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Abstract:



In this talk I will give a brief survey about the development of

linear and integer programming in the last fifty years and would

like to show what the current state of the art in practical

problem solving in linear and integer programming is. I will

report about experience at the Konrad-Zuse-Zentrum with the

solution of large-scale linear and integer programs coming from

practice to indicate the size of the problem instances that we

can successfully attack today.



I will also report about a new way to view linear programs as

semialgebraic sets. There are some theoretical results, a few

speculations, but no algorithmic ideas yet.



 






Contents

coa@w

Introduction
The TSP and some of its history
The TSP and some of its variants

1

2

3

4. Some applications
5. Heuristics

6

How combinatorial optimizers do it

1B
Martin
Grotschel




Contents

coa@w

Introduction
The TSP and some of its history
The TSP and some of its variants

1

2

3

4. Some applications
5. Heuristics

6

How combinatorial optimizers do it

1B
Martin
Grotschel




coa@w

2B

Martin
Grotschel

Combinatorial optimization

Given a finite set E and a subset 7 of the power set of E (the set of feasible
solutions). Given, moreover, a value (cost, length,...) c(e) for all elements e of E.
Find, among all sets in Z, a set I such that its total value c(I) (= sum of the
values of all elements in I) is as small (or as large) as possible.

The parameters of a combinatorial optimization problem are: (E, 7, ©).

min{c(l):Zc(e)He I}, where | = 2and E finite

ecl

Important issues:
= How is / given?
= What is the encoding length of an instance?

= How do we measure running time?



Encoding and Running Times

Important issues:
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= How is / given?
= What is the encoding length of an instance?

= How do we measure running time?
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Special ,,simple
combinatorial optimization problems
Finding a

coa@w

=  minimum spanning tree in a graph
= shortest path in a directed graph
= maximum matching in a graph

= a minimum capacity cut separating two given nodes of a graph or
digraph

| = cost-minimal flow through a network with capacities and costs on all
edges

These problems are solvable in polynomial time.

Is the number of feasible solutions relevant?
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Special ,,hard“
combinatorial optimization problems
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= travelling salesman problem (the prototype problem)
= |ocation und routing

= set-packing, partitioning, -covering

= max-cut

= linear ordering

~ = scheduling (with a few exceptions)

il = node and edge colouring

These problems are NP-hard
(in the sense of complexity theory).
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~__Complexity Theory
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Complexity theory came formally into being in the years 1965 — 1972
with the work of Cobham (1965), Edmonds(1965), Cook (1971), Karp(1972)
and many others

Of course, there were many forerunners (Gauss has written about the number of
elementary steps in a computation, von Neumann, Godel, Turing, Post,...).

But modern complexity theory is a the result of the combined research
efforts of many, in particular, of many computer scientists and mathematical
programmers trying to understand the structures underlying computational
processes.



Complexity Theory

1965 Polynomial time
Class P
Nondeterministic polynomial time
Class NP
Edmonds, Cobham

coa@w

1971 Cook "The Complexity of Theorem
Proving Procedures”
introduced the theory of
NP completeness

Hierarchies of complexity classes...
The most important open problem:

P=NP?

ZA B
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- Clay Mathematics Institute

dedicated to increasing and disseminating mathematical knowledge
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Millennium Prize Problems

Announcement

P versus NP
Rules for the CMI Millennium
Prize Problems

The Hodge Conjecture

Publication Guidelines

Historical Context The Poincaré Conjecture

Press Statement

Press Reaction The Riemann Hypothesis

Yang-Mills Existence and Mass Gap
Navier-Stokes Existence and Smoothness
The Birch and Swinnerton-Dyer Conjecture

Announced 16:00, on Wednesday, May 24, 2000
College de France
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http://www.claymath.org/prizeproblems/statement.htm
http://www.claymath.org/prizeproblems/rules.htm
http://www.claymath.org/prizeproblems/rules.htm
http://www.claymath.org/prizeproblems/publicationguidelines/index.htm
http://www.claymath.org/prizeproblems/history.htm
http://www.claymath.org/prizeproblems/PressStatement.htm
http://www.claymath.org/prizeproblems/PressReaction.htm
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The first NP-complete Problem
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Satisfiability: Is there a truth assignmeent to the
following formula:
(=X VX ) A XV X V) AKXV =X) A XV Xy V=X A (=X vV —X,)

Truly important Application:
Verification of computer chips and m g ] o
“systems on chips” " = e

| A design is correct iff a certain
== SAT formula associated with the
@’ chip has no truth assignment.
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The travelling salesman problem

Given n ,cities" and ,distances” between them. Find a tour
(roundtrip) through all cities visiting every city exactly
once such that the sum of all distances travelled is as
small as possible. (TSP)

coa@w

The TSP is called symmetric (STSP) if, for every pair of
cities i and j, the distance from i to j is the same as the
one from j to i, otherwise the problem is called
aysmmetric (ATSP).

yZ
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The travelling salesman problem
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Two mathematical formulations of the TSP

1. Version:
Let K. =(V,E) be the complete graph (or digraph)with n nodes
and let c, be the length of e E. Let H be the setof all
hamiltonian cycles (tours) in K, . Find

min{c(T)|T € H}.

