- N
S,
CIE L
dggu®

Basics of polyhedral theory,
flows and networks
CO@W Berlin

Martin Grotschel

21.09.2009
14:00 — 15:30

= Institut flir Mathematik, Technische Universitat Berlin (TUB)

Martin Grotschel
L) » DFG-Forschungszentrum “Mathematik fr Schllisseltechnologien” (MATHEON)
= Konrad-Zuse-Zentrum fur Informationstechnik Berlin (ZIB)
http://www.zib.de/groetschel

groetschel@zib.de



Contents

1. Linear programs
2. Polyhedra
3. Algorithms for polyhedra

- Fourier-Motzkin elimination
- some Web resources

= 4, Semi-algebraic geometry
~
il 5. Faces of polyhedra
B¢ 6. Flows, networks, min-max results

coa@w

ZDI

Martin
Grotschel



Contents

1. Linear programs
2. Polyhedra
3. Algorithms for polyhedra

- Fourier-Motzkin elimination
- some Web resources

= 4, Semi-algebraic geometry
~
il 5. Faces of polyhedra
B¢ 6. Flows, networks, min-max results

coa@w

ZDI

Martin
Grotschel



Linear Programming
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max ¢, X, +C,X, +...+C. X
subject to

A X F AL X, +. A, X, :bl
&, % +a,X, +...+a, X =h,

2n“™n

X[y Xoyeey X, 20

a_ X +a. X +.+a X =b

max ¢' X
Ax =D
x>0

linear program
in standard form



Linear Programming
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max c' x linear max ¢' x
program Ax <b
AXx=Db in 3
standard —Ax<-b
X220  form —x<0
linear

max c' X program j> max c'x" —c' x~

Ax<p N AX"+AX +1s=b
“polyhedral
fOI‘m" X+, X_, S 2 O
(X=Xx"—X")
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A Polytope Iin the Plane
—




A Polytope In 3-dimensional space
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Polytopes In nature

= see examples
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= diamond




Polyhedra-Poster

http://www.peda.com/posters/Welcome.html

fo secure onine purcrasins- o 918 FOR 1 POSTER

. " lyhed , which
ol § diplays allcomvexpohedra 928 FOR 4 POSTERS
Aimidben-oote WL : with regular polygonal faces (a

—9— o e  moiesampingoiprismsand  FREE SHIPPING

‘s ‘y Y & anti-prisms are included).
It measures 22" x 37" and is
printed on glosssy paper. A
protective coating was applied
during printing.
The poster is shown on the left;
to see a close-up of a portion of

the poster, move your mouse
over the image.

This is the fourth edition of the
poster. Other versions of the
poster are shown in our Posters
Archive.

Poster which displays
all convex polyhedra
- J R with regular polygonal
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http://www.eg-models.de/

ﬁ EG-Models - a new archive of electronic geometry models
s Internal Links:
N BEG-Models

Home Models MNo Applet Search Submit Instructions Links Help/Copyright

Managing Editors:

Michael Joswig. Konrad Paolthier
Editorial Board:

Thomas Banchoff, Claude Paul Bruter, Electronic Geometry Models
Antonio F. Costa, Ivan Dynnikov,
John M. Sullivan, Stefan Turek

Anschauliche Geometrie - A tribute to Hilbert, Cohn-Vossen, Klein and all other geometers.

This archive is open for any geometer to publish new geometric models, or to browse this site for material o be
used in education and research. These geometry models cover a broad range of mathematical topics from geometry,
topology, and to some extent from numerics.

Click "Models" to see the full list of published models. See here for details on the submission and review process.

Selection of recently published models

Model 2008.11.001 by Frank H. Lutz and Ganter M. Ziegler A Small Polyhedral Z-Acyclic 2-
Complex in R4.
Section: Polytopal Complexes

el

H.A. Schwarz Ges Math.Abh
Springer Berlin 1850

We present a 4-dimensional polyhedral realization of a 2-dimensional Z-acyclic but non-contractible
simplicial complex with 23 vertices.

Mote: Some browser versions do not
display Java applets. Please, press
the ™Mo Applet button in the
navigation bar to avoid using Java.

Our example answers a query by Lutz Hille (Hamburg), who in November 2006 had asked us for
examples of Z-acyclic but non-contractible complexes realized in low dimensions. His question was
motivated by toric geometry.

