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Abstract:

In this talk I will give a brief survey about the development of
linear and integer programming in the last fifty years and would
like to show what the current state of the art in practical
problem solving in linear and integer programming is. I will
report about experience at the Konrad-Zuse-Zentrum with the
solution of large-scale linear and integer programs coming from
practice to indicate the size of the problem instances that we
can successfully attack today.

I will also report about a new way to view linear programs as
semialgebraic sets. There are some theoretical results, a few
speculations, but no algorithmic ideas yet.
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Given a finite set E and a subset I
 

of the power set of E (the set of feasible 
solutions). Given, moreover, a value (cost, length,…) c(e) for all elements e of E. 
Find, among all sets in I,

 
a set I such that its total value c(I) (= sum of the 

values of all elements in I) is as small (or as large) as possible.

The parameters of a combinatorial optimization problem are: (E, I, c).

Combinatorial optimization

I
min (I) ( ) | I , 2E

e
c c e I where I and E finite



    
 



Important issues: 


 

How is
 

I  given?


 

What is the encoding length of an instance?


 

How do we measure running time?
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Encoding and Running Times
Important issues: 


 

How is
 

I  given?


 

What is the encoding length of an instance?


 

How do we measure running time?
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Special „simple“ 
combinatorial optimization problems
Finding a


 

minimum spanning tree in a graph


 

shortest path in a directed graph


 

maximum matching in a graph


 

a minimum capacity cut separating two given nodes of a graph or 
digraph 


 

cost-minimal flow through a network with capacities and costs on all 
edges


 

…

These problems are solvable in polynomial time. 

Is the
 

number of feasible solutions
 

relevant?
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Special „hard“ 
combinatorial optimization problems


 
travelling salesman problem (the prototype problem)


 

location und routing


 

set-packing, partitioning, -covering


 

max-cut


 

linear ordering


 

scheduling (with a few exceptions)


 

node  and edge colouring


 

…

These problems are NP-hard
 (in the sense of complexity theory).
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Complexity Theory


 
Complexity theory came formally into being in the years 1965 –

 
1972 

with the work of Cobham (1965), Edmonds(1965), Cook (1971), Karp(1972) 
and many others



 
Of course, there were many forerunners (Gauss has written about the number of 

elementary steps in a computation, von Neumann, Gödel, Turing, Post,…).



 
But modern complexity theory is a the result of the combined research 
efforts of many, in particular, of many computer scientists and mathematical 
programmers trying to understand the structures underlying computational 
processes.
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Complexity Theory
Stephen Cook

University of Toronto
1965 Polynomial time

Class P
Nondeterministic polynomial time

Class NP
Edmonds, Cobham

1971 Cook "The Complexity of Theorem 
Proving Procedures" 
introduced the theory of 
NP completeness

Hierarchies of complexity classes...

The most important open problem:

P = NP ?
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P versus NP

The Hodge Conjecture

The Poincaré Conjecture

The Riemann Hypothesis

Yang-Mills Existence and Mass Gap

Navier-Stokes Existence and Smoothness

The Birch and Swinnerton-Dyer Conjecture

Announced 16:00, on Wednesday, May 24, 2000 
Collège de France

dedicated to increasing and disseminating mathematical knowledge

Millennium Prize Problems
Announcement

Rules for the CMI Millennium 
Prize Problems

Publication Guidelines

Historical Context

Press Statement

Press Reaction

Clay Mathematics Institute 

http://www.claymath.org/prizeproblems/statement.htm
http://www.claymath.org/prizeproblems/rules.htm
http://www.claymath.org/prizeproblems/rules.htm
http://www.claymath.org/prizeproblems/publicationguidelines/index.htm
http://www.claymath.org/prizeproblems/history.htm
http://www.claymath.org/prizeproblems/PressStatement.htm
http://www.claymath.org/prizeproblems/PressReaction.htm
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The first NP-complete Problem

Satisfiability: Is there a truth assignmeent to the 
following formula:

1 2 1 2 3 1 2 1 2 3 1 2( ) ( ) ( ) ( ) ( )x x x x x x x x x x x x            

Truly important Application:
 Verification of computer chips and 

“systems on chips”
A design is correct  iff  a certain 
SAT formula associated with the 
chip has no truth assignment.
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The travelling salesman problem
Given n „cities“

 
and „distances“

 
between them. Find a tour 

(roundtrip) through all cities visiting every city exactly 
once such that the sum of all distances travelled is as 
small as possible. (TSP)

The TSP is called symmetric
 

(STSP) if, for every pair of 
cities i and j, the distance from i to j is the same as the 
one from j to i, otherwise the problem is called 
aysmmetric

 
(ATSP).
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The travelling salesman problem

1. :
( , ) ( )

.
( ) .

min{ ( ) | }.

2. :
{1,..., }

n

e

n

Version
Let K V E be the complete graph or digraph with n nodes
and let c be the length of e E Let H be the set of all
hamiltonian cycles tours in K Find

c T T H

Version
Find a cyclic permutation of n such tha







( )
1

.

n

i i
i

t

c

is as small as possible





Two mathematical formulations of the TSP


 

Does that help solve the TSP?
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http://www.tsp.gatech.edu/
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Usually quoted as 
the forerunner of 
the TSP

Usually quoted as 
the origin of 
the TSP
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about 100
 years

 earlier
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From the Commis-Voyageur

By a proper choice and
 scheduling of the tour one

 can gain so much time 
that we have to make

 some suggestions

The most important 
aspect is to cover as many 
locations as possible

 without visiting a
 location twice



CO@W

Martin
Grötschel

20

Ulysses roundtrip (an even older TSP ?)
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Ulysses

The distance table
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Ulysses roundtrip

optimal „Ulysses tour“
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Malen nach Zahlen 
TSP in art ?


 

When was this invented?
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http://www.touregypt.net/featurestories/flinders.htm 

The TSP in archeology


 
Flinders Petrie (1853-1942) and the Luxor graves


 

In the words of James Baikie, author of the book A Century of 
Excavation in the Land of the Pharaohs, "if the name of any one man 
must be associated with modern excavation as that of the chief 
begetter of its principles and methods, it must be the name of 
Professor Sir W.M. Flinders Petrie. It was he…who first called the 
attention of modern excavators to the importance of "unconsidered 
trifles" as means for the construction of the past…the broken 
earthenware of a people may be of far greater value than its most 
gigantic monuments." 


 

Petrie began to analyze the grave goods methodically. Grave A might 
contain certain types of pot in common with Grave B; Grave B also 
contained a later style of pot, the only type to be found in Grave C. By 
writing cards for each grave and filing them in logical order, Petrie 
established a full sequence for the cemetery, concluding that the last 
graves were probably contemporary with the First Dynasty. The 
development of life along the Nile thus was revealed, from early

 settlers to farmers to political stratification.
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The TSP in archeology: 
Flinders Petrie’s contribution 


 
Introduction of the “Hamming distance of graves”, before 
Richard Wesley Hamming (1915 –1998)  introduced it in 
mathematics. 
(The Hamming distance is used in telecommunication to count the number of flipped 
bits in a fixed-length binary word, an estimate of error. Hamming weight analysis of bits 
is used in several disciplines including information theory, coding theory, and 
cryptography.)


 

Definition of the hamiltonian path problem through 
“graves”.
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The Seminal DFJ-Paper of 1954
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The Seminal DFJ-Paper of 1954 
preprint
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Some Quotes from DFJ 1954

IP Formulation

Polyhedral Approach
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Subtour
Elimination
Constraints

in
several forms
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Remarks


 
The preprint version is much clearer than the published paper. The editors 
have replaced abstract insight by a sequence of examples and thus almost 
destroyed the “real”

 
contents of the paper.



 
The authors outline the branch and bound techniquebranch and bound technique.



 
They explain the cutting plane methodologycutting plane methodology

 
and observe clearly where the 

difficulties and chances of this method are.



 
They mention the importance of heuristicsheuristics.



