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Linear Programming
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Linear Programming
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A  Polytope in the Plane
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A  Polytope in 3-dimensional space
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„beautiful“ polyehedra

•a tetrahedron, 
•a cube, 
•an octahedron, 
•a dodecahedron, 
•an icosahedron, 
•a cuboctahedron, 
•an icosidodecahedron, and 
•a rhombitruncated cuboctahedron. 
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Polytopes in nature


 
see examples


 

diamond
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Polyhedra-Poster 
http://www.peda.com/posters/Welcome.html

Poster which displays 
all convex polyhedra 
with regular polygonal 
faces 
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http://www.eg-models.de/
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http://www.ac-noumea.nc/maths/amc/polyhedr/index_.htm
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http://www.ac-noumea.nc/maths/amc/polyhedr/convex1_.htm

http://www.ac-noumea.nc/maths/amc/polyhedr/convex1_.htm
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Polyhedra have fascinated people 
during all periods of our history


 

book illustrations


 
magic objects


 
pieces of art


 
objects of symmetry


 
models of the universe
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Definitions
Linear programming lives (for our purposes) in the 
n-dimensional real (in practice: rational) vector space. 

convex polyhedral cone: conic combination 
(i. e., nonnegative linear combination or conical hull) 
of finitely many points 
K = cone(E), E a finite set in n.

polytope: convex hull of finitely many points: 
P = conv(V), V a finite set in n.

polyhedron: intersection of finitely many halfspaces

{ | }nP x Ax b  R
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Important theorems 
of polyhedral theory (LP-view)
When is a polyhedron nonempty?
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Important theorems 
of polyhedral theory (LP-view)
When is a polyhedron nonempty?

The Farkas-Lemma (1908):

A polyhedron defined by an inequality system

is empty, if and only if there is a vector y such that

Ax b

0, 0 , 0T T T Ty y A y b  

Theorem of the alternative
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Important theorems 
of polyhedral theory (LP-view)
Which forms of representation do polyhedra have?
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Important theorems 
of polyhedral theory (LP-view)

Minkowski (1896), Weyl (1935), Steinitz (1916) Motzkin (1936)

Theorem: For a subset P of      the following are equivalent:

(1)
 

P is a polyhedron.

(2)
 

P is the intersection of finitely many halfspaces, i.e.,
 there exist a matrix A und ein vector b with

 (exterior representation)

(3)
 

P is the sum of a convex polytope and a finitely 
generated (polyhedral) cone, i.e., there exist 
finite sets V and E with 

(interior representation)

nR

{ | }.nP x Ax b  R

conv(V)+cone(E).P 

Which forms of representation do polyhedra have?
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Representations of polyhedra
Carathéodory‘s Theorem (1911),

 
1873 Berlin –

 

1950 München

Let                                       , there existconv(V)+cone(E)x P 

0 0
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Representations of polyhedra
(1)      - x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9

(1)

(2)

(4)

(5)(3
)

The -representation
 (exterior representation)

Ax b
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Representations of polyhedra
The -representation

 
(interior representation)

conv(V)+cone(E).P 

E

VP
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Example: the Tetrahedron

0 1 0 0
0 , 0 , 1 , 0
0 0 0 1
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Example: the cross polytope

 , | 1,..., n
i iP conv e e i n    R

2n points
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Example: the cross polytope

 , | 1,..., n
i iP conv e e i n    R

  | 1 1,1 nn TP x a x a     R

2n points

2n

 
inequalities
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Example: the cross polytope

 , | 1,..., n
i iP conv e e i n    R

1

| 1


    
 


n

n
i

i
P x xR

  | 1 1,1 nn TP x a x a     R

2n points

2n

 
inequalities

The “power”
 

of |.|.
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All 3-dimensional 
0/1-polytopes
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Polyedra in linear programming


 
The solution sets of linear programs are polyhedra.


 

If a polyhedron                                   is given explicitly 
via finite sets V und E, linear programming is trivial.


 

In linear programming, polyhedra are always given in 
-representation. Each solution method has its 
„standard form“. 

conv(V)+cone(E)P 
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Fourier-Motzkin Elimination 


 
Fourier, 1847 


 

Motzkin, 1938


 

Method: successive projection of a polyhedron in n-
 dimensional space into a vector space of dimension n-1

 
by 

elimination of one variable.