Maodel 2008 10.002 by Thilo Rérig, Nikolaus Witte, and Ginter M. Ziegler Zonotopes With Large
% 2D-Cuts.
Section: Polytopes

For fixed d=2 there are d-dimensional zonotopes with n zones for which a 2-dimensional central
section has ﬂ{nd'1) vertices. The result is asymptotically optimal for all fixed d=2.
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http://www.ac-noumea.nc/maths/amc/polyhedr/index_.htm

the convex polyhedra

the non convex polyhedra

@
&
‘ interesting polyhedra y
L
X

version FRANCATSE

other related subjects (constructions)
the LiveGraphics3D applet (how to use it)

with links to other sites

Mew-Caledonia

LiveGraphics3D needs a Java plug-in for your browser. You must see a small grey dodecahedron on the left (use your
mouse and the key "f" to handle it). If your connection is slow be patient while some applets load.

A few pages have links to pop-up windows, thus JavaScript must be enabled.

thanks for reporting possible errors Firefox, ADSL and 1024768 screen (or better) desirable
or incerrect tranclations HTML validated and links verified with Total Validator Tool

Maurice Starck ﬁ mstarck@canl.nc
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Plato’s five regular polyhedra
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http://www.ac-noumea.nc/maths/amc/polyhedr/convex1l .htm

B
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http://www.ac-noumea.nc/maths/amc/polyhedr/convex1_.htm

’9 convex polyhedra 1 - Microsoft Internet F_xplurer

Datei  Bearbeiten

rick =

g Plato’'s five regular polyhedra

The regular polyhedra are, in the space, the analogues of the r¢ olvaons inthe plane thewfaces are regular and identical polygons, and their vertices, regular and identical,
are regularly distributed on a sphere. Their analogues in dlmensmn four are the eqular po

As we do for the polygons, we recognize a convex polyhedron by the very fact that all its dmgonals (segments which join two vertices not joined by an edge} are inside the
polyhedron.

Whereas there exist an infinity of regular convex polygons, the regular convex polyhedra are only five.

The angle of a regular polygon with n sides is 180°%[n-2)/n : 60° (triangle], 30° (square}, 108° [pentagon), 120° (hexagon)...

proof : On a vertex of a regular polyhedron the sum of the face’s angles (there are at least three) must be smaller than 360°.
Since Bx60° = 4x90° = 3x120° = 360" < 4x108%, there are only five possibilities: 3, 4, or 5 triangles, 3 squares or 3 pentagons.

DO BY

name cube octahedron tetrahedron icosahedron dodecahedron
faces 6 squares 8 equiltriangles 4 equiltriangles 20 equiltriangles 12 regul. pentagons
vertices 8 6 i | 12 20
edges 12 12 6 30 30
faces angle a0° 109°28' 70°32' 138711 116°34

30 applet by Martin Kraus (University of Stuttgart) allows you to mowve these polyhedra with your mouse.

The regular octahedron's edges are the sides of three
squares with the same centre and orthogonal by pairs.

The regular icosahedron 5 vertices are the vertices of
three o 5 (sides in golden ratio 1.618..)
with the same centre and orthogonal by pairs.

B

Martin
Grotschel

Four vertices of a cube are the vertices of a regular tetrahedron ; so we can
make a regular tetrahedron by cutting four "corners" of a cube.

4 Internet
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Polyhedra have fascinated people
during all periods of our history
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= book illustrations

= magic objects

= pieces of art

= objects of symmetry

= models of the universe

ceprefom Lire: ) enfemble certaims

% perfornages racomrcic [els ceft e Ar, |
WP defqucls Diew aydan, ejbere axfc- N B8
W cond livre vos es deduie plus am- [ B Rt
: " B

From Livre de Perspective by Jean Cousin, 1568.

Martin
Grotschel
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Definitions

Linear programming lives (for our purposes) in the
n-dimensional real (in practice: rational) vector space.

coa@w

=convex polyhedral cone: conic combination

(i. e., nonnegative linear combination or conical hull)
of finitely many points

K = cone(E), E a finite set in P".

y =polytope: convex hull of finitely many points:
i P = conv(V), V a finite set in P".

=polyhedron: intersection of finitely many halfspaces

P={xeR"| Ax<Db}

2B

Martin
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Important theorems
of polyhedral theory (LP-view)

coa@w

When is a polyhedron nonempty?

1B
Martin
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Important theorems
of polyhedral theory (LP-view)
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When is a polyhedron nonempty?

The Farkas-Lemma (1908):
A polyhedron defined by an inequality system

AX <D

| is empty, if and only if there is a vector y such that

y>0, y'A=0", y'b<0'

Theorem of the alternative

1B
Martin
Grotschel




Important theorems
of polyhedral theory (LP-view)

Which forms of representation do polyhedra have?
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Important theorems
of polyhedral theory (LP-view)

Which forms of representation do polyhedra have?
Minkowski (1896), Weyl (1935), Steinitz (1916) Motzkin (1936)

Theorem: For a subset P of R" the following are equivalent:

coa@w

(1) P is a polyhedron.