2. Version:
Find a cyclic permutation 7 of {l,...,n} such that

n
Z Circi)
i=1

Is as small as possible.

ZIBE  « Does that help solve the TSP?
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= The Problem

ven a collection of cities and the cost of travel between each pair of them, the traveling salesman
problem, or TSP for short, 15 to find the cheapest way of wistting all of the cities and returning to your

coow MM ot arting point. In the case we study, the travel costs are symmetric in the sense that traveling from city X
to city ¥ costs qust as much as traveling from Y to 2

http://www.tsp.gatech.edu/

The simplicity of the statement of the problem 1z deceptive -- the TSP 15 one of the most intensely studied

ZD problems m computational mathematics and yet no effective solution method 15 known for the general
W Cacc. Indeed, the resclution of the TSP would settle the P wersus NP problem and fetch a 51,000 000
st prize from the Clay Mathematics Institute.
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17 History of the TSR

Ifathematical problems related to the traveling salestman problem were treated in the 18005 by the Trish
mathematician =1 “Wilham Eowan Harmilton and by the British mathematician Thomas Fenyngton

coownmmmm Fitloman, The picture below 12 a photograph of Hatmlton's Icosian Game that requires playvers to
cotnplete tours through the 20 pomts using only the specified connections. A nice discussion of the early
worle of Hamilton and Eirloman can be found i the bool Sraph Theormy J750-20560 by M. L. Biggs, E.
E. LLovwd, and E. J. “Wilson, Clarendon Press, Oxford, 15976,

Usually quoted as
the forerunner of

the TSP )

‘The general torm of the TSP appears to be have been first studied by mathematicians starting in the
19305 by Earl Menger in Vienna and Harwvard The problem was later promoted by Hassler Whitnew
atid Iernll Flood at Princeton. A detaled treattnent of the connection between Menger and “Whithewy,

ZD atd the growth of the TSF as a topic of study can be found in Alexander Schryver's paper * On the
Vel listotry of combinatonal optumzation (tdl 19607"

Grotschel
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From the Commis-Voyageur
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aber ¢8 Fann duvd eine By a proper choice and
goecmigige Wahl und Eintheilung der Jour, scheduling of the tour one

can gain so much time
mancdmal fo viel Seit gewonnen werden, daf wir that we have to make
es nicht glauben wmgehen zu diirfen, audy hieviiber <ome suggestions

einige Borfdhriften su geben,

worauf der RNeifende The most important

A‘q baupt{da Hlich zu fehen hat, ved Hin- und Herveiz aspect is to cover as many
- locations as possible

fens, mit mehr Oecfonomie einguridhten. Die without visiting a

Dauptfedhe befteht immer davin: fo viele Orte wie |ocation twice

méglich mitqunehmen, ohne den ndmlicdgen Ort

gweimal Berithren zu miiffen,
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Ulysses roundtrip (an even older TSP ?)
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Ulysses

coa@w

2 3 4 5 G T 4 a g 11 12 13 14 15 14§ 1 IL]J.H.LH. 382,_1__'\,]’ gﬂd_ﬂE
500 5013121018 736 656 601039 7262314 479 448 479 618 150
126 474 1526 1226 113 532 1440 11222780 958 941 9781127 saa| | 2 | Troy J0.57TN | 26.15E
54115161184 1084 536 1371 10452728 913 404 9451115 409 3 Varonia 4{]513\1 25 HEE
1157 980 9182711333 10292553 751 704 720 783 455 Z il -
478 583906 858 8551504 677 651 600 4011033 | 4 | Malea 36.26N | 23.12E
115740 470 3791581 271 289 261 308 687 -
657 455 2981661 177 216 207 343 sgo| | v | Djerba 349N | 10.0dE
1066 7502320 499 454 479 598 206) | § | Favignana | 37.56N | 12,1898
3281387 501 650 656 776 933 -
1697 333 400 427 622 gug| || | uwbica J8.42N] 13.11E
1838 1968 1841 1789 2248 8 | Zalinlhos | J7.52N | 20.44E
58 105 3% o0 [ 9 | Bomifaccio | 41.23N | 8.10F
237 449 | 1 | Cireeo 41.17TN | 13.0hE
S8 M1 [ Gibmaliar | 36.08N | 5.21W
Table 2. The dizlance Lable for Tlymes 2000. 12 | Stromboli J8.47TN | 15.13F
13 | Messina J5.15N | 15.35E
. 14 | Taormina | 37.51N | 15.17E
The distance table 15 | Birsebbuga | 35.49N | 14.32E
16 | Corlu 30.36N | 10.56F

Table 1. Polar coordinales of the 16 locations in the Medilerranean.
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Ulysses roundtrip

optimal ,,Ulysses tour™
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TS P i n art 7 noch zuriicklassen musstel«
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http://www.touregypt.net/featurestories/flinders.htm

The TSP in archeology

= Flinders Petrie (1853-1942) and the Luxor graves

= In the words of James Baikie, author of the book A Century of
Excavation in the Land of the Pharaohs, "if the name of any one man
must be associated with modern excavation as that of the chief
begetter of its principles and methods, it must be the name of
Professor Sir W.M. Flinders Petrie. It was he...who first called the
attention of modern excavators to the importance of "unconsidered
trifles" as means for the construction of the past...the broken
earthenware of a people may be of far greater value than its most
gigantic monuments."