Projection on y: (0,y)

Projection on x: (x,0)
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A Fourier-Motzkin step
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Fourier-Motzkin elimination proves the 
Farkas Lemma
When is a polyhedron nonempty?

The Farkas-Lemma (1908):

A polyhedron defined by an inequality system

is empty, if and only if there is a vector y such that

Ax b

0, 0 , 0T T T Ty y A y b  
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Fourier-Motzkin Elimination: 
an example

min/max + x1 + 3x2 

(1)      - x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9

(1)

(2)

(4)

(5)(3
)
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Fourier-Motzkin Elimination: 
an example

(1)      - x2 <= 0
(2) - x1 - x2 <=-8
(3) - x1 +  x2 <= 3
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9

(1)

(2)

(4)

(5)(3
)

(2)
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Fourier-Motzkin Elimination: 
an example, call of PORTA

DIM = 3

INEQUALITIES_SECTION

(1)      - x2      <= 0
(2) - x1 - x2      <=-8
(3) - x1 +  x2      <= 3
(4) + x1            <= 3
(5) + x1 + 2x2      <= 9

ELIMINATION_ORDER
1 0  

(1)      - x2 <= 0
(2) - x1 - x2 <=-8
(3) - x1 +  x2 <= 3
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9
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Fourier-Motzkin Elimination: 
an example, call of PORTA

DIM = 3

INEQUALITIES_SECTION

(1)      - x2      <= 0
(2) - x1 - x2      <=-8
(3) - x1 +  x2      <= 3
(4) + x1            <= 3
(5) + x1 + 2x2      <= 9

ELIMINATION_ORDER
1 0  

DIM = 3

INEQUALITIES_SECTION

(1)   (1) - x2      <=  0
(2,4) (2) - x2      <=  -5
(2,5) (3) + x2      <=  1
(3,4) (4) + x2      <=  6
(3,5) (5) + x2      <=  4
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Fourier-Motzkin Elimination: 
an example, call of PORTA

DIM = 3

INEQUALITIES_SECTION

(2,3) 0 <= -4

DIM = 3

INEQUALITIES_SECTION

(1)   (1) - x2      <=  0
(2,4) (2) - x2      <=  -5
(2,5) (3) + x2      <=  1
(3,4) (4) + x2      <=  6
(3,5) (5) + x2      <=  4

ELIMINATION_ORDER

0 1 
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Fourier-Motzkin elimination proves the 
Farkas Lemma
When is a polyhedron nonempty?

The Farkas-Lemma (1908):

A polyhedron defined by an inequality system

is empty, if and only if there is a vector y such that

Ax b

0, 0 , 0T T T Ty y A y b  
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Which LP solvers are 
used in practice?


 

Fourier-Motzkin: hopeless


 

Ellipsoid Method: total failure


 

primal Simplex Method: good


 

dual Simplex Method: better


 

Barrier Method: for LPs frequently even better


 

For LP relaxations of IPs: dual Simplex Method
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Fourier-Motzkin works reasonably well 
for polyhedral transformations:

{ | }dP x Ax b  R

conv(V)+cone(E)P 

Example: Let a polyhedron be given (as usual in 
combinatorial optimization implicitly) via:

Find a non-redundant representation of P in the form:

Solution: Write P as follows 

and eliminate y und z.
1

{ | 0, 1, 0, 0}
d

d
i

i
P x Vy Ez x y y z



       R
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Relations between polyhedra 
representations


 
Given V and E, then one can compute A und b as indicated above.



 
Similarly (polarity): Given A und b, one can compute V und E.



 
The Transformation of a -representation of a polyhedron P into a

 -representation and vice versa requires exponential space, and thus, 
also exponential running time.



 
Examples: Hypercube and cross polytope.



 
That is why it is OK to employ an exponential algorithm such as Fourier-

 Motzkin Elimination (or Double Description) for polyhedral 
transformations.