(2) P is the intersection of finitely many halfspaces, i.e.,
there exist a matrix A und ein vector b with
P={xeR"| Ax<b}. (exterior representation)

s (3) P is the sum of a convex polytope and a finitely
generated (polyhedral) cone, i.e., there exist
finite sets V and E with

P = conv(V)+cone(E). (interior representation)

yZ

Martin
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Representations of polyhedra

Carathéodory‘s Theorem (1911), 1873 Berlin — 1950 Miinchen

Let X € P =conv(V)+cone(E) , there exist

coa@w

Vo,..iVs €V, Ay A€ R, A =1

=0

.e €k, u,,,....ut, € R_with t <nsuch that

X= iﬂivi + Zt: Hi€,
i=1

I=s+1

and e

s+11*"
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Representations of polyhedra

D
(2)
3)
4)
)

+ + 1 1

- X2
x1l - X2
X1 + X2
x1
X1 + 2x2

<=0
<=-1
<= 3
<= 3
<=9

The

H-representation

(exterior representation)

AX <D

S




Representations of polyhedra

The c-representation (interior representation)

P = conv(V)+cone(E).

S




- the Tetrahedron

yeconvs | 0],




Example: the cross polytope

2n points

P=conv{e,—¢ |i=1..nlcR"




Example: the cross polytope

2n points

P=conv{e,—¢ |i=1..nlcR"
xeR"[a'x<1V ae{-11}"|

r 2" inequalities
p=|




Example: the cross polytope

2n points

P=conv{e,—¢ |i=1..nlcR"
The “power” of [.].

P=:xeR"[ > |x|<1}

C I= y

xeR"[a'x<1V ae{-11}"|

2" inequalities
p=|




All 3-dimensional
0/1-polytopes 0/1-polytopes
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XcC{0.1}¢, P = conv X

I> combinatorial optimization
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Polyedra in linear programming

= The solution sets of linear programs are polyhedra.

coa@w

= If a polyhedron P =conv(V)+cone(E) is given explicitly
via finite sets V und E, linear programming is trivial.

| = In linear programming, polyhedra are always given in
| H-representation. Each solution method has its
,Sstandard form®.

yZ
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Fourier-Motzkin Elimination

= Fourier, 1847
= Motzkin, 1938

= Method: successive projection of a polyhedron in n-
dimensional space into a vector space of dimension n-1 by
elimination of one variable.

Projection on x: (x,0)
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A Fourier-Motzkin step

T’
al +

al +
am

bl

|__copy
bk

0 al
0 an
0 bl
0 bk




Fourier-Motzkin elimination proves the
Farkas Lemma
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When is a polyhedron nonempty?

The Farkas-Lemma (1908):
A polyhedron defined by an inequality system

AX <D

| is empty, if and only if there is a vector y such that

y>0, y'A=0", y'b<0'

1B
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Fourier-Motzkin Elimination:
an example
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min/max + x1 + 3x2 ~

(D - X2 <=0

(2) X1l - X2 <=-1
X1 + x2 <= 3 ~
x1 <=3 \f? @D "\\\\\\\\\\

4)
. (5)

+ + 1 1

)
X1l + 2x2 <= 9

/
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Fourier-Motzkin Elimination:
an example
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N
(D - X2 <=0
(2) X1l - X2 <=-8 /?;
/)
3) X1l + X2 <=3

4)

~
x1 <= 3 \f? (5
1 (5) /

X1 + 2x2 <= 9

+ + 1 1

Martin
Grotschel



Fourier-Motzkin Elimination:
an example, call of PORTA
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DIM = 3

INEQUALITIES_SECTION

D - X2 <=0 (D - X2
(2) - x1 - x2 <=-8 (2) - x1 - x2
B - x1 + x2 <=3 (3 - x1 + x2
(4 + x1 <= 3 (4 + x1

(5) + x1 + 2x2 <=9 (5) + x1 + 2x2

ELIMINATION_ORDER
10

B

Martin
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Fourier-Motzkin Elimination:
an example, call of PORTA

DIM = 3 DIM = 3
INEQUALITIES_SECTION INEQUALITIES SECTION
1 @) - x2 <= 0 (1) - X2
2,4 (2) - x2 <= -5 (2) - x1 - x2
(2,5 (3) + x2 <=1 (3 -x1 + x2
G.,4) (4) + x2 <= 6 (4) + x1

| (3,5 (B) + X2 <= 4 (5) + x1 + 2x2

oo

ELIMINATION_ORDER
10



Fourier-Motzkin Elimination:
an example, call of PORTA

coa@w

DIM = 3 DIM = 3
INEQUALITIES SECTION INEQUALITIES_SECTION
1 @) - x2 <= 0 (2,3) 0 <= -4
(2,4) (2) - x2 <= -5
(2,5) (3) + x2 <= 1
(3,4) (4) + x2 <= 6
y (3,5) (B5) + x2 <= 4
(| ELIMINATION_ORDER ‘
01

B

Martin
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' Fourier-Motzkin elimination proves the
Farkas Lemma
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When is a polyhedron nonempty?