= Petrie began to analyze the grave goods methodically. Grave A might
contain certain types of pot in common with Grave B; Grave B also
contained a later style of pot, the only type to be found in Grave C. By
writing cards for each grave and filing them in logical order, Petrie
established a full sequence for the cemetery, concluding that the last
graves were probably contemporary with the First Dynasty. The
development of life along the Nile thus was revealed, from early
settlers to farmers to political stratification.

coa@w
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The TSP in archeology:
Flinders Petrie’s contribution

= Introduction of the "Hamming distance of graves”, before
Richard Wesley Hamming (1915 —1998) introduced it in

mathematics.

(The Hamming distance is used in telecommunication to count the number of flipped
bits in a fixed-length binary word, an estimate of error. Hamming weight analysis of bits
is used in several disciplines including information theory, coding theory, and

cryptography.)
= Definition of the hamiltonian path problem through
“graves”.

coa@w
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The Seminal DFJ-Paper of 1954

SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM?*

G. DANTZIG, R. FULKERSON, anp S. JOHNSON
The Rand Corporation, Santa Monica, California
(Received August 9, 1954)
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It is shown that a certain tour of 49 cities, one in each of the 48 states and
Washington, D. C., has the shortest road distance.

B

Martin
Grotschel




27

The Seminal DFJ-Paper of 1954
preprint

4 I

SOLUTION OF A LARGE SCALE TRAVELING
SALESMAN PROBLEM |

coa@w

by

G. Dantzig, R. Fulkerson
and
S. Johnson

P-510

12 April 1654 J,/

(5. Dantzig, R. Fulkerson. S. Johnson, Selution of a Large Scale Traveling
Salesman Problem, Paper P-510, The RAND Corporation, Santa Monica,
California, [12 April] 1954, [53, 984, 997, 999, 1003]

(>. Dantzig, R. Fulkerson. S. Johnson, Solution of a large-scale traveling-
3 salesman problem, Journal of the Operations Research Society of America
ZAIBR 2 (1954) 393-410. [6, 53, 984, 995]
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Some Quotes from DFJ 1954

) Since there are only a finite
number of possibilities (at most 14 (n—1)!) to consider, the problem 1is
to devise a method of picking out the optimal arrangement which 1is

reasonably efficient for fairly large values of n.
For undirected tours, the symbol z,," will be treated identically with

x;; 80 that we may rewrite (1) as
Em”=2_ (2, 20; T=1,2, -+, n; I#£J; z=z,) (2) _

Ju=]

coa@w

The problem is to find the minimum of the linear form

D(x)=2_ dys 1, (3)

I'sJs

where the z,,=0 or 1 and the z,,=~1 form a tour, and where the sum-
mation in (3) extends over all indices (I.J) such that I>J.
To make a linear programming problem out of this (see ref. 2) one

397

needs, as we have observed, a way to describe tours by more linear re-
straints than that given by (2). This is extremely difficult to do as illus-
trated by work of I. Heller' and H. Kuhn.* They point out that such
relations always exist. However, there seems to be no simple way to
characterize them and for moderate size n the number of such restraints

Martin N .
o sl appears to be astronomical. In spite of these difficulties, this paper will



An 1mportant class oI conditlions that tours satisiy, which excluaes
many non-tour cases satisfying (2), are the ‘loop conditions.” These are
linear inequality restraints that exclude subeycles or loops. Consider a
non-Ltour solution to (2) which has a subtour of n,<n cities; we note that
the sum of the x,, for those links (7,J) in the subtour is n,. Henece we can

&

AND JOHNSON

J0R DANTZIG, FUlLhlpson
Ry

climinate this type of solution by in
*15 over all links (7,J) connee
than n,, i.e.,

, \posing the condition that the sum of
ling cities in the subset S of n, cities be less

2w <n—1 4)

where the summation extends over all

X I,J) with I and J in th ities S.
From (2) we note that two otl I,]) wi and J In Le i, CILics

' conditions, each equivalent to (4), are
2. &1, <n—n;—1, (5)
N

where S means the summation vxlmids over

nor J is in 8, and all (I,J) such thatlnt':ltjher I

. E: X1,>2, | (6)

:.vl::eru SS means that the surm
181n S and J not in S,

B T:}ere are, however, other map. complicated types of restraints whiéh
ometimes must be added to (2) iy, addition to an assortment of loop con-

t]ilﬁlt:;]ns n _nrder to exclude solutions involving fractional weights z,.
1 the ‘1?'9_“:}’ case we needed twag syl conditions. However. later when

ation extends over all (I,J) such that /




Grotschel&Nemhauser, George Dantzig’s contributions to integer programming

Remarks

= The preprint version is much clearer than the published paper. The editors
have replaced abstract insight by a sequence of examples and thus almost
destroyed the “real” contents of the paper.

coa@w

= The authors outline the branch and bound technique.

= They explain the cutting plane methodology and observe clearly where the
difficulties and chances of this method are.

