Introduction to Porta and Polymake CO@Work Berlin

Christian Raack and Axel Werner

09/22/2009

Goals:

- Repetition of polyhedral theory
- Usage of software
 - ▶ Porta
 - Polymake (+ JavaView)
- Combinatorial optimization and polyhedra

You will find all the examples + tutorial on the virtual machine ~/COatWork-Data/0922/porta ~/COatWork-Data/0922/polymake Polyhedra – Basic Definitions Porta – Basics Porta and Projection Porta and Combinatorial Optimization Polymake

Polyhedra – Basic Definitions

Porta – Basics Porta and Projection Porta and Combinatorial Optimization Polymake

Halfspace Description

Polyhedron: Intersection of finitely many halfspaces:

$$P(A, b) = \{x \in \mathbb{R}^d : Ax \le b\}$$
$$A \in \mathbb{R}^{m \times d}, \ b \in \mathbb{R}^m.$$

Polytope: bounded polyhedron

Vertex description

• Polyhedron: P(A, b) can be written as

$$P(A, b) = \operatorname{conv}(V) + \operatorname{cone}(E)$$
$$V = \{v_1, \dots, v_k\}, E = \{e_1, \dots, e_\ell\}$$

▶ Polytope: P(A, b) can be written as

$$P(A,b) = \operatorname{conv}(V)$$

Vertex description

• Polyhedron: P(A, b) can be written as

$$P(A, b) = \operatorname{conv}(V) + \operatorname{cone}(E)$$
$$V = \{v_1, \dots, v_k\}, E = \{e_1, \dots, e_\ell\}$$

$$P(A,b) = \operatorname{conv}(V)$$

- H- and V-description are not unique !
- There exist non-redundant descriptions.

Vertex description

• Polyhedron: P(A, b) can be written as

$$P(A, b) = \operatorname{conv}(V) + \operatorname{cone}(E)$$
$$V = \{v_1, \dots, v_k\}, E = \{e_1, \dots, e_\ell\}$$

In this lecture we will mainly consider full-dimensional polytopes

$$P(A,b) = \operatorname{conv}(V)$$

Examples: Platonic Solids

Christian Raack and Axel Werner ()

Introduction to Porta and Polymake

09/22/2009 7 / 41

Faces

P polyhedron in \mathbb{R}^d .

► Face of polyhedron *P*:

$$F = \{ x \in P : a^{\mathsf{T}}x = c \},\$$

for valid inequality $a^{\mathsf{T}}x \leq c$ with $a \in \mathbb{R}^d$, $c \in \mathbb{R}$

Face F is a

- vertex if $\dim F = 0$
- edge if $\dim F = 1$
- facet if dim $F = \dim(P) 1$
- Empty set and P are trivial faces

Example: *d*-cube

d-cube:

$$C_d := \{ x \in \mathbb{R}^d : -1 \le x_i \le 1, \ i = 1, \dots, d \}$$
$$= \operatorname{conv}(\{-1, 1\}^d)$$

- ▶ 2^d vertices
- $\blacktriangleright \ d \cdot 2^{d-1} \ \mathrm{edges}$
- ▶ $2 \cdot d$ facets

Example: *d*-cube

d-cube:

$$C_d := \{ x \in \mathbb{R}^d : -1 \le x_i \le 1, \ i = 1, \dots, d \}$$
$$= \operatorname{conv}(\{-1, 1\}^d)$$

- ▶ 2^d vertices
- $\blacktriangleright \ d \cdot 2^{d-1} \ \mathrm{edges}$
- ▶ $2 \cdot d$ facets

Example: *d*-crosspolytope

d-crosspolytope:

$$C_d^{\Delta} := \operatorname{conv}\{e_1, -e_1, \dots, e_d, -e_d\}$$

= { $x \in \mathbb{R}^d : a^{\mathsf{T}}x \le 1, a \in \{-1, 1\}^d$ }

- ▶ 2^d facets
- ▶ $d \cdot 2^{d-1}$ ridges
- ▶ $2 \cdot d$ vertices

- Given H-description, how to derive a V-description ?
- ▶ Given V-description, how to derive an H-description ?
- What is the dimension of my polyhedron ?
- What is the dimension of the face defined by my inequality ?
- ▶ How many vertices/facets (faces of dimension n) has my polyhedron ?
- How can I visualize my polyhedron ?