 
Several codes for such transformations can be found in the Internet, 
e.g.. PORTA

 
at ZIB and in Heidelberg. 
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http://mathworld.wolfram.com/SchlaefliGraph.html

Clique and stability number
Maximal cliques in S have size 6. 
Maximal stable sets in S have size 3. 
S has chromatic number 9 and there 
are two essentially different ways to 
color S with 9 colors. The 
complementary graph has chromatic 
number 6. 
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The Polytope of stable sets of the 
Schläfli Graph

input file Schlaefli.poi 
dimension                    :   27 
number of cone-points  :     0 
number of conv-points  :  208 

sum of inequalities over all iterations  : 527962
maximal number of inequalities          :  14230

transformation to integer values 
sorting system 

number of equations    :    0 
number of inequalities : 4086 

The incidence vectors of the 
stable sets of the Schläfli graph
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The Polytope of stable sets of the 
Schläfli Graph
FOURIER - MOTZKIN - ELIMINATION:
| iter-

 

|      upper |     # ineq  |   max| long|  non-|   mem |      time |
| ation|     bound |                |    bit-|arith| zeros |    used |      used |
|        |     # ineq |                |length|metic| in %|   in

 

kB |    in sec |
|-------|------------|--------------|------|-----|--------|-----------|-------------|
|  180 |            29 |         29 |    1 |   n |   0.04 |     522 |        1.00 |
|  179 |            30 |         29 |    1 |   n |   0.04 |     522 |        1.00 |

|    10 |    8748283 |    13408 |    3 |   n |   0.93 |    6376 |    349.00 |
|     9 |   13879262 |    12662 |    3 |   n |   0.93 |    6376 |    368.00 |
|     8 |   12576986 |    11877 |    3 |   n |   0.93 |    6376 |    385.00 |
|     7 |   11816187 |    11556 |    3 |   n |   0.93 |    6376 |    404.00 |
|     6 |   11337192 |    10431 |    3 |   n |   0.93 |    6376 |    417.00 |
|     5 |    9642291 |      9295 |    3 |   n |   0.93 |    6376

 

|    429.00 |
|     4 |   10238785 |     5848 |    3 |   n |   0.92 |    6376 |    441.00 |
|     3 |    3700762 |      4967 |    3 |   n |   0.92 |    6376

 

|    445.00 |
|     2 |    2924601 |      4087 |    2 |   n |   0.92 |    6376

 

|    448.00 |
|     1 |         8073 |      4086 |    2 |   n |   0.92 |    6376 |    448.00 |
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The Polytope of stable sets of the 
Schläfli Graph
INEQUALITIES_SECTION

(  1)     -

 

x1 <= 0

(4086) +2x1+2x2+2x3+ x4+ x5+ x6  + x10+ x11+ x12+ x13+ x14+ x15 
+x16+ x17+ x18+ x19+2x20 + x22+2x23 + x25+2x26      <= 3

8 different classes of inequalities found in total, among these,
 

5 classes 
have been unknown so far. 
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Data resources at ZIB, open access


 
MIPLIB


 

FAPLIB


 

STEINLIB
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ZIB offerings


 
PORTA - POlyhedron Representation Transformation Algorithm


 

SoPlex - The Sequential object-oriented simplex class library


 

Zimpl   - A mathematical modelling language


 

SCIP - Solving constraint integer programs (IP & MIP)
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Semi-algebraic Geometry 
Real-algebraic Geometry

1

1

1

: { : ( ) 0,..., ( ) 0}

: { : ( ) 0,..., ( ) 0}

: { : ( ) 0,..., ( ) 0}

d

d

d

S x x x

S x g x g x

S x h x h x







   

   

   

d

d

d

R

R

R

l

m

n

f f basic closed

basic open

:S S S S     is a
 

semi-algebraic set

( ), ( ), ( )i j kx g x h xf are polynomials in d real variables
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Every basic closed semi-algebraic set  of the form

where                                           are polynomials,

can be represented by at most                      

polynomials, i.e., there exist polynomials 
such that

1{ : ( ) 0,..., ( ) 0},dS x x x   
dR lf f

1[ ,..., ],1 ,dx x i l  Rif
( 1) / 2d d 

( 1) / 2 1,..., [ ,..., ]d d dx x R1p p

1 ( 1) / 2{ : ( ) 0,..., ( ) 0}.d
d dS x x x   R p p

Theorem of Bröcker(1991) & Scheiderer(1989) 
basic closed case
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Every basic open semi-algebraic set  of the form

where                                            are polynomials,

can be represented by at most                      

polynomials, i.e., there exist polynomials 
such that

1{ : ( ) 0,..., ( ) 0},dS x x x   
dR lf f

1[ ,..., ],1 ,dx x i l  Rif
d

1,..., [ ,..., ]d dx xR1p p

1{ : ( ) 0,..., ( ) 0}.d
dS x x x   R p p

Theorem of Bröcker(1991) & Scheiderer(1989) 
basic open case
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A first constructive result
Bernig [1998] proved that, for d=2, every convex 
polygon can be represented by two

 
polynomial 

inequalities. 