= They mention the importance of heuristics.

| . They are modest:

CONCLUDING REMARK

It 1s clear that we have left unanswered practically any question one
might pcse of a theoretical nature concerning the traveling-salesman
problem; however, we hope that the feasibility of attacking problems
involving a moderate number of points has been successfully demon-
2§l strated, and that perhaps some of the ideas can be used in problems of
ZJqBl smilar nature.
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The Optimal Solution

Thix taur has a length of 12,345 miles when
the aodjusted unlts ore expressed In miles

. 16. The aptimal tour of 49 cities.
ZD. Fia. 16
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Survey Books

Literature: more than 1300 entries in Zentralblatt/Math
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Zbl 0562.00014 Lawler, E.L.(ed.); Lenstra, J.K.(ed.); Rinnooy Kan,
A.H.G.(ed.); Shmoys, D.B.(ed.)
The traveling salesman problem. A guided tour of combinatorial
optimization. Wiley-Interscience Series in Discrete Mathematics. A Wiley-
Interscience publication. Chichester etc.: John Wiley \& Sons. X, 465 p.
(1985). MSC 2000: *00Bxx 90-06

Zbl 0996.00026 Gutin, Gregory (ed.); Punnen, Abraham P.(ed.)
The traveling salesman problem and its variations. Combinatorial
Optimization. 12. Dordrecht: Kluwer Academic Publishers. xviii, 830 p.
(2002). MSC 2000: *00B15 90-06 90Cxx
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http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?format=short&maxdocs=20&type=html&cc=90Cxx
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The Traveling
Salesman Problem

A Computational Study

David L. Applegate,
Robert E. Bixby, Vasek Chvatal,
and William J. Cook

The Traveling Salesman Problem:
A Computational Study

David L. Applegate, Robert E. Bixby, Vasek
Chvatal & William J. Cook

Winner of the 2007 Lanchester Prize,
INFORMS

Princeton University Press 2006, 606 pp.

Our primary concern in this book is to describe
a method and computer code that have
succeeded in solving a wide range of large-
scale instances of the TSP, Along the way we
cover the interplay of applied mathematics anc
increasingly more powerful computing
platforms, using the solution of the TSP as a
general model in computational science.

« Table of Contents
» Links to Bookstores

Cover illustration by Julian Lethbridge,
Traveling Salesman 4, 19935, oil on linen, 72 x
72 inches, The Robert and Jane Meyerhoff
Collection, photograph by Adam Reich.



THE TSP Web page
http://www.tsp.gatech.edu/index.html

The Traveling Salesman Problem

The Traveling Salesman Problem is one of the most intensively studied problems in computational mathematics.
= Home These pages are devoted to the history, applications, and current research of this challenge of finding the shortest
route visiting each member of a collection of locations and returning to your starting point.

The Problem

; Mew! Mona Lisa TSP A 100,000-city challenge problem (3100 Prize).
HiY Mew! Google Maps Plot an optimal TSP tour with a Google interface. Concorde for Windows
L Ll
Applications Mew! plag5900 Solution of a 85,900-city TSP.
Mew! Ron Schreck's Flight  All 109 public airports in North Carolina in a single day! T Ty | A graphi{:al user interface
Solving a TSP .
a available for Concorde on
World Records . | Windows' platfnrrns.
TSP Book Lower Bounds
Gallery i-‘f"\ '
The Traveling Safesmarn Description of the techniques
TSP Games i i ST Problem: A Computational we use to compute lower -
Study by Applegate, Bixby. bounds on the lengths of all ¥
Google Maps Chvatal, and Cook. TSP tours. —
Concorde
Test Data |
News
|
TSP Book Sweden TSP
Searet il Optimal solution for visiting all The TSP was featured in a

24,978 cities in Sweden. Tour
has length approximately
72,500 kilometers.

contest run by Proctor and
Gamble in 1962 The
challenge problem had 33
cities.




Contents

coa@w

Introduction
The TSP and some of its history
The TSP and some of its variants

1

2

3

4. Some applications
5. Heuristics

6

How combinatorial optimizers do it

1B
Martin
Grotschel




The Travelling Salesman Problem
and Some of Its Variants

= The symmetric TSP

= The asymmetric TSP

= The TSP with precedences or time windows
= The online TSP

= The symmetric and asymmetric m-TSP

= The price collecting TSP

. = The Chinese postman problem
(undirected, directed, mixed)

(" = Bus, truck, vehicle routing
= Edge/arc & node routing with capacities
= Combinations of these and more

coa@w
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http://www.densis.fee.unicamp.br/—m
oscato/TSPBIB_home.html

TSPBIB Home Page

This page itends to be a comprehensive histing of papers, source code, preprnts, technical reports, etc,
available on the Internet about the Traveling Salesman Problem (TSP and some azsociated problems.

coa@w

Flease send us information ahout any ather work vou consider it should be inchided in this page.