... Porta and Polymake come into play

	Porta	Polymake
Dimension (polyhedra,faces)	\checkmark	\checkmark
$H \to V$	\checkmark	\checkmark
$V \to H$	\checkmark	\checkmark
Enumeration of integral solutions	\checkmark	(√)
Advanced polyhedral properties		
(Combinatorics, Topology)	-	\checkmark
Visualization	-	\checkmark
Scripting, Interactive User Interface	-	\checkmark

- So why using Porta ? : It is easy to use! Input/Output is "handy"
- Polymake is more complex, for visualization you need JavaView
- Transformation: porta2poly, lp2poly, lp2porta

Polyhedra – Basic Definitions **Porta – Basics** Porta and Projection Porta and Combinatorial Optimization Polymake

Porta – Input/Output files

Porta developers:

- Thomas Christof (University Heidelberg)
- Andreas Löbel (ZIB)

Porta commands:

- \blacktriangleright traf Tranforms $H \rightarrow V$ and $V \rightarrow H$
- fmel Projects your polyhedron
- vint Enumerates all integral points in your polyhedron
- dim, fctp, posie, iespo, iespo, portsort

For help type:

> man porta (man traf, man fmel, man vint)

All computations in rational arithmetic

Porta – Input/Output files

- 3-cube with one vertex being cut off
- 7 facets
- 10 vertices

Porta – Input/Output files

V-description: cube_cut.poi
DIM = 3
CONV_SECTION
(1) -1 1 1
(2) 1 -1 1
(3) 1 1 -1
(4) -1 -1 1
(5) -1 1 -1
(6) 1 -1 -1
(7) -1 -1 -1
(8) 2/3 1 1
(9) 1 2/3 1
(10) 1 1 2/3
END

traf is the central command of Porta

- H-description \rightarrow V-description (ieq \rightarrow poi):
 - > traf cube_cut.ieq

Output: file cube_cut.ieq.poi

V-description \rightarrow H-description (poi \rightarrow ieq):

> traf cube_cut.poi

Output: file cube_cut.poi.ieq

Transformation yields **non-redundant** systems

All vertices

► All extreme rays

- All facet defining inequalities
- Description of affine hull

Porta - traf - Transformation

Polyhedra – Basic Definitions Porta – Basics **Porta and Projection** Porta and Combinatorial Optimization Polymake

How to transform a V-description to an H-description ?

Given, $v_1, \ldots, v_k \in \mathbb{R}^d$, describe $P = \operatorname{conv}\{v_1, \ldots, v_k\}$ by inequalities in a higher-dimensional space. Use definition of convex hull:

$$x = \lambda_1 v_1 + \dots + \lambda_k v_k$$

$$1 = \lambda_1 + \dots + \lambda_k$$

$$0 \le \lambda_1, \dots, \lambda_k$$

(the variables are x and $\lambda_1, \ldots, \lambda_k$).

- ▶ Then project out $\lambda_1, \ldots, \lambda_k$ by Fourier-Motzkin Elimination (FMEL).
- ▶ Idea: Combine +- pairs of inequalities to eliminate λ_1 (, λ_2 , ..., λ_k)

Some facts:

- The projection of a polyhedron is a polyhedron
- FMEL may square the number of inequalities in every step (typically many redundant inequalities in between)
- Resulting number of facets can be exponential (compared to number of vertices in V-description)

 $\label{eq:V} \begin{array}{l} V \to H : \\ \mbox{Consecutive orthogonal} \\ \mbox{projection using FMEL} \end{array}$

Some facts:

- The projection of a polyhedron is a polyhedron
- FMEL may square the number of inequalities in every step (typically many redundant inequalities in between)
- Resulting number of facets can be exponential (compared to number of vertices in V-description)
- Fourier-Motzkin-Elimination is expensive
- traf cannot be used for large instances or high dimensions

Consecutive orthogonal projection using FMEL

Explicit projection with Porta: command fmel

Example: Lets project the octahedron "down" (eliminate x_1, x_2):

octahedron.ieq

DIM=3	3					
ELIM	EN/	ATI(DN_	ORI	DER	
1 2 0)					
INEQU	JAI	LIT	EES	S_SE	ECTI	ON
+x1	+	x2	+	xЗ	<=	1
-x1	+	x2	+	xЗ	<=	1
+x1	-	x2	+	xЗ	<=	1
+x1	+	x2	-	xЗ	<=	1
-x1	-	x2	+	xЗ	<=	1
+x1	-	x2	-	xЗ	<=	1
-x1	+	x2	-	xЗ	<=	1
-x1	-	x2	-	xЗ	<=	1
END						