 
They are modest:

Grötschel&Nemhauser, George Dantzig’s contributions to integer programming

http://opus.kobv.de/zib/volltexte/2007/1067/pdf/ZR_07_39.pdf
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The Authors 
provide data

Distance table
hand-written

by D. R. Fulkerson
(from the preprint
Bob Bland owns) 
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The Optimal Solution
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Survey Books
Literature: more than 1300 entries in Zentralblatt/Math

Zbl 0562.00014
 

Lawler, E.L.(ed.); Lenstra, J.K.(ed.); Rinnooy Kan, 
A.H.G.(ed.); Shmoys, D.B.(ed.) 
The traveling salesman problem. A guided tour of combinatorial 
optimization. Wiley-Interscience Series in Discrete Mathematics. A Wiley-

 Interscience publication. Chichester etc.: John Wiley \& Sons. X, 465 p. 
(1985). MSC 2000: *00Bxx

 
90-06

Zbl 0996.00026
 

Gutin, Gregory (ed.); Punnen, Abraham P.(ed.) 
The traveling salesman problem and its variations. Combinatorial 
Optimization. 12. Dordrecht: Kluwer Academic Publishers. xviii, 830 p. 
(2002). MSC 2000: *00B15

 
90-06

 
90Cxx

http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0562.00014&format=complete
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&au=Lawler,+E&type=html&format=short
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&au=Lenstra,+J&type=html&format=short
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&au=Rinnooy+Kan,+A&type=html&format=short
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&au=Rinnooy+Kan,+A&type=html&format=short
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&au=Shmoys,+D&type=html&format=short
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?format=short&maxdocs=20&type=html&cc=00Bxx
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?format=short&maxdocs=20&type=html&cc=90-06
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?format=short&maxdocs=20&type=html&cc=90-06
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?format=short&maxdocs=20&type=html&cc=90Cxx
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The Travelling Salesman Problem 
and Some of its Variants


 

The symmetric TSP


 
The asymmetric TSP


 

The TSP with precedences or time windows


 
The online TSP


 

The symmetric and asymmetric m-TSP


 
The price collecting TSP


 

The Chinese postman problem 
(undirected, directed, mixed)


 

Bus, truck, vehicle routing


 
Edge/arc & node routing with capacities


 

Combinations of these and more
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http://www.densis.fee.unicamp.br/~m 
oscato/TSPBIB_home.html

http://www.densis.fee.unicamp.br/~moscato/TSPBIB_home.html
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Application list from 
http://www.tsp.gatech.edu/index.html
Applications


 

Genome


 

Starlight


 

Scan Chains


 

DNA


 

Whizzkids


 

Baseball


 

Coin Collection


 

Airport Tours


 

USA Trip


 

Sonet Rings


 

Power Cables

We will see many

TSP applications.

http://www.tsp.gatech.edu/apps/genome.html
http://www.tsp.gatech.edu/apps/starlight.html
http://www.tsp.gatech.edu/apps/scan.html
http://www.tsp.gatech.edu/apps/dna.html
http://www.tsp.gatech.edu/apps/whizzkids.html
http://www.tsp.gatech.edu/apps/ballparks.html
http://www.tsp.gatech.edu/apps/coins.html
http://www.tsp.gatech.edu/apps/airports.html
http://www.tsp.gatech.edu/apps/usatrip.html
http://www.tsp.gatech.edu/apps/sonet.html
http://www.tsp.gatech.edu/apps/cables.html
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Production of ICs and PCBs

Integrated Circuit (IC) Printed Circuit Board (PCB)

Problems: Logical Design, Physical Design
Correctness, Simulation, Placement of 

Components, Routing, Drilling,...



CO@W

Martin
Grötschel

42

442 holes to drill
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Printed Circuit Board (front)
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Printed Circuit Board (back)
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Drilling Machine
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Correct modelling of a 
printed circuit board drilling problem

2103 holes to be drilled

length of a 
move of the 
drilling head:
Euclidean norm,
Max norm,
Manhatten norm?
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Drilling 2103 holes into a PCB

Significant Improvements
via TSP

(Padberg & Rinaldi)

industry solution optimal solution
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Siemens-Problem 
PCB da1 

before after

Grötschel, Jünger, Reinelt
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Siemens-Problem 
PCB da4

before                                             after

Grötschel, Jünger, Reinelt
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Example: Control of the stacker 
cranes in a Herlitz warehouse
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Need for Heuristics


 
Many real-world instances of hard combinatorial optimization 
problems are (still) too large for exact algorithms.