Pablo Mozcate

el moscale@densis, fee unicamp. br
ZD The picture above shows an tstance of the Euclidean, Planar TSP

il moscatio(@eacr. caliech o %
and the optimal curve among the set of cites.
Thizs mstance has been named MFPeano Order 2.
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http://www.densis.fee.unicamp.br/~moscato/TSPBIB_home.html
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The TSP and some of its history
The TSP and some of its variants
Some applications

Modeling issues

Heuristics

How combinatorial optimizers do it
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Application list from
http://www.tsp.gatech.edu/index.html

Applications

coa@w

= (Genome

= Starlight
= Scan Chains We will see many

= DNA TSP applications.
. =  Whizzkids

i = Baseball

] = Coin Collection

= Airport Tours
= USA Trip
- %« Sonet Rings

ZIBY = Power Cables

Martin
Grotschel


http://www.tsp.gatech.edu/apps/genome.html
http://www.tsp.gatech.edu/apps/starlight.html
http://www.tsp.gatech.edu/apps/scan.html
http://www.tsp.gatech.edu/apps/dna.html
http://www.tsp.gatech.edu/apps/whizzkids.html
http://www.tsp.gatech.edu/apps/ballparks.html
http://www.tsp.gatech.edu/apps/coins.html
http://www.tsp.gatech.edu/apps/airports.html
http://www.tsp.gatech.edu/apps/usatrip.html
http://www.tsp.gatech.edu/apps/sonet.html
http://www.tsp.gatech.edu/apps/cables.html

Production of ICs and PCBs

>

-l 1 -
o T T T TN i
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Integrated Circuit (IC) Printed Circuit Board (PCB)

Problems: Logical Design, Physical Design
Correctness, Simulation, Placement of
Z4| B Components, Routing, Drilling,...
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442 holes to drill
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Printed Circuit Board (back)
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Drilling Machine
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Correct modelling of a
printed circuit board drilling problem

oo e e e length of a
e R0 L e Mhaps oo move of the

. ) ______ ) ______ Euclldean norm’

. ...... MaX nOrm,
RS Bt Manhatten norm?

ZAB 2103 holes to be drilled
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Drilling 2103 holes into a PCB

ST >ignificant Improvements
via TSP

- (Padberg & Rinaldi)

a T ;-

yZA B
vartin industry solution optimal solution

Grotschel
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Example: Control of the stacker
cranes In a Herlitz warehouse

coa@w
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Need for Heuristics

= Many real-world instances of hard combinatorial optimization
problems are (still) too large for exact algorithms.

coa@w

= Or the time limit stipulated by the customer for the solution is too
small.

» Therefore, we need heuristics!
= Exact algorithms usually also employ heuristics.
= What is urgently needed is a decision guide:

Which heuristic will most likely work well on what problem ?

2B
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Primal and Dual Heuristics

coa@w

= Primal Heuristic: Finds a (hopefully) good feasible solution.

= Dual Heuristic: Finds a bound on the optimum solution value
(e.qg., by finding a feasible solution of the LP-dual of an LP-relaxation of a

combinatorial optimization problem).

Minimization:

§|dual heuristic value < optimum value < primal heuristic value|

@} (In maximization the inequalities are the other way around.)

ZA B

Martin
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Primal and Dual Heuristics

coa@w

Primal and Dual Heuristics give rise to worst-case guarantee:

Minimization:
optimum value < primal heuristic value
< (1+¢) optimum value

¥ dual heuristic value < primal heuristic value
< (1+¢) dual heuristic value

(In maximization the inequalities are the other way around.)

-
]
L)

ZIB
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Heuristics: A Survey

Greedy Algorithms

Exchange & Insertion Algorithms
Neighborhood/Local Search

Variable Neighborhood Search, Iterated Local Search
Random sampling

Simulated Annealing

Taboo search

Great Deluge Algorithms

Simulated Tunneling

Neural Networks

Scatter Search

Greedy Randomized Adaptive Search Procedures



Heuristics: A Survey

coa@w

= Genetic, Evolutionary, and similar Methods
= DNA-Technology

= Ant and Swarm Systems

= (Multi-) Agents

= Population Heuristics

=  Memetic Algorithms (Meme are the “missing links” gens and mind)
| - Space Filling Curves
. = Fuzzy Logic Based...
= Fuzzy Genetics-Based Machine Learning
= Fast and Frugal Method (Psychology)
= Ecologically rational heuristic (Sociology)
= Method of Devine Intuition (Psychologist Thorndike)

2B
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An Unfortunate Development

= There is a marketing battle going on with unrealistic, or even

ideological, claims about the quality of heuristics — just to catch
attention

coa@w

= Linguistic Overkill:

W\

1B
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A Quote

coa@w

Quote:

Genetic Programming is an evolutionary computation technique
which searches for those computer programs that best solve a
given problem.

(Will this also solve P = NP?)

B
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> Kalyanmoy Deb:

,Multi-objective optimization using evolutionary
algorithms* (Wiley, 2001)

coa@w

from the Preface

= Optimization is a procedure of finding and comparing feasible
solutions until no better solution can be found.

= Evolutionary algorithms (EAs), on the other hand, can find
multiple optimal solutions in one single simulation run due to
their population-approach. Thus, EAs are ideal candidates for
solving...

f?