Explicit projection with Porta: command fmel

Example: Lets project the octahedron "down" (eliminate x_1, x_2):

octahedron.ieq

DIM=3	
ELIMINATION_ORDER	
1 2 0	
INEQUALITIES_SECTION	
+x1 + x2 + x3 <= 1	
-x1 + x2 + x3 <= 1	
+x1 - x2 + x3 <= 1	
+x1 + x2 - x3 <= 1	
-x1 - x2 + x3 <= 1	
+x1 - x2 - x3 <= 1	
-x1 + x2 - x3 <= 1	
-x1 - x2 - x3 <= 1	
END	

```
We type
```

```
> fmel octahedron.ieq
```

and get octahedron.ieq.ieq

```
DIM = 3
INEQUALITIES_SECTION
(1) <= 1
(2) +x3 <= 1
(3) +x3 <= 1
(4) -x3 <= 1
(5) -x3 <= 1
END
```

Explicit projection with Porta: command fmel

Example: Lets project the octahedron "down" (eliminate x_1, x_2):

octahedron.ieq

DIM=3 ELIMINATION_ORDER

We type

Observe that **fmel** produces redundant inequalities.

TVL	т	.⊼	т	ΔJ	` -	Ŧ
-x1	+	x2	+	xЗ	<=	1
+x1	-	x2	+	xЗ	<=	1
+x1	+	x2	-	xЗ	<=	1
-x1	-	x2	+	xЗ	<=	1
+x1	-	x2	-	xЗ	<=	1
-x1	+	x2	-	xЗ	<=	1
-x1	-	x2	-	xЗ	<=	1
END						

```
DIM = 3
INEQUALITIES_SECTION
(1) <= 1
(2) +x3 <= 1
(3) +x3 <= 1
(4) -x3 <= 1
(5) -x3 <= 1
END
```

> fmel -c octahedron.ieq

switching off redundancy checks

D	EM =	3		
11	VEQUA	ALITI	IES_	SECTION
(1)		<=	1
(2)		<=	1
(3)		<=	1
(4)	+x3	<=	1
(5)	+x3	<=	1
(6)	+x3	<=	1
(7)	-x3	<=	1
(8)	-x3	<=	1
(9)	-x3	<=	1
(10)	+x3	<=	2
(11)	+x3	<=	2
(12)	+x3	<=	2
(13)	+x3	<=	2
(14)	-x3	<=	2
(15)	-x3	<=	2

Christian Raack and Axel Werner ()

09/22/2009 25 / 41

Side remark

- Elimination order influences the generation of redundant inequalities
- Changing the order my speed up fmel and traf
 - > traf cube_cut.poi

```
PORTA - a POlyhedron Representation Transformation Algorithm
. . .
input file cube_cut.poi o.k.
. . .
FOURIER - MOTZKIN - ELIMINATION:
. . .
sum of inequalities over all iterations : 41
. . .
number of inequalities : 7
. . .
output written to file cube_cut.poi.ieq
```

Side remark

- Elimination order influences the generation of redundant inequalities
- Changing the order my speed up fmel and traf
 - > traf -o cube_cut.poi # use elimination heuristic

```
PORTA - a POlyhedron Representation Transformation Algorithm
. . .
input file cube_cut.poi o.k.
. . .
FOURIER - MOTZKIN - ELIMINATION:
. . .
sum of inequalities over all iterations : 37
. . .
number of inequalities : 7
. . .
output written to file cube_cut.poi.ieq
```

Polyhedra – Basic Definitions Porta – Basics Porta and Projection Porta and Combinatorial Optimization Polymake

Integral Polyhedra and Relaxations

- Integer Programming =
 Optimization over integral polytopes
- Convex hull of integral solutions
- H-Description (facets) typically unknown
- V-Description (set of solutions) too large

Integral Polyhedra and Relaxations

- Integer Programming =
 Optimization over integral polytopes
- Convex hull of integral solutions
- H-Description (facets) typically unknown
- V-Description (set of solutions) too large
- Use a Relaxation:

- (LP) relaxation $P = P(A, b) = \{x : Ax \le b\}$
- Convex hull of integral solutions $P_I = \operatorname{conv}\{x : Ax \leq b, x \in \mathbb{Z}\}$