 

Or the time limit stipulated by the customer for the solution is
 

too 
small. 


 

Therefore, we need heuristics!


 

Exact algorithms usually also employ heuristics.


 

What is urgently needed is a decision guide:
 

Which heuristic will most likely work well on what problem ?
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Primal and Dual Heuristics


 
Primal Heuristic: Finds a (hopefully) good feasible solution.



 
Dual Heuristic: Finds a bound on the optimum solution value 
(e.g., by finding a feasible solution of the LP-dual of an LP-relaxation of a 
combinatorial optimization problem).

Minimization:

dual heuristic value ≤
 

optimum value ≤
 

primal heuristic value

(In maximization the inequalities are the other way around.)

quality guarantee
in practice and theory
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Primal and Dual Heuristics

Primal and Dual Heuristics give rise to worst-case guarantee:

Minimization:
optimum value ≤

 
primal heuristic value 

≤
 

(1+optimum value
dual heuristic value

 
≤

 
primal heuristic value 

≤
 

(1+) dual heuristic value

(In maximization the inequalities are the other way around.)

quality guarantee
in practice and theory
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Heuristics: A Survey


 
Greedy Algorithms



 
Exchange & Insertion Algorithms



 
Neighborhood/Local Search



 
Variable Neighborhood Search, Iterated Local Search 



 
Random sampling



 
Simulated Annealing 



 
Taboo search



 
Great Deluge Algorithms



 
Simulated Tunneling



 
Neural Networks



 
Scatter Search



 
Greedy Randomized Adaptive Search Procedures
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Heuristics: A Survey


 
Genetic, Evolutionary, and similar Methods



 
DNA-Technology



 
Ant and Swarm Systems



 
(Multi-) Agents



 
Population Heuristics 



 
Memetic Algorithms (Meme are the “missing links”

 
gens and mind)



 
Space Filling Curves



 
Fuzzy Logic Based…



 
Fuzzy Genetics-Based Machine Learning 



 
Fast and Frugal Method (Psychology) 



 
Ecologically rational heuristic (Sociology)



 
Method of Devine Intuition (Psychologist Thorndike)



 
…..
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An Unfortunate Development


 
There is a marketing battle going on with unrealistic, or even 
ideological, claims about the quality of heuristics –

 
just to catch 

attention


 

Linguistic Overkill:


 

Simulated hybrid meta GA-based neural evolutionary fuzzy 
variable adaptive search parallel DNA-driven multi-ant-agent 
method with devine swarm taboo intuitionVodoo Approach
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A Quote

Quote:
Genetic Programming is an evolutionary computation technique 
which searches for those computer programs that best solve a 
given problem. 

(Will this also solve P = NP?)
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„Multi-objective optimization using evolutionary 
algorithms“ (Wiley, 2001)

from the Preface


 

Optimization is a procedure of finding and comparing feasible 
solutions until no better solution can be found. 


 

Evolutionary algorithms (EAs), on the other hand, can find 
multiple optimal solutions in one single simulation run due to 
their population-approach. Thus, EAs are ideal candidates for 
solving…

?
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Heuristics: A Survey
Currently best heuristic with respect to worst-case guarantee:

 Christofides heuristic



 
compute a shortest spanning tree



 
compute a minimum perfect 1-matching of the graph induced by the odd 
nodes of the minimum spanning tree



 
the union of these edge sets is a connected Eulerian graph



 
turn this graph into a TSP-tour by making short-cuts.

For distance functions satisfying the triangle inequality, the resulting tour is at 
most 50% above the optimum value
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Understanding Heuristics, 
Approximation Algorithms


 
worst case analysisworst case analysis


 
There is no polynomial time approx. algorithm for STSP/ATSP.