B
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Heuristics: A Survey

Currently best heuristic with respect to worst-case guarantee:
Christofides heuristic

coa@w

= compute a shortest spanning tree

= compute a minimum perfect 1-matching of the graph induced by the odd
nodes of the minimum spanning tree

= the union of these edge sets is a connected Eulerian graph
y = turn this graph into a TSP-tour by making short-cuts.

) For distance functions satisfying the triangle inequality, the resulting tour is at
most 50% above the optimum value

: "‘/‘
2B g
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Understanding Heuristics,

__Approximation Algorithms

= worst case analysis
= There is no polynomial time approx. algorithm for STSP/ATSP.
= Christofides algorithm for the STSP with triangle inequality

= average case analysis
= Karp's analysis of the patching algorithm for the ATSP

= probabilistic problem analysis
= for Euclidean STSP in unit square: TSP constant 1.714..n"

.~ = polynomial time approximation schemes (PAS)

= Arora's polynomial-time approximation schemes for
Euclidean STSPs

= fully-polynomial time approximation schemes (FPAS)
= not for TSP/ATSP but, e.g., for knapsack (Ibarra&Kim)

= These concepts — unfortunately — often do not really help to guide
practice.

= experimental evaluation
= Lin-Kernighan for STSP (DIMACS challenges))

2B
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Polyhedral Theory (of the TSP)
STSP-, ATSP-, TSP-with-side-constraints-

Polytope:= Convex hull of all incidence
vectors of feasible tours

Qr=conv{y' eZ"|TtourinK,}  (x; =1if ijeT, else =0)
To be investigated:

coa@w

|| = Dimension
#l = Equation system defining the affine hull
= Facets

= Separation algorithms

1B
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The symmetric travelling salesman polytope

coa@w

Qr=conv{y' eZ"|T tourinK,}  (g; =1if ijeT,else =0)

c{xeR"|x(6() =2 VieV
X(EW) W |-1 YW <V \{1},3<]W |<n-3
0<x; <1 Vij e E}
= [P formulation
minC' X
X(o(1)) =2 VieV
X(EW)) W |-1 YWV \{1},3</W [<n-3
X; €1{0,1} Vije E

ZAIB = The LP relaxation is solvable in polynomial time.

Martin

Grotschel



Dimension of the sym TSP polytope

coa@w

Theorem. dimQ; :%n(n—3):\E\—M:(Q)—n

(a) The matrix A defined by X(6(i)) =2 Vi eV has full row rank.
(b) Qr contains |E|—|V|+1 linearly independent points.
Proof : (a) The submatrix B of A consisting of all rows and a

} set of columns corresponding to a spanning tree T plus an

= edge that forms one odd cycle with T 1s a nonsingular matrix.

§l (b) Use Lucas' result that a complete graph with 2k+1 nodes can
@ be partitioned into k Hamiltonian cyles, and a complete graph

with 2k nodes into k-1 Hamiltonian cycles and one perfect

sElrLELELAL
.........

- matching to construct the desired points (incidence vectors of tours).
Zaell Show cases n—4 ,5,6 on the blackboard.
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Relation between IP and LP-relaxation

coa@w

Open Problem:

= [If costs satisfy the triangle inequality, then
IP-OPT <= 4/3 LP-SEC
IP-OPT <= 3/2 LP-SEC (Wolsey)

1B
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Facets of the TSP polytope

= Finding facets!

coa@w

= Proving that an inequality defines a facet!

= Finding exact or heuristic separation algorithms to be used
in a cutting plane algorithm!




Why are facets important?

coa@w

An 1nteger programming formulation from a textbook:

minc' X

X(o(1)) =2 VieV

X(E)=n

X(C)<|C|-1 VCc E,Canonhamiltonian cycle
X; €10,1} Vije E

What would you say?




Subtour elimination constraints:
equivalent versions

coa@w

= SEC constraints

= cut constraints

1B
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N Choose y so that yiayis integral: | yTAX|=3" > ya;x; < {

General cutting plane theory:
Gomory Cut (the ,,rounding trick®)

Let P={xeR"|Ax<b} be a polyhedron, and we
suppose that A and b are integral.

We would like to describe the convex hull P; of
all integral points in P.

Observation: Forany y € R" Observation: Forany y € R"
y'Ax<y'b |y"Ax|<|y'b]|

isa valid inequality for P. is a valid inequality for P, .

3

LyTijzjzn_: ) .

= =l i

m

m

k|

1

yibj




Chvatal-Gomory Procedure

= Does the rounding procedure deliver P;?

coa@w

= How many rounds of rounding do we need?
= Other better methods?




General cutting plane theory:

~__Gomor Mixed-Integer Cut

= Given y,x; e¢ ,, and
y+ZaIJ j=d=[d|+f, f>0
Rounding: Where aijztaij J+fj, define

t=y+ > (lay % f<f)+ X ([ay |x: ;> f)eg

Then

DX f <)+ (-1 f, > f=d -t

Disjunction:
t<|d = (fx:f;<f)xf
t>[d]= > ((1-f;)x: f;> f)=1-1

Combining

S((f/8)%:f<f)+ Z([(l—f )/1—f)]xj;fj>f)z




From SECs to

= 2-matching constraints

coa@w

= combs
= clique tree inequalities
= etc.