Integral Polyhedra and Relaxations

- Integer Programming =
 Optimization over integral polytopes
- Convex hull of integral solutions
- H-Description (facets) typically unknown
- V-Description (set of solutions) too large
- Use a Relaxation:

- (LP) relaxation $P = P(A, b) = \{x : Ax \le b\}$
- Convex hull of integral solutions $P_I = \operatorname{conv}\{x : Ax \leq b, x \in \mathbb{Z}\}$

A key concept:

- ▶ Find "some interesting" facets. Use them as cutting planes.
- Relax and Cut

The Stable Set Polytope

- Graph G = (V, E)
- S ⊆ V is a stable set if no two vertices u, v ∈ S are connected by an edge.
- Incidence vector $\chi^S \in \{0,1\}^V$ with $\chi^S_v = 1$ iff $v \in S$
- Stable set polytope

$$STAB(G) := \operatorname{conv}\{\chi^S : S \subseteq V \text{ stable}\}$$

The Stable Set Polytope

- Graph G = (V, E)
- ▶ $S \subseteq V$ is a **stable set** if no two vertices $u, v \in S$ are connected by an edge.
- \blacktriangleright Incidence vector $\chi^S \in \{0,1\}^V$ with $\chi^S_v = 1$ iff $v \in S$
- Stable set polytope

$$\begin{aligned} STAB(G) &:= \operatorname{conv}\{\chi^S \ : \ S \subseteq V \text{ stable}\} \\ &= \operatorname{conv}\{x \in \{0,1\}^V \ : \ x_u + x_v \leq 1 \text{ for all } uv \in E\} \end{aligned}$$

The Stable Set Polytope

- Graph G = (V, E)
- ▶ $S \subseteq V$ is a **stable set** if no two vertices $u, v \in S$ are connected by an edge.
- \blacktriangleright Incidence vector $\chi^S \in \{0,1\}^V$ with $\chi^S_v = 1$ iff $v \in S$
- Stable set polytope

$$\begin{split} STAB(G) &:= \operatorname{conv}\{\chi^S \ : \ S \subseteq V \text{ stable}\}\\ &= \operatorname{conv}\{x \in \{0,1\}^V \quad : \ x_u + x_v \leq 1 \text{ for all } uv \in E\}\\ FSTAB(G) &:= \operatorname{conv}\{x \in [0,1]^V \quad : \ x_u + x_v \leq 1 \text{ for all } uv \in E\} \end{split}$$

How can I use Porta to find facets of STAB(G) ??

There are two options:

- 1. Enumerate all vertices (all solutions) (by hand)
 - Write them to stable-set.poi
 - Call
 - > traf stable_set.poi
- 2. Use your LP relaxation
 - Write it to stable-set-relax.ieq
 - Call
 - > vint stable-set-relax.ieq
- # enum. integral solutions
- > traf stable-set-relax.poi

Study the resulting H-description and generalize the facets

Christian Raack and Axel Werner ()

stable-set-relax.ieq

DIM	=4						
LOW	LOWER_BOUNDS						
0 0	0 0						
UPPI	ER_BOUN	IDS					
1 1	1 1						
INE	QUALITI	LES_SEC	CTI	DN			
(1)	x1		>=	0			
(2)	x2		>=	0			
(3)		xЗ	>=	0			
(4)		x4	>=	0			
(5)	x1+x2		<=	1			
(6)	x2+	⊦x3	<=	1			
(7)		x3+x4	<=	1			
(8)	x1	+x4	<=	1			
(9)	x2	+x4	<=	1			
END							

stable-set-relax.ieq

DIM	=4						
LOW	LOWER_BOUNDS						
0 0	0 0						
UPP	UPPER_BOUNDS						
1 1	1 1						
INE	QUALITI	IES_SE	CTIC	DN			
(1)	x1		>=	0			
(2)	x2		>=	0			
(3)		xЗ	>=	0			
(4)		x4	>=	0			
(5)	x1+x2		<=	1			
(6)	x2-	+x3	<=	1			
(7)		x3+x4	<=	1			
(8)	x1	+x4	<=	1			
(9)	x2	+x4	<=	1			
END							