The Farkas-Lemma (1908):
A polyhedron defined by an inequality system

AX <D

| is empty, if and only if there is a vector y such that

y>0, y'A=0", y'b<0'

1B
Martin
Grotschel




Which LP solvers are
used In practice?

coa@w

= Fourier-Motzkin: hopeless

= Ellipsoid Method: total failure

= primal Simplex Method: good

= dual Simplex Method: better
| = Barrier Method: for LPs frequently even better
= For LP relaxations of IPs: dual Simplex Method

1B
Martin
Grotschel
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Fourier-Motzkin works reasonably well
for polyhedral transformations:

coa@w

Example: Let a polyhedron be given (as usual in
combinatorial optimization implicitly) via:

P = conv(V)+cone(E)
Find a non-redundant representation of P in the form:
P={xeR’|Ax<b}
Solution: Write P as follows d
P={xeR’|Vy+Ez-x=0,>y,=1y>0,2>0}
=1

and eliminate y und z.

1B
Martin
Grotschel
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Relations between polyhedra
representations

Given V and E, then one can compute A und b as indicated above.
Similarly (polarity): Given A und b, one can compute V und E.

The Transformation of a ¢c-representation of a polyhedron P into a
H-representation and vice versa requires exponential space, and thus,
also exponential running time.

Examples: Hypercube and cross polytope.

That is why it is OK to employ an exponential algorithm such as Fourier-
Motzkin Elimination (or Double Description) for polyhedral
transformations.

Several codes for such transformations can be found in the Internet,
e.g.. PORTA at ZIB and in Heidelberg.
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The Schlafli Graph S
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Claw-free Graphs VI. Colouring Claw-free Graphs

Maria Chudnovsky
Columbia University, New York NY 10027 !
and
Paul Seymour
Princeton University, Princeton N.J 08544 2

May 27, 2009

Abstract

In this paper we prove that if G is a connected claw-free graph with three pairwise non-adjacent ver-
tices, with chromatic number y and clique number w, then y < 2w and the same for the complement
of G. We also prove that the choice number of G is at most 2w, except possibly in the case when G
can be obtained from a subgraph of the Schlifli graph by replicating vertices. Finally, we show that
the constant 2 is best possible in all cases.

Martin
Grotschel
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The Schlafli Graph S
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Clique and stability number

Maximal cliques in S have size 6.
o Maximal stable sets in S have size 3.
-f‘#:"ﬁ"‘" N S has chromatic number 9 and there
WAPRISS are two essentially different ways to
color S with 9 colors. The
complementary graph has chromatic
number 6.

The 3chlafli graphis a strongly regular graph on 27 nodes which is the
graph complement of the generalized quadrangle G @ (2, 4). ltis the
unique strongly regular graph with parameters (27, 16, 10, 8) (Godsil
and Royle 2001, p. 259).

4B
Martin http://mathworld.wolfram.com/SchlaefliGraph.html

Grotschel




The Polytope of stable sets of the
Schlafli Graph
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input file Schlaefli.poi

dimension . 27

number of cone-points : 0 The incidence vectors of the
number of conv-points : 208 stable sets of the Schlifli graph

| sum of inequalities over all iterations : 527962
B\l maximal number of inequalities : 14230

W% transformation to integer values
sorting system

- & number of equations : 0

AT

number of inequalities : 4086

Martin

Grotschel



The Polytope of stable sets of the
Schlafli Graph

FOURIER - MOTZKIN - ELIMINATION:

coa@w

| iter- | upper | #ineq | max| long| non-| mem | time |
| ation| bound | | bit-|arith| zeros | used | used |
| |  #ineq | |length|metic| in %| inkB| insec|
R R R e B B R |
| 180 | 29 | 29| 1] n| 0.04] 522 | 1.00 |
| 179 | 30 | 29| 1] n| 0.04] 522 | 1.00 |

| 10| 8748283 | 13408| 3| n| 0.93| 6376| 349.00 |
| 9| 13879262 | 12662| 3| n| 0.93| 6376| 368.00 |
| 8| 12576986 | 11877| 3| n| 0.93| 6376| 385.00 |
| 7| 11816187 | 11556| 3| n| 0.93| 6376| 404.00 |
| 6| 11337192| 10431| 3| n| 0.93| 6376| 417.00 |
| 5| 9642291 | 9295| 3| n| 0.93| 6376 429.00 |
| 4| 10238785| 5848| 3| n| 0.92| 6376| 441.00 |
| 3| 3700762| 4967| 3| n| 0.92| 6376| 445.00 |
| 2| 2924601 | 4087| 2| n| 0.92| 6376| 448.00 |
| 1] 8073| 4086| 2| n| 0.92| 6376| 448.00 |