p(1)= product of all
linear inequalities

p(2)= ellipse
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A first Constructive Result
Bernig [1998] proved that, for d=2, every convex 
polygon can be represented by two

 
polynomial 

inequalities. 

p(1)= product of all
linear inequalities

p(2)= ellipse
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Theorem Let              be a n-dimensional 

polytope given by an inequality representation. Then            

k≤nn

 
polynomials                          

can be constructed
 

such that

Martin Grötschel, Martin Henk:
 The Representation of Polyhedra by Polynomial

 Inequalities

Discrete & Computational Geometry, 29:4 (2003) 485-504

nP  R

1[ ,..., ]i nx xRp

( ,..., ).kP  P 1p p

Our first theorem
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Theorem Let              be a n-dimensional 

polytope given by an inequality representation. Then            

2n
 

polynomials                          

can be constructed
 

such that

Hartwig Bosse, Martin Grötschel, Martin Henk:
 Polynomial inequalities representing polyhedra

 Mathematical Programming 103 (2005)35-44
http://www.springerlink.com/index/10.1007/s10107-004-0563-2

nP  R

1[ ,..., ]i nx xRp

2( ,..., ).nP  1p pP

Our main theorem

http://www.springerlink.com/index/10.1007/s10107-004-0563-2
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The construction in the 
2-dimensional case
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The construction in the 
2-dimensional case
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http://fma2.math.unimagdeburg.de/~henk/preprints/henk&polynomdarstellungen%20von%20polyedern.pdf

Bröcker

http://fma2.math.uni-magdeburg.de/~henk/preprints/henk&polynomdarstellungen von polyedern.pdf


CO@W

Martin
Grötschel

65

Contents
1.

 
Linear programs

2.
 

Polyhedra
3.

 
Algorithms for polyhedra
-

 
Fourier-Motzkin elimination

-
 

some Web resources

4.
 

Semi-algebraic geometry
5.

 
Faces of polyhedra

6.
 

Flows, networks, min-max results



CO@W

Martin
Grötschel

66

Faces etc.


 
Important concept: dimension


 

face


 

vertex


 

edge


 

(neighbourly polytopes)


 

ridge = subfacet


 

facet
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Linear Programming: 
The DualityTheorem
The most important and influential theorem in optimization.

A good research idea is to try to mimic this result:

   min | max | 0,wx Ax b yb y yA w   

   min max ssomet omething hing

A relation of this type is called min-max result.



CO@W

Max-flow min-cut theorem 
(Ford & Fulkerson, 1956)

Let be a directed graph, let                and let   
be a capacity function. Then the maximum value

 
of an r-s -flow

subject to the capacity c is equal to the minimum capacity
 

of an
r-s -cut. 
If all capacities are integer, there exists an integer optimum flow.

Here an r-s-flow
 

is a vector      such that
(1)

 
(i)
(ii) 

The value
 

of the flow is the net amount of flow leaving r, i.e., is
(2)   

(which is equal to the net amount of flow entering s). The flow x 
is subject to c if

 
for all a in A.

  0x a 

 ,D V A ,r s V

     x x    

:x A  ¡

     x r x r   

   x a c a

:c A  ¡

 a A
,   v V r v s
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Ford-Fulkerson animation


 
http://www.cse.yorku.ca/~aaw/Wang/MaxFlowStart.htm
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http://www.cse.yorku.ca/~aaw/Wang/MaxFlowStart.htm
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Flow Algorithms


 
The Ford-Fulkerson Algorithm

 The grandfather of augmenting paths algorithms


 

The Dinic-Malhorta-Kumar-Maheshwari Algorithm


 

Preflow (Push-Relabel) Algorithms

Martin
Grötschel
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Complexity survey 
from Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, 2003 Springer
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Complexity survey 
from Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, 2003 Springer

Martin
Grötschel

73



CO@W

Complexity survey 
from Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, 2003 Springer
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Min-cost flow
Let be a directed graph, let              , let   
be a capacity function,               a cost function, and f a flow value.
Find a flow x of value f subject to c with minimum value wTx.

There is a similarly large number of algorithms with varying 
complexity, see Schrijver

 
(2003). 