0. Check for Integrality

> traf stable-set-relax.ieq

stable-set-relax.ieq.poi

DIM	= 4						
CONV_SECTION							
(1)	0	0	0	0			
(2)	0	1/2	1/2	1/2			
(3)	1/2	1/2	0	1/2			
(4)	1/2	1/2	1/2	1/2			
(5)	0	0	0	1			
(6)	0	0	1	0			
(7)	0	1	0	0			
(8)	1	0	0	0			
(9)	1	0	1	0			
END							

stable-set-relax.ieq

DIM	=4	
LOW	ER_BOUNDS	
0 0	0 0	
UPPE	ER_BOUNDS	
1 1	1 1	
INE	QUALITIES_SE	CTION
(1)	x1	>= 0
(2)	x2	>= 0
(3)	x3	>= 0
(4)	x4	>= 0
(5)	x1+x2	<= 1
(6)	x2+x3	<= 1
(7)	x3+x4	<= 1
(8)	x1 +x4	<= 1
(9)	x2 +x4	<= 1
END		

1. Enumeration > vint stable-set-relax.ieq stable-set-relax.poi DTM =4 CONV SECTION (1) 0 0 0 0(2) 0 0 0 1(3) 0 0 1 0(4) 0 1 0 0(5) 1 0 0 0(6) 1 0 1 0

END

stable-set-relax.ieq

```
DIM = 4
LOWER BOUNDS
0 0 0 0
UPPER BOUNDS
1 1 1 1
INEQUALITIES_SECTION
(1) x1
             >= 0
(2)
   x2
             >= 0
(3)
         xЗ
               >= 0
(4)
            x4 >= 0
(5) x1+x2
               <= 1
(6)
      x^{2+x^{3}} <= 1
(7)
         x3+x4 <= 1
(8) x1
         +x4 <= 1
   x2 +x4 <= 1
(9)
END
```

2. Transformation

> traf stable-set-relax.poi

stable-set-relax.poi.ieq

DIM	DIM = 4					
INE	QUALITIES_S	ECTION	1			
(1)	x1	>=	0			
(2)	x2	>=	0			
(3)	x3	>=	0			
(4)	:	x4 >=	0			
(5)	+x2+x3+:	x4 <=	1			
(6)	+x1+x2 +:	x4 <=	1			
END						

Maximal cliques

2. Transformation

> traf stable-set-relax.poi

stable-set-relax.poi.ieq

DIM	DIM = 4					
INE	QUALITIE	S_SECI	LION	N .		
(1)	x1		>=	0		
(2)	x2		>=	0		
(3)	:	xЗ	>=	0		
(4)		x4	>=	0		
(5)	+x2+:	x3+x4	<=	1		
(6)	+x1+x2	+x4	<=	1		
END						

Maximal cliques

3. Generalize your observations

Theorem Let G = (V, E) and $S \subseteq V$. Inequality

 $\sum_{v \in S} x_v \le 1$

defines a facet of STAB(G) if and only if S is a maximal clique.

Odd hole inequalities

$$\sum_{v \in C} x_v \le \frac{|C| - 1}{2}$$

with C being the vertices of an odd cycle without chords are valid for STAB(G).

> traf stable-set-relax.poi

stable-set-relax.poi.ieq

DTM = 5			
INEQUALITIES SECTION			
(1)	-x1	<=	0
(2)	-x2	<=	0
(3)	-x3	<=	0
(4)	-x4	<=	0
(5)	-x5	<=	0
(6)	+x1+x2	<=	1
(8)	+x2+x3	<=	1
(7)	+x3+x4	<=	1
(6)	+x4+x5	<=	1
(9)	+x1 +x5	<=	1
(11)	+x1+x2+x3+x4+x5	<=	2
END			

Porta commands:

- \blacktriangleright traf Tranforms $H \rightarrow V$ and $V \rightarrow H$
- fmel Projects your polyhedron
- Elimination order can be crucial (-o option for traf)
- vint Enumerates all integral points in your polyhedron
- Combine vint and traf to find facets of integral polytopes

Polyhedra – Basic Definitions Porta – Basics Porta and Projection Porta and Combinatorial Optimization Polymake Polymake

- Developed by Michael Joswig and Ewgenij Gawrilow at TU Berlin
- ▶ Interactive shell (\ge v 2.95) and scripting based on perl
- Analyze polytopes, polyhedra, simplicial complexes, ...
- Convex hull computation (as porta), linear programming, visualization, more mathematics (combinatorics, geometry, topology)
- www.math.tu-berlin.de/polymake

JavaView

- ► Developed by Konrad Polthier, Klaus Hildebrandt, ... at TU Berlin
- 3D geometry viewer and a mathematical visualization software.
- Web-integration