2B
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The Polytope of stable sets of the
Schlafli Graph

INEQUALITIES_SECTION
(1) -xl<=0

coa@w

(4086) +2x1+2x2+2x3+ x4+ x5+ x6 + x10+ x11+ x12+ x13+ x14+ x15
+x16+ X17+ x18+ x19+2x20 + x22+2x23 + x25+2x26 <=3

-
‘ﬂ 8 different classes of inequalities found in total, among these, 5 classes
e have been unknown so far.

B
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Data resources at ZIB, open access

= MIPLIB
= FAPLIB
= STEINLIB




Z1B offerings

= PORTA - POlyhedron Representation Transformation Algorithm

coa@w

SoPleX - The Sequential object-oriented simplex class library

Zimpl - A mathematical modelling language

SCIP - Solving constraint integer programs (IP & MIP)

2B
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Semi-algebraic Geometry
Real-algebraic Geometry

f;(x),9;(x),h (x) are polynomials in d real variables
S, ={xeRf(x)>0,...f (X) >0} basic closed

o S ={xeR" g,(x)>0,...,g,,(x) > O} basic open




Theorem of Brocker(1991) & Scheiderer(1989)
basic closed case

coa@w

Every basic closed semi-algebraic set of the form

S ={xeR""f (x)>0,...f (x)> O},
where f e R[x,...,X;],1<i <1, are polynomials,

can be represented by at most d(d +1)/2

pe— polynomials, i.e., there exist polynomials
"N such that

V.
j? p 1pd(d+1)/2€R[X1 ]

4

@ S={xe R : P (X) > O pd(d+1)/2(X) > 0}.

Z[Il

Martin
Grotschel




Theorem of Brocker(1991) & Scheiderer(1989)
basic open case
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Every basic open semi-algebraic set of the form

S ={xeR""f,(x)>0,...f (x) > 0},

where f € R[x,...,X;],1<1 <1, are polynomials,
can be represented by at most d

“11 polynomials, i.e., there exist polynomials
such that

p pdER[Xli ]
@ S —{x<cR:p,(x)>0,...p, (X) > O}.

Z[Il

Martin
Grotschel



A first constructive result
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Bernig [1998] proved that, for d=2, every convex
polygon can be represented by two polynomial
inequalities.

p(1)= product of all
linear inequalities

p(2)= ellipse
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A first Constructive Result

Bernig [1998] proved that, for d=2, every convex
polygon can be represented by two polynomial
inequalities.

p(1)= product of all
linear inequalities

p(2)= ellipse




Our first theorem

Theorem Let P — R" be a n-dimensional

coa@w

polytope given by an inequality representation. Then
k<n" polynomials P € RIX,..., X, ]

can be constructed such that

P=P (pl""’ pk)

I Martin Grotschel, Martin Henk:
The Representation of Polyhedra by Polynomial

Inequalities
i Discrete & Computational Geometry, 29:4 (2003) 485-504




Our main theorem

Theorem Let P — R" be a n-dimensional

coa@w

polytope given by an inequality representation. Then
2n polynomials B € R[X,...,X,]

can be constructed such that

P=P(p,,- P, )-

s Hartwig Bosse, Martin Grotschel, Martin Henk:
Polynomial inequalities representing polyhedra
Mathematical Programming 103 (2005)35-44

. http://www.springerlink.com/index/10.1007/510107-004-0563-2
ZIB

Martin
Grotschel
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the

IoN 1IN

The constructi

62

| case

Imensiona

2-d

po(x) = 0}

{z e R?

o

i
A
A

pi(x) = 0}

{2 e R?

©
=
(8]
0
=
‘0
=
©)
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" The construction in the

Z2-dimensional case




Recent “Semi-algebraic Progress”

coa@w

three-dimensional polyhedra can be described by three
polynomial inequalities

jointly with Gennadiy Averkov
Discrete Comput. Geom_ 42(2), 2009, 166-186;

representing simple d-dimensional polytopes by d
polynomials

jointly with Gennadiy Averkov

to appear in Math. Prog. (A);

http://fma2.math.unimagdeburg.de/~henk/preprints/henk&polynomdarstellungen%20von%?20polyedern.pdf

Brocker

Martin
Grotschel
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Faces etc.

