >= 0
(5) x1+x2 <= 1
(6) x2+x3 <= 1
(7) x3+x4 <= 1
(8) x1 +x4 <= 1
(9) x2 +x4 <= 1
END

2. Transformation

> traf stable-set-relax.poi

stable-set-relax.poi.ieq
DIM = 4
INEQUALITIES_SECTION
(1) x1 >= 0
(2) x2 >= 0
(3) x3 >= 0
(4) x4 >= 0
(5) +x2+x3+x4 <= 1
(6) +x1+x2 +x4 <= 1
END
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Porta – vint – Hunting for Facets

Maximal cliques 2. Transformation

> traf stable-set-relax.poi

stable-set-relax.poi.ieq
DIM = 4
INEQUALITIES_SECTION
(1) x1 >= 0
(2) x2 >= 0
(3) x3 >= 0
(4) x4 >= 0
(5) +x2+x3+x4 <= 1
(6) +x1+x2 +x4 <= 1
END
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Porta – vint – Hunting for Facets

Maximal cliques
3. Generalize your observations

Theorem
Let G = (V,E) and S ⊆ V .
Inequality ∑

v∈S
xv ≤ 1

defines a facet of STAB(G) if and
only if S is a maximal clique.

Christian Raack and Axel Werner () Introduction to Porta and Polymake 09/22/2009 37 / 41



Porta – vint – Hunting for Facets

Odd hole inequalities

∑
v∈C

xv ≤
|C| − 1

2

with C being the vertices of an
odd cycle without chords are
valid for STAB(G).

2. Transformation

> traf stable-set-relax.poi

stable-set-relax.poi.ieq
DIM = 5
INEQUALITIES_SECTION
( 1) -x1 <= 0
( 2) -x2 <= 0
( 3) -x3 <= 0
( 4) -x4 <= 0
( 5) -x5 <= 0
( 6) +x1+x2 <= 1
( 8) +x2+x3 <= 1
( 7) +x3+x4 <= 1
( 6) +x4+x5 <= 1
( 9) +x1 +x5 <= 1
(11) +x1+x2+x3+x4+x5 <= 2
END
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Porta – Conclusion

Porta commands:
I traf – Tranforms H→ V and V→ H
I fmel – Projects your polyhedron
I Elimination order can be crucial (-o option for traf)
I vint – Enumerates all integral points in your polyhedron
I Combine vint and traf to find facets of integral polytopes
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Polymake and JavaView

Polymake
I Developed by Michael Joswig and Ewgenĳ Gawrilow at TU Berlin
I Interactive shell (≥ v 2.95) and scripting based on perl
I Analyze polytopes, polyhedra, simplicial complexes, . . .
I Convex hull computation (as porta), linear programming,

visualization, more mathematics (combinatorics, geometry, topology)
I www.math.tu-berlin.de/polymake

JavaView
I Developed by Konrad Polthier, Klaus Hildebrandt, . . . at TU Berlin
I 3D geometry viewer and a mathematical visualization software.
I Web-integration
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