 
Christofides algorithm for the STSP with triangle inequality


 

average case analysisaverage case analysis


 
Karp‘s analysis of the patching algorithm for the ATSP


 

probabilistic problem analysisprobabilistic problem analysis


 
for Euclidean STSP in unit square: TSP constant 1.714..n½


 

polynomial time approximation schemes (PAS)polynomial time approximation schemes (PAS)


 
Arora‘s polynomial-time approximation schemes for

 Euclidean STSPs 


 
fullyfully--polynomial time approximation schemes (FPAS)polynomial time approximation schemes (FPAS)


 
not for TSP/ATSP but, e.g., for knapsack (Ibarra&Kim)


 

These concepts –
 

unfortunately –
 

often do not really help to guide 
practice.


 

experimental evaluationexperimental evaluation


 
Lin-Kernighan for STSP

 
(DIMACS challenges))
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Polyhedral Theory (of the TSP)
STSP-, ATSP-,TSP-with-side-constraints-

Polytope:=  Convex hull of all incidence       
vectors of feasible tours

To be investigated:


 

Dimension


 

Equation system defining the affine hull 


 

Facets


 

Separation algorithms

|: { } ( 1 , 0)n T E T
T n ijT tour in KQ conv if ij T else     Z
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The symmetric travelling salesman polytope

 

 
 

|: { } ( 1 , 0)

{ | ( ( )) 2
( ( )) | | 1 \ 1 ,3 | | 3

0 1 }

min
( ( )) 2
( ( )) | | 1 \ 1 ,3 | | 3

0,1

n T E T
T n ij

E

ij

T

ij

T tour in KQ conv if ij T else

x x i i V
x E W W W V W n

x ij E

c x
x i i V
x E W W W V W n

x ij E

 





    

    

      

   

  

      

  

Z

R


 

The LP relaxation is solvable in polynomial time.


 

IP formulation
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Dimension of the sym TSP polytope

 2
1Theorem. dim ( 3)
2

(a) The matrix defined by ( ( )) 2 has full row rank.
(b) contains 1 linearly independent points.
Proof : (a) The submatrix of consisting of all rows and a
set of columns corresponding



     

  

 

n n
T

n
T

Q n n E V n

A x i i V
Q E V

B A
to a spanning tree plus an

edge that forms one odd cycle with is a nonsingular matrix.
(b) Use Lucas' result that a complete graph with 2k+1 nodes can 
be partitioned into k Hamiltonian cyles, and a complete graph
with

T
T

 2k nodes into k-1 Hamiltonian cycles and one perfect 
matching to construct the desired points (incidence vectors of tours).
Show cases n=4,5,6 on the blackboard.
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Relation between IP and LP-relaxation
Open Problem:


 

If costs satisfy the triangle inequality, then

IP-OPT <= 4/3 LP-SEC

IP-OPT <= 3/2 LP-SEC (Wolsey)
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Facets of the TSP polytope


 
Finding facets!


 

Proving that an inequality defines a facet!


 

Finding exact or heuristic separation algorithms to be used 
in a cutting plane algorithm!
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Why are facets important?

 

An integer programming formulation from a textbook:

min
( ( )) 2
( )
( ) | | 1 , a nonhamiltonian cycle

0,1

T

ij

c x
x i i V
x E n
x C C C E C
x ij E

   

   

  

What would you say?



CO@W

Martin
Grötschel

70

Subtour elimination constraints: 
equivalent versions


 
SEC constraints


 

cut constraints
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General cutting plane theory: 
Gomory Cut (the „rounding trick“)

Observation: For any

is a valid inequality for P.





m

T T

y
y Ax y b

Let                              be a polyhedron, and we 
suppose that A and b are integral.

{ | }nP x Ax b  R

We would like to describe the convex hull PI

 

of 
all integral points in P.

I

Observation: For any

is a valid inequality for P .



      

m

T T

y

y Ax y b

1 1

n m m
T

i ij j i j
j i i

y Ax y a x y b
  

           
  

1 1

n m m
T

i ij j i j
j i i

y Ax y a x y b
  

         
  Choose y so that yi

 

aij is integral:
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Chvátal-Gomory Procedure


 
Does the rounding procedure deliver PI

 

?


 

How many rounds of rounding do we need?


 

Other better methods?