    
     

m in ( ) ( )

0 ( ) ( )

( ) 0





 

 

   

     

  


a A

w a x a

x a c a a A

x v x v r v s

x r x r f

 ,D V A ,r s V :c A  ¡
: w A ¡
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Min-Max Results
König´s

 
Matching Theorem

 
(1931) (Frobenius, 1912)

The maximum size of a matching in a bipartite 
graph is equal to the minimum number of 
vertices covering

 
all edges, i. e., 

for bipartite graphs G.
 Tutte-Berge

 
Formula

 
(Tutte(1947), Berge(1958))

where
 

G=(V,E) is
 

an arbitrary
 

graph.

   G G 

  1max | |: min (| | | | ( ))
2    W VM M E matching V W O G W
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Total unimodularity
A matrix A is called totally unimodular

 
if each square submatrix

 
of 

A has determinant 0, +1 or –1. In particular, each entry of A is
0, +1 or –1.
The interest of totally unimodular

 
matrices for optimization was 

discovered by the following theorem of Hoffman and Kruskal
 

(1956):

If A is totally unimodular
 

and b and w are
integer

 
vectors, then

 
both sides of the LP-duality

equation

have integer optimum solutions.

   max | min | 0,   wx Ax b yb y yA w
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Total unimodularity
There have been many characterizations of totally
unimodular

 
matrices:

Ghouila-Houri
 

(1962)
Camion (1965)
Padberg

 
(1976)

Truemper(1977)
....

Full understanding was achieved by establishing a link to
regular matroids, Seymour (1980). This connection also
yields a polynomial time algorithm to recognize totally 
unimodular

 
matrices.
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Min-Max Results
Dilworth‘s theorem

 
(1950)

 The maximum size of an antichain
 

in a partially ordered 
set (P, <) is equal to the minimum number of chains

 needed to cover P.

Fulkerson‘s optimum branching theorem
 

(1974)
 Let              be a directed graph, let            and let 

be a length function. Then the minimum 
length of an r-arborescence

 
is equal to the maximum number t of 

r-cuts
 

C1 ,..., Ct (repetition allowed)  such that no arc a is in more 
than  l(a) of  the Ci .

Edmonds‘
 

disjoint branching theorem
 

(1973)
 Let              be a directed graph, and let        .  Then the

 maximum number of pairwise
 

disjoint  r-arborescences
 

is equal 
to the minimum size of an r-cut.

 ,D V A r V
:l A R

 ,D V A r V



CO@W

Min-Max Results
Edmonds’

 
matroid

 
intersection theorem (1970)

 Let                     and                        be matroids,

with rank functions r1

 

and r2

 

, respectively. Then the 
maximum size of a set

 
in               is equal to 

 1 1,M S J  2 2,M S J

1 2J J

    1 2
'

' \ ' .min
S S

r S r S S
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Min-Max Results and Polyhedra


 
Min-max results almost always provide polyhedral insight 
and can be employed to prove integrality of polyhedra.


 

For instance, the matroid
 

intersection theorem can be 
used to prove a theorem on the integrality of the 
intersection of two matroid

 
polytopes.

Martin
Grötschel
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Min-Max Results and Polyhedra
Let  M=(E, I) be a matroid

 
with rank function r. 

Define IND(I):=conv{xI

 
| I is an Element of I}. 

IND(I) is called matroid
 

polytope. Let

Theorem: P(I) = IND(I).

Theorem: Let  M1

 

=(E, I1

 

) and M2

 

=(E, I2

 

) be two matroids

with rank functions r1

 

and r2

 

, respectively. Then

IND(I1

 

I2

 

) = P(I1

 

)P(I2

 

) 

Martin
Grötschel
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       R( ) : : ( )  ,  0  E
e e

e F
P I x x r F F E x e E
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Min-Max Results and Polyhedra
In other words, if M1

 

=(E, I1

 

) and M2

 

=(E, I2

 

) are two matroids
 

on the 
same ground set E with rank functions r1

 

and r2

 

, respectively, and if ce

 

is 
a weight for all elements e of E, then a set that is independent

 
in M1

 

and 
M2

 

and has the largest possible weight can be found via the following 
linear program

Martin
Grötschel
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1

2

max

( )   

( )  

0  

e e
e E

e
e F

e
e F

e

c x

x r F F E

x r F F E

x e E



CO@W

An Excursion into Matroid Theory


 
If time permits

Martin
Grötschel
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Matroids and 
Independence Systems
Let E be a finite set, I a subset of the power set of E.
The pair (E,I )

 
is called independence system

 
on E if the   

following axioms are satisfied:
(I.1)

 
The empty set is in I.