= Important concept: dimension

coa@w

= face
= vertex
.= edge
| = (neighbourly polytopes)
- ridge = subfacet
= facet

1B
Martin
Grotschel
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Linear Programming:
The DualityTheorem

The most important and influential theorem in optimization.

min{wx| Ax>b}=max{yb|y >0, yA=w}

y A good research idea is to try to mimic this result:

min {something } = max {something }

25 A relation of this type is called min-max result.
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Max-flow min-cut theorem
(Ford & Fulkerson, 1956)

Let D =(V,A)be adirected graph, let r,seV andlet c:A—j ,
be a capacity function. Then the maximum value of an r-s -flow
subject to the capacity c is equal to the minimum capacity of an
r-s -cut.
If all capacities are integer, there exists an integer optimum flow.

Here an r-s-flow is a vector X: A — i such that

(1) @  x(a)z0 vae A

(ii) x(5‘(v)3= X(67(v)) YveV,r=v=s

The value of the flow is the net amount of flow leaving r, i.e., is

(2) x(s7(r))-x(2 (r))

(which is equal to the net amount of flow entering s). The flow x
is subject toc if x(a)<c(a)forallainA.




Ford-Fulkerson animation

= http://www.cse.yorku.ca/~aaw/Wang/MaxFlowStart.htm
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http://www.cse.yorku.ca/~aaw/Wang/MaxFlowStart.htm

Flow Algorithms
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ne Ford-Fulkerson Algorithm

-
The grandfather of augmenting paths algorithms

= The Dinic-Malhorta-Kumar-Maheshwari Algorithm
= Preflow (Push-Relabel) Algorithms

1B
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10.8b. Complexity survey for the maximum flow problem

Complexity survey (* indicates an asymptotically best bound in the table):

O(n*mC) Dantzig [1951a] simplex method

Ford and Fulkerson [1955,1957h)]
augmenting path

Dinits [1970], Edmonds and Karp

O(nmC)

2
O(nm") [1972] shortest augmenting path
- . Edmonds and Karp [1972] fattest
O(n*mlognC) augmenting path . |
2 Dinits [1970] shortest augmenting
O(rn"m) path, layered network
O(mg log C) Edmonds and Karp [1970,1972]
e capacity-scaling
O(nm log C) Dinits [1973a], Gabow [1983b,1985b]

capacity-scaling

Karzanov [1974] (preflow push); cf.

O(n?) Malhotra, Kumar, and Maheshwari
[1978], Tarjan [1984]

Cherkasskii [1977a] blocking preflow
with long pushes

Shiloach [1978], Galil and Naamad
[1979,1980]

Martin /3 M- _
Grotschel O(n**m?*/?) Galil [1978,1980a]

O(n® i)

O(nmlog® n)
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continued
O(nmlogn) Sleator [1980], Sleator and Tarjan
oRn [1981.1983a] dynamic trees
* O(nmlog(n /m ) Goldberg and Tarjan [1986,1988a]

push-relabel+dynamic trees

Ahuja and Orlin [1989] push-relabel +

excess scaling

Ahuja, Orlin, and Tarjan [1989]
Ahuja-Orlin improved

Ahuja, Orlin, and Tarjan [1989]
Ahuja-Orlin improved + dynamic trees

O(nm 4+ n* log C')

O(-nm-i—-ng og C)

* (nmlog((n/m)ylog C + 2))

Cherivan, Hagerup, and Mehlhorn
[1990,1996]

Alon [1990] (derandomization of
Cheriyan and Hagerup [1989,1995])

* O(n*/logn)

O(n(m +n*?logn))

(for each £ > 0) King, Rao, and Tarjan
[1992]

(for each £ > 0) Phillips and
Westbrook [1993,1998]

O(nm + n**e)

* | O(nmlog,,,, n+ n? log?te n)

* O(nm log _m n) King, Rao, and Tarjan [1994]
e log n
* O(m3f2 log(n* /m) log C') Coldberg and Rao [1997a,1998]
* O(n**mlog(n f’m log ') Goldberg and Rao [1997a,1998|
yZA B | . . | .
Here C' := ||| for integer capacity function c. For a complexity survey for unit

Martin . .
Grétschel capacities, see Section 9.6a.
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Research problem: Is there an O{nm)-time maximum flow algorithm?
For the special case of planar undirected graphs:

O(n*logn) [tal and Shiloach [1979]

Reif [1983] (minimum cut), Hassin and Johnson
[1985] (maximum fAow)

O{nlognlog®™ n) | Frederickson [1983b]
* O(nlogn) Frederickson [1987h]

O(nlog” n)

For directed planar graphs:

D[n‘g’fz log 2) Johnson and Venkatesan [1952]
Klein, Rao, Rauch, and Subramanian [1994],

Henzinger, Klein, Rao, and Subramanian [1997]

O(n*log? nlog C)

* O{nlogn) Weihe [1994b,1997h]
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Min-cost flow

Let D =(V,A)be adirected graph, let r,seV, letc:A—j .,
be a capacity function, w: A—j a cost function, and f a flow value.
Find a flow x of value f subject to ¢ with minimum value w'x.

min > w(a)x(a)

ae A

coa@w

0<x(a)<c(a) Vae A
X(6"(v))-x(07(v))=0 Vr=v=s

x(67(r))-x(e (r))=f

There is a similarly large number of algorithms with varying
complexity, see Schrijver (2003).




