
Internet Routing & Exercises

1. Internet and Unsplittable Shortest Path Routing
2. The Inverse Shortest Paths Problem 

- Exercise: Find compatible routing weights for given paths.

- LP Models and an O(V)-approximation algorithm for ISP

3. Shortest Path Systems
- Bellman property and extensions

- General representation of SPS as …

4. Path-based ILP model for unsplittable shortest path routing
- Exercise: Model as arc-flow based ILP.

Application: Optimization of B-WiN, G-WiN, X-WiN

(Gigabit-Wissenschaftsnetz = Internet2 for German Universities)



IP-Network design problems

Given
• potential links
• possible link capacities and node  

hardware components
• end-to-end traffic demands

Decisions
• network topology
• link capacities and node hardware
• OSPF routing (weights)

Objective
a) min link and node hardware cost
b) min maximum link load

Constraints
• hardware ‘fits together’
• OSPF routing
• sufficient link capacities
• survivability
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Shortest Path Routing
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(1) Set routing weights
(Network administrator)

(2) Compute shortest paths
(Autonomously by routers)

(3) Send data packets on these paths
(Local forwarding table lookups)

Routing paths can be controlled only
by changing the routing weights. 
(And only jointly for all paths!!!)



Shortest Path Routing

(1) Set routing weights
(Network administrator)

(2) Compute shortest paths
(Autonomously by routers)

(3) Send data packets on these paths
(Local forwarding table lookups)

Variants:
Distance Vector   vs. Link State
(distributed Bellman) (Dijkstra)
Single path vs. Multi-path

Unsplittable (single) shortest path routing:
Paths to each destination form sink-tree
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Shortest Path Routing

(1) Set routing weights
(Network administrator)

(2) Compute shortest paths
(Autonomously by routers)

(3) Send data packets on these paths
(Local forwarding table lookups)

Variants:
Distance Vector   vs. Link State
(distributed Bellman) (Dijkstra)
Single path vs. Multi-path

Unsplittable (single) shortest path routing:
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Problem: Routing is not well-defined
if shortest paths are ambiguous!



Why are ambiguous shortest paths a problem?
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Example: λe=1 for all e∈ E
d(bi,c)=1 for  i=1,…,4

Unsplittable shortest path routing 1:      Unsplittable shortest path routing 2:
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Maximum load: 1 Maximum load: 4



Shortest Path Routing

(1) Set routing weights
(Network administrator)

(2) Compute shortest paths
(Autonomously by routers)

(3) Send data packets on these paths
(Local forwarding table lookups)

Variants:
Distance Vector   vs. Link State
(distributed Bellman) (Dijkstra)
Single path vs. Multi-path

Unsplittable (single) shortest path routing:

3
4

5 4

1
1 1

2

1
1

1 33

11

1
1

HH

H

L
K

F

Ka

M

N

B

S

Routing weights must define unique 
shortest paths!



Shortest Path Routing – Failure Restoration
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(1) Routing weights of failing links are 
set to ∞, other weights remain 
unchanged

(2) Traffic restoration: Recompute
shortest paths in residual network

Only paths that are interrupted by
failure are rerouted.

Routing weights must define unique 
shortest paths in normal network 
and in all residual networks!



Weight-based approaches

Modify lengths ⇒ Evaluate effects on routing

• Local Search, Genetic Algorithms, ... [BleyGrötschelWessäly98, 
FarageSzentesiSzvitatovski98, FortzThorup00, EricssonResendePardalos01, 
BuriolResendeRibeiroThorup03, ...]

• Lagrangian Approaches [LinWang93, Bley03, ...]

Planning of Shortest Path Routing Networks

Routing consists of shortest paths for some (yet unknown) weights
Complicated interdependencies among paths of a valid routing

Flow-based approaches

Optimize end-to-end flows ⇔ Find compatible weights

• Integer linear programming [Bley00, BleyKoch02, HolmbergYuan01, Prytz02, ...]



Inverse Shortest Paths Problem

ISP Given: Digraph D=(V,A) and path set Q.
Task: Find compatible lengths for Q (or prove that none exist).



Exercise: Inverse Shortest Paths Problem 

1. Model Min-Arc-ISP problem.
(integer linear program)

2. Solve Min-Arc ISP for 4 path sets.
(1 and 3 are small and easy) 

3. If infeasible, analyze why!

GAR

ERL

HAM

DUI

HAN

MAG

FRA

STU

ZIB

ESF

KAS

Given: Graph G=(V,E) 
Path set Q

Task: Find compatible lengths 
(or prove none exist)

Obj: min ( maxe∈ Eλe )



Exercise: Inverse Shortest Paths Problem, Results
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Exercise 1: PathModel.zpl (next slide)

Exercise 2 & 3:  

Routing 1: λmax=2
Routing 2: λmax=5
Routing 3: Conflict:

P153 : DUI - HAN - MAG - ZIB
P701 : HAN - HAM – ZIB

Routing 4: Conflict:
P59   : DUI - FRA - STU - GAR
P153 : DUI - HAN - MAG - ZIB
P527 : GAR - ESF - MAG - HAN - KAS
P763 : KAS - FRA - ERL – ZIB

How to find Results/conflicts:
> zimpl PathModel.zpl –o isp 
> scip

r isp.lp
opt

If infeasible, find unbounded dual of LP:
> soplex –s0 –x isp.lp



Inverse Shortest Paths Problem: Model 1

Model 1 is exponentially large