CO@W

Martin
Grötschel

73

General cutting plane theory: 
Gomory Mixed-Integer Cut


 
Given                  and


 

Rounding: Where                        define


 

Then


 

Disjunction:


 

Combining

, ,jy x ¢
, 0ij jy a x d d f f      

,ij ij ja a f   
   : :ij j j ij j jt y a x f f a x f f             ¢

   : 1 :j j j j j jf x f f f x f f d t      

 
  

:

1 : 1

j j j
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From SECs to


 
2-matching constraints


 

combs


 

clique tree inequalities


 

etc.
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Polyhedral Theory of the TSP
Comb inequality

2-matching
constraint

tooth
handle
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Clique Tree Inequalities
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Clique Tree Inequalities
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Valid Inequalities for STSP


 
Trivial inequalities


 

Degree constraints


 
Subtour elimination constraints


 

2-matching constraints, comb inequalities


 
Clique tree inequalities (comb)


 

Bipartition inequalities (clique tree)


 
Path inequalities (comb)


 

Star inequalities (path)


 
Binested Inequalities (star, clique tree)


 

Ladder inequalities (2 handles, even # of teeth)


 
Domino inequalities


 

Hypohamiltonian, hypotraceable inequalities


 
etc.
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A very special case

Petersen graph, G = (V, F),
the smallest hypohamiltonian graph

10( ) 9

, 11
T
n
T

x F defines a facet of Q

but not a facet of Q n





M. Grötschel & Y. Wakabayashi
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Valid and facet defining inequalities for 
STSP: Survey articles


 

M. Grötschel, M. W. Padberg (1985 a, b)


 

M. Jünger, G. Reinelt, G. Rinaldi (1995)


 

D. Naddef (2002)
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Counting Tours and Facets
n # tours # different facets # facet classes

3 1 0 0

4 3 3 1

5 12 20 2

6 60 100 4

7 360 3,437 6

8 2520 194,187 24

9 20,160 42,104,442 192

10 181,440 >= 52,043.900.866 >=15,379
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Separation Algorithms


 
Given a system of valid inequalities (possibly of 
exponential size). 


 

Is there a polynomial time algorithm (or a good 
heuristic) that, 


 
given a point, 


 

checks whether the point satisfies all inequalities of the 
system, and 


 

if not, finds an inequality violated by the given point?
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Separation

K

Grötschel, Lovász, Schrijver:
 Separation and optimization
 are polynomial time equivalent.
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Separation Algorithms


 
There has been great success in finding exact 
polynomial

 
time

 
separation algorithms, e.g.,


 

for subtour-elimination constraints


 

for 2-matching constraints (Padberg&Rao, 1982)


 

or fast heuristic separation algorithms, e.g.,


 
for comb constraints


 

for clique tree inequalities


 

and these algorithms are practically efficient
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SEC Separation
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West-Deutschland und Berlin

120 Städte
7140 Variable

1975/1977/1980

M. Grötschel
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In the old days: 
1975, TSP 120


 
my drawing of 
Germany
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In the old days: 
1975 TSP 120


 
optimal LP solution 
after second run
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In the old days: 
1975 TSP 120


 
optimal LP solution 
after second run
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TSP 120 
1975
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Polyhedral Combinatorics
This line of research has resulted in powerful cutting 

plane algorithms for combinatorial optimization 
problems. 

They are used in practice to solve 
exactly or approximately (including 
branch

 
&

 
bound) large-scale real-world instances.
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Deutschland 
15,112

D. Applegate, R.Bixby, 
V. Chvatal, W. Cook

15,112

cities

114,178,716

variables

2001
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How do we solve a TSP like this?


 

Upper bound:

Heuristic  search


 
Chained Lin-Kernighan


 

Lower bound:


 
Linear programming


 

Divide-and-conquer


 

Polyhedral combinatorics


 

Parallel computation


 

Algorithms & data structures

The LOWER BOUND is the mathematically and
 algorithmically hard part of the work
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Work on LP relaxations of the 
symmetric travelling salesman polytope
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Integer Programming Approach
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cutting plane technique for integer and 
mixed-integer programming

Feasible
integer
solutions

LP-based 
relaxation

Convex 
hull

Objective
function

Cutting
planes
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Clique-tree cut for pcb442
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LP-based Branch & Bound