(I.2)
 

If J is in I
 

and I is a subset of J then 
I belongs to I.

Let (E,I ) satisfy in addition:
(I.3)

 
If I and J are in I and if J is larger than I then 
there is an element j in J, j not in I, such that    
the union of I and j is in I.

Then M=(E,I )
 

is called a matroid.
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Notation
Let (E,I ) be an independence system.

 Every set in I  is called independent.

 Every subset of E not in I is called dependent.

 For every subset F of E, a basis
 

of F is a subset of F that is 

independent and maximal with respect to this property.

The rank r(F)
 

of a subset F of E is the cardinality of a largest

basis of F. The lower rank
 

ru

 

(F) of F is the cardinality of a 

smallest basis of F.
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The Largest Independent Set 
Problem

Problem:

Let (E,I ) be an independence system with weights on the

elements of E. Find an independent set of largest weight.

We may assume w.l.o.g. that all weights are nonnegative

(or even positive), since deleting an element with

nonpositive
 

weight from an optimum solution, will

not decrease the value of the solution.



CO@W

The Greedy Algorithm
Let (E,I ) be an independence system with weights c(e) on the

elements of E. Find an independent set of largest weight.

The Greedy Algorithm:

1. Sort the elements of E such that

2. Let 

3. FOR  i=1  TO  n  DO:

4. OUTPUT 

   1 2 ... 0.nc c c

 greedyI : .

   greedy greedy greedyIF  I i   THEN  I := I i .I

greedyI .

A key idea is to interprete
 

the greedy solution 

as the solution of a linear program.
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Polytopes and LPs
Let M=(E,I ) be an independence system 

with weights c(e) on the elements of E.
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min             s.t.    

 

IND(M)

The LP relaxation
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min ( )   s.t. y      ,
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The Dual Greedy Algorithm
Let (E,I ) be an independence system with weights c(e) for all e.

After sorting the elements of E so that

set 

 
  1

i:= 1, 2, ..., i , i=1, 2, ..., n and

: ,     i=1, 2

  

, ..., ny  .

E

i iE ic c

    1 2 1... 0, : 0n nc c c c





  

  




F E

F
F e

m in  ( ),

s .t. y   ,

         0   

F u

e

F

y r F

c e E

y F E

Then                      

is a feasible solution of the dual LP
  1y , i=1, 2, ..., n

iE i ic c (integral if the weights are integral)
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Observationn
Let (E,I ) be an independence system with weights c(e) for all e.

After sorting the elements of E so that

we can express every greedy and optimum solution as follows
    1 2 1... 0, : 0n nc c c c

(integral if the weights are integral)





  

  





greedy 1 greedy
1

opt 1 opt
1

c(I ) ( ) I

   c(I ) ( ) I

n

i i i
i

n

i i i
i

c c E

c c E
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Rank Quotient
Let (E,I ) be an independence system with weights c(e) for all e.





( ) 0

( )
:  min

)
 

(
  u

F E
r F

q r F
r F

The number q is between 0 and 1 and 

is called rank quotient
 

of  (E,I ).

Observation:
 

q = 1 iff
 

(E,I ) is a matroid. 
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Consequences
Let M=(E,I ) be an independence system with weights c(e) on the

elements of E.

 



 

 
        
 

R

IIND(M)  I

  P(M) ( )  ,  0  

(a) P(M) = IND(M) if and only if M is a matroid
(b) If M is a matroid then all optimum vertex solutions of the primal LP 

    

Theorem:

max

 

E
e e

e F

conv x I

x x r F F E x e E



 

     

     



  F
F E F e

            s.t. ( )  ,  0      

are integral. If the weights are integral then the dual LP

    min ( )    s.t. y      ,  0      

also has integral optimum so

T
e e

e F

F e F

c x x r F F E x e E

y r F c e E y F E

lutions, 
i.e., the system totally dual integ is ral.
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Min-Max Results: Challenges

Despite
 

all the
 

beautiful
 

min-max
 

results
 

mentioned
 

before
 (and the

 
not

 
mentioned

 
far reaching

 
generalizations

 
such 

as submodular flows
 

or
 

matroid
 

matching), there
 

is
 

still a 
great

 
challenge: 

understand
 

integral duality.

Where
 

and when
 

does
 

it
 

occur? 

Why?....
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