Min-Max Results
Konig 's Matching Theorem (1931) (Frobenius, 1912)

The maximum size of a matching in a bipartite
graph is equal to the minimum number of
vertices covering all edges, i. e.,

v(G)=1(G)
for bipartite graphs G.
Tutte-Berge Formula (Tutte(1947), Berge(1958))

max{|M |:M < Ematching}:mian,%(N |+ |W | -O(G -W))

where G=(V,E) is an arbitrary graph.




Total unimodularity

A matrix A is called totally unimodular if each square submatrix of
A has determinant 0, +1 or —1. In particular, each entry of A is

0, +1 or —1.

The interest of totally unimodular matrices for optimization was
discovered by the following theorem of Hoffman and Kruskal (1956):

coa@w

 If A is totally unimodular and b and w are

; integer vectors, then both sides of the LP-duality
equation

max {wx| Ax <b} =min{yb|y >0, yA=w}




Total unimodularity

There have been many characterizations of totally
unimodular matrices:
Ghouila-Houri (1962)
Camion (1965)
Padberg (1976)
| Truemper(1977)

coa@w

Full understanding was achieved by establishing a link to
regular matroids, Seymour (1980). This connection also
A vyields a polynomial time algorithm to recognize totally

L

unimodular matrices.




Min-Max Results

Dilworth's theorem (1950)
The maximum size of an antichain in a partially ordered
set (P, <) is equal to the minimum number of chains
needed to cover P.

coa@w

Fulkerson's optimum branching theorem (1974)
Let D=(V,A) be a directed graph, let T €V and let
I:A— R, be a length function. Then the minimum
length of an r-arborescence is equal to the maximum number t of
r-cuts C,,..., C, (repetition allowed) such that no arc a is in more
than I(a) of the C..

Edmonds' disjoint branching theorem (1973)
Let D=(V,A)be a directed graph, and let T €V . Then the
maximum number of pairwise disjoint r-arborescences is equal
to the minimum size of an r-cut.
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Min-Max Results

Edmonds’ matroid intersection theorem (1970)
let M;=(S,J,) and M,=(S.J,) be matroids,

with rank functions r; and r,, respectively. Then the
maximum size of a setin J1"J, is equal to

min (r,(S")+r,(S\S").

S'cS




Min-Max Results and Polyhedra

= Min-max results almost always provide polyhedral insight
and can be employed to prove integrality of polyhedra.

coa@w

= For instance, the matroid intersection theorem can be
used to prove a theorem on the integrality of the
intersection of two matroid polytopes.
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Min-Max Results and Polyhedra

Let M=(E, /) be a matroid with rank function r.
Define IND(/):=conv{x! | I is an Element of 7}.
IND(J) is called matroid polytope. Let

coa@w

P([)::{XERE:ZXeSr(F)VF;E, x,20v eckF |

ecF

'aaf Theorem: P(Z) = IND(J).
5l Theorem: Let M,=(E, 7/,) and M,=(E, 7,) be two matroids

i e

with rank functions r; and r, respectively. Then
IND(/15) = P(1)IP(5)

.........



Min-Max Results and Polyhedra

In other words, if M,;=(E, 7;) and M,=(E, I,) are two matroids on the
same ground set E with rank functions r; and r,, respectively, and if c, is
a weight for all elements e of E, then a set that is independent in M, and
M, and has the largest possible weight can be found via the following
linear program

coa@w

max ) C.x,

eck

Yx,<r(F)VY FcE

ecF

Y x,<n(FYV FcE

ecF

xX,20V eckE
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An Excursion into Matroid Theory

= [If time permits




Matroids and
Independence Systems

Let E be a finite set, / a subset of the power set of E.
The pair (E,7) is called independence system on E if the
following axioms are satisfied:

(I.1) The empty set is in 1.

(I.2) If Jisin 7 and I is a subset of J then
v I belongs to 1.
| Let (E, /) satisfy in addition:
i (I.3) If I and J are in 7and if J is larger than I then

there is an element jin J, j not in I, such that

the unionof I andjisin L.
i Then M=(E, /) is called a matroid.

coa@w




Notation
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Let (E,/) be an independence system.