Martin
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Polyhedral Theory of the TSP
Comb inequality

2-matching
constraint

handle
tooth




Cligue Tree Inequalities




Cligue Tree Inequalities

h h
D X@H )+ D x(@(T ) 2D | H [ +h+2
i=1 j=1 i=1

h h
D XEMH )+ D XECT N H [+ D07 [ )
=1

: =1 j=1 =1




Valid Inequalities for STSP

= Trivial inequalities
= Degree constraints
= Subtour elimination constraints
= 2-matching constraints, comb inequalities
= Clique tree inequalities (comb)
= Bipartition inequalities (clique tree)
B = Path inequalities (comb)
s | = Star inequalities (path)
W = Binested Inequalities (star, clique tree)
= Ladder inequalities (2 handles, even # of teeth)
= Domino inequalities
= Hypohamiltonian, hypotraceable inequalities

ZIBY « ofc,

Martin
Grotschel
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A very special case

Petersen graph, G = (V, F),
the smallest hypohamiltonian graph

x(F)<9 defines a facet of Q;"

but not a facet of Q;,n>11

M. Grotschel & Y. Wakabayashi




Valid and facet defining inequalities for
STSP: Survey articles

= M. Grotschel, M. W. Padberg (1985 a, b)
= M. Junger, G. Reinelt, G. Rinaldi (1995)

| = D. Naddef (2002)




Counting Tours and Facets

coa@w

n # tours # different facets # facet classes
3 1 0 0
4 3 3 1
5 12 20 2
6 60 100 4
7 360 3,437 6
8 2520 194,187 24
9 20,160 42,104,442 192
10 181,440 >=52,043.900.866 >=15,379

B

Martin
Grotschel




Separation Algorithms

coa@w

= Given a system of valid inequalities (possibly of
exponential size).

= [s there a polynomial time algorithm (or a good
heuristic) that,

= given a point,

= checks whether the point satisfies all inequalities of the
system, and

= if not, finds an inequality violated by the given point?

B
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Separation

coa@w

Grotschel, Lovasz, Schrijver:
Separation and optimization
are polynomial time equivalent.

B
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Separation Algorithms

coa@w

= There has been great success in finding exact
polynomial time separation algorithms, e.q.,

= for subtour-elimination constraints
= for 2-matching constraints (Padberg&Rao, 1982)

= or fast heuristic separation algorithms, e.g.,
= for comb constraints

= for clique tree inequalities

= and these algorithms are practically efficient




SEC Separation
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West-Deutschland und Berlin
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120 Stadte
7140 Variable

1975/1977/1980

M. Grotschel




1975, TSP 120
Germany

In the old days
= my drawing of
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1975 TSP 120
after second run

= optimal LP solution

In the old days

Grotschel
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Polyhedral Combinatorics

coa@w

This line of research has resulted in powerful cutting
plane algorithms for combinatorial optimization
problems.

They are used in practice to solve
exactly or approximately (including
branch & bound) large-scale real-world instances.




Deutschland
15,112

D. Applegate, R.Bixby,
V. Chvatal, W. Cook

15,112
cities
114,178,716

variables

2001




How do we solve a TSP like this?

coa@w

= Upper bound: = Lower bound:
Heuristic search = Linear programming
= Chained Lin-Kernighan = Divide-and-conquer

= Polyhedral combinatorics

Parallel computation

Algorithms & data structures

The LOWER BOUND is the mathematically and
algorithmically hard part of the work

B
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Work on LP relaxations of the
symmetric travelling salesman polytope

Qr :=conv{y' €Z"|T tour in K _}

min ' X

X(o(1)) =2 VieV

X(EW) W |-1 VWV \{1},3 <W |<n-3
0<x; <1 Vije E




cutting plane technique for integer and
mixed-integer programming

coew

Feasible
integer
solutions

Objective
function

'AV‘ Convex
ST hull

| &
e

LP-based

@ relaxation

~- A Cutting

. planes
B
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Cligue-tree cut for pcb442
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LP-based Branch & Bound

coa@w

Solve LP relaxation:

@ v=0.5 (fractional)
= VQJ = G

‘
»
) @
N}

vy N

\

Remark: GAP = 0 = Proof of optimality
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A BranCh | ng sw24978 Branching Tree

T ree Computation Carried out in Parallel at Georgia Tech, Princeton, Rice
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Managing the LPs of the TSP

coa@w

= VI(VI-1)/2 d

CORELP | == (Column generation: Pricing. <===p

N ~ 3|V| variables

~1.5|V| constraints

astronomical

=) (Cuts: Separation e=p

B
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A Pictorial History of Some
TSP World Records
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Some TSP World Records

2006 year| authors| # cities # variables
pla 85,900
solved 1954 DFJ 42/49 820/1146
3,646,412,050| 1977 G 120 7140
variables
1987 PR 532 141,246
numbzeoro%f cities | 1988 GH 666 221,445
X
increase 1991 PR 2,392 2,859,636
4000000 | 1992]  ABCC| 3,038 4,613,203
umes 1994 ABCC 7,397 27,354,106
problem size
increase 1998 ABCC 13,509 91,239,786
e 2001 ABCC| 15,112 114,178,716
pecD 2004 ABCC 24,978 311,937,753
2005 W. Cook, D. Epsinoza, M. Goycoolea 33,810 571,541,145
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The current champions

http://www.tsp.gatech.edu/concorde/index.html
ABCC stands for Concorde TSP Solver

coa@w

D. Applegate, B. BIbe, Concorde is a computer code for the symmetric traveling salesman problem (TSP) and some related
s, _ network optimization problems. The code is written in the ANSI C programming language and it is
W. COOk/ V. Chvata available for academic research use; for other uses, contact William Cook for licensing options.