Root

Integer

v =0 v =1

x =
 0 x =1

y =
0 y =1

z =
0 z = 1

Lower Bound

Integer

Upper Bound

Infeas

z =
 0

z = 1

G
A
P

Remark:  GAP = 0  
 

Proof of optimality

Solve LP relaxation:
v=0.5 (fractional)
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A Branching 
Tree

Applegate

Bixby

Chvátal

Cook
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Managing the LPs of the TSP

CORE LP

as
tro

no
m

ic
al

|V|(|V|-1)/2
C

ut
s:

 S
ep

ar
at

io
n ~   3|V| variables

~1.5|V| constraints

Column generation:  Pricing.
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A Pictorial History of Some 
TSP World Records
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Some TSP World Records
year authors # cities # variables

1954 DFJ 42/49 820/1146

1977 G 120 7140

1987 PR 532 141,246

1988 GH 666 221,445

1991 PR 2,392 2,859,636

1992 ABCC 3,038 4,613,203

1994 ABCC 7,397 27,354,106

1998 ABCC 13,509 91,239,786

2001 ABCC 15,112 114,178,716

2004 ABCC 24,978 311,937,753

number of cities
2000x

 increase

4,000,000
times

problem size
increase

in 52
years

2005 W. Cook, D. Epsinoza, M. Goycoolea
 

33,810       571,541,145

2006
 pla 85,900 

solved
3,646,412,050

 variables
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The current champions 
http://www.tsp.gatech.edu/concorde/index.html
ABCC stands for

D. Applegate, B. Bixby, 
W. Cook, V. Chvátal

 (plus students)



 
almost 15 years of 
code development



 
have made their 
code CONCORDE 
available in the 
Internet
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USA 49

49 cities
1146 variables

1954

G. Dantzig, D.R. Fulkerson, S. Johnson
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The journey around the world
666 cities

221.445 variables

1987/1991

M. Grötschel, O. Holland

city list
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USA cities with population >500

13,509
cities

91,239,786
Variables

1998

D. Applegate, R.Bixby, V. Chvátal, W. Cook
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usa13509:  The branching tree

0.01% 
initial gap
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Summary:  usa13509


 
9539 nodes branching tree


 

48 workstations (Digital Alphas, Intel Pentium IIs, 
Pentium Pros, Sun UntraSparcs)


 

Total CPU time:  4 cpu years
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Overlay of 
3 Optimal 
Germany 
tours

from
 ABCC 2001

http://www.math.princeton.edu/
 tsp/d15sol/dhistory.html
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Optimal Tour of Sweden

311,937,753
variables

ABCC
plus

Keld Helsgaun
Roskilde Univ. 

Denmark.
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http://www.tsp.gatech.edu/optimal/index.html

http://www.tsp.gatech.edu/pla85900/index.html

http://www.tsp.gatech.edu/optimal/index.html
http://www.tsp.gatech.edu/pla85900/index.html
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World Tour, current status
http://www.tsp.gatech.edu/world/

We
 

give
 

links to several
 

images
 

of the
 

World TSP tour
of length

 
7,516,353,779 found

 
by

 
Keld

 
Helsgaun

 
in 

December
 

2003. A lower
 

bound
 

provided
 

by
 

the
Concorde TSP code

 
shows

 
that

 
this

 
tour is

 
at most

0.076% longer
 

than
 

an optimal tour through
 

the
1,904,711 cities. 

http://www.dat.ruc.dk/~keld/
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The Travelling Salesman Problem 
and its Applications 
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Vorführender
Präsentationsnotizen
LP and IP: current practice and some new theory

Martin Groetschel
ZIB, TU, and Matheon Berlin

Abstract:

In this talk I will give a brief survey about the development of
linear and integer programming in the last fifty years and would
like to show what the current state of the art in practical
problem solving in linear and integer programming is. I will
report about experience at the Konrad-Zuse-Zentrum with the
solution of large-scale linear and integer programs coming from
practice to indicate the size of the problem instances that we
can successfully attack today.

I will also report about a new way to view linear programs as
semialgebraic sets. There are some theoretical results, a few
speculations, but no algorithmic ideas yet.
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