= Every set in 7 is called independent.

= Every subset of E not in 7 is called dependent.

= For every subset F of E, a basis of F is a subset of F that is

independent and maximal with respect to this property.

The rank r(F) of a subset F of E is the cardinality of a largest
] basis of F. The lower rank r (F) of F is the cardinality of a
smallest basis of F.




The Largest Independent Set
Problem
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Problem:
Let (E,7) be an independence system with weights on the
elements of E. Find an independent set of largest weight.

We may assume w.l.0.g. that all weights are nonnegative
"§ (or even positive), since deleting an element with

S| nonpositive weight from an optimum solution, will

8 not decrease the value of the solution.

'''''''''''

we it



The Greedy Algorithm

Let (E,/) be an independence system with weights c(e) on th

elements of E. Find an independent set of largest weight.
The Greedy Algorithm:

coa@w

1. Sort the elements of E such that ¢, >¢, >...2¢, >0.
' 2. Let I .4 =9.
@J 3. FOR i=1 TO n DO:
IF 1 ceqy u{i} el THEN I 4= 1 ceq Y {l}

4, OUTPUT [ eeqy-

L

A key idea is to interprete the greedy solution
as the solution of a linear program.



Polytopes and LPs

Let M=(E, /) be an independence system

coa@w

with weights c(e) on the elements of E.

IND(M) = conv {x' e R | 1 e I}

= conv {x c Rf

Y x.<r(F)VY FcE, XeZO‘v’E'eE}

eefF

=y

‘ﬂ The LP relaxation

- minc’ x st.  x.<r(F)VY F cE,
ecF

x.>0 V eckE

e

The dual LP
min ) y.r(F) st. ) y.2c, VeeE,

FcE F>e

y.20 V FckE



The Dual Greedy Algorithm
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Let (E,/) be an independence system with weights c(e) for all e.
After sorting the elements of E so that

262..2C, 20, c,, =0 set

E:={1,2,..,i},i=1, 2, ..., n and
Ye =C; —Ciiqy =1

/

, 2, ., N,
Then Yg =C =Gy, 171, 2,001
is a feasible solution of the dual LP

min Z yFru(F)l

FcE

s.t. Y yp2c, Veek,

F>e

.20V FckE




Observationn
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Let (E,/) be an independence system with weights c(e) for all e.

After sorting the elements of E so that
¢ =262>.2¢c,20, c,, =0
we can express every greedy and optimum solution as follows

n
C(]:greedy) — Z (C/ - C/+1) ‘Igreedy M E/
/=1

Iopt N E,

C(Iopt) — Z/_?: (C/ - C/+1)




Rank Quotient

Let (E,7/) be an independence system with weights c(e) for all e.

g:= min 2%,
I:(%—'L;O f(F)

The number g is between 0 and 1 and
is called rank quotient of (E,[7).

Observation: g = 1 iff (E,7) is a matroid.




The General Greedy Quality Guarantee

max » C.X.,s.t. > x,<r(F)VY FcE, x,20V ecE

eck ecF
> max » c.x., st Y x,<r(F)V FcE, x,20V eec£, x integral
eckE ecF

= C(Iopt) 2 C(Igreedy) = Z (C/ o C/’+1) Igreedy M E/‘ 2 Z (C/' o C/+1)ru (E/)
/=1 i=1

:ZyE,-ru(E/)
/=1
> min ) y.r,(F),st. Y y.2c,VeeE,y, 20V FcE

FcE F>e

> qmin Y yr(F),st. > y.2c,VeeE,y, 20V FcE

FcE F>e

qmax » c.x,,st. Y x,<r(F)VFcE, x,20V eckE

eckE ecF

> qmax ) C.x,,st Y x,<r(F)V FcE, x,20V eecE, x integral

eck ecF

q (L) a quality guarantee



Consequences

Let M=(E, /) be an independence system with weights c(e) on the
elements of E.
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IND(M) = conv {x'| 1 e I}

Y x,<r(F)Y FcE, Xezov«eeE}

eeF

. Theorem: (a) P(M) = IND(M) if and only if M is a matroid
“_‘ (b) If M is a matroid then all optimum vertex solutions of the primal LP

maxc’ x st. > x,<r(F)VFcE, x,20 VeekE

eeF

P(M) = {X e R*

are integral. If the weights are integral then the dual LP
min > y.r(F) st >y.2c, VeeE, y,20 VFcE

FcE F>e

also has integral optimum solutions,
i.e., the system is totally dual integral.



Min-Max Results: Challenges
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Despite all the beautiful min-max results mentioned before
(and the not mentioned far reaching generalizations such
as submodular flows or matroid matching), there is still a

great challenge:
understand integral duality.
Where and when does it occur?

Why?....
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