(plus students)

Concorde's TSP solver has been used to obtain the optimal solutions to 107 of the 110 TSPLIB
instances; the largest having 15,112 cities.

The Concorde callable library includes over 700 functions permitting users to create specialized
u almost ]_5 years Of codes for TSP-like problems. All Concorde functions are thread-safe for programming in shared-
memory parallel environments; the main TSP solver includes code for running over networks of UNIX

code development workstations.

have made their Concorde now supports the QSopt linear programming solver. Executable versions of concorde with
gsopt for Linux and Solaris are now available
code CONCORDE
] ] Hans Mittelmann has created a NECS Server for Concorde, allowing users to solve TSP instances
available in the online.
Internet

Concorde - prib.gs

M B¢ Cgom o Herwton Yew R Shp Heln

DeHdE & C DM & TN

Concorde for Windows

« Benchmark Results

« User Documentation for Source Code
» Downloading Concorde

{

ZD -
COMCOEDE: Marw kavwer boagmot L 159 2006000
- i = 8 v e of

Martin Far e, m
Grotschel
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USA 49

coa@w

49 cities
1146 variables

1954

G. Dantzig, D.R. Fulkerson, S. Johnson

Martin
Grotschel
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The journey around the world

coa@w

666 cities
city list 221.445 variables

1987/1991

Martin
Grotschel
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USA cities with population =500

coe@w

7 \
" - ﬁ‘ 13,509
| : ) 8 cities
gty e
Q 4 Variables
" S 1998

Martin
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usal3509: The branching tree

19881200 —
19881250 —
19881300 —
19881350 —
19881400 —
19881450 —
19881500 —
19881550 —
19881600 —
19881850 —
19881700 —
19881750 —
19881800
19881850 —
19881800 —
19881950 —
19882000 —
19882050 —
19882100 —

10082150 — |

19882200 —

19882250 —

19882300 —

19982350 |
19882400 —

19882450 —
19882500 —
19882550 —
19882600 —
19882650 —
19882700 —
19882750 —
19882800 —

19882850 —

+I%

L LR

0.01%
initial gap
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Summary: usal3509

= 9539 nodes branching tree

= 48 workstations (Digital Alphas, Intel Pentium IIs,
Pentium Pros, Sun UntraSparcs)

coa@w

= Total CPU time: 4 CpU years




Groetschel’s 120-city Tour

Overlay of

—.3.Optimal

Germany
tours

from
ABCC 2001

http://www.math.princeton.edu/
tsp/d15sol/dhistory.html




Optimal Tour of Sweden

e

VENTERALENeE e
7

TSP | oy

Swecden Tour
24,978 Citles

e | S el SR 311,937,753
Ny variables

ABCC

plus
Keld Helsgaun
Roskilde Univ.
Denmark.
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The current world record

85,900 Locations in a VLSI Application
Solved in 2006

http://www.tsp.gatech.edu/optimal/index.html
%anr http://www.tsp.gatech.edu/pla85900/index.html

Grotschel



http://www.tsp.gatech.edu/optimal/index.html
http://www.tsp.gatech.edu/pla85900/index.html
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World Tour, current status
http://www.tsp.gatech.edu/world/

We give links to several images of the World TSP tour
of length 7,516,353,779 found by Keld Helsgaun in
December 2003. A lower bound provided by the

.4 Concorde TSP code shows that this tour is at most

0.076%6 longer than an optimal tour through the

wenll 1,004,711 cities.

Grotschel



http://www.dat.ruc.dk/~keld/

The Travelling Salesman Problem

and i1ts Applications
CO@W Berlin

Martin Grotschel = Institut flir Mathematik, Technische Universitat Berlin (TUB)
» DFG-Forschungszentrum “Mathematik fir Schllisseltechnologien” (MATHEON)

» Konrad-Zuse-Zentrum fur Informationstechnik Berlin (ZIB
http://www.zib.de/groetschel

"
o

Z[l groetschel@zib.de



Vorführender
Präsentationsnotizen
LP and IP: current practice and some new theory



Martin Groetschel

ZIB, TU, and Matheon Berlin



Abstract:



In this talk I will give a brief survey about the development of

linear and integer programming in the last fifty years and would

like to show what the current state of the art in practical

problem solving in linear and integer programming is. I will

report about experience at the Konrad-Zuse-Zentrum with the

solution of large-scale linear and integer programs coming from

practice to indicate the size of the problem instances that we

can successfully attack today.



I will also report about a new way to view linear programs as

semialgebraic sets. There are some theoretical results, a few

speculations, but no algorithmic ideas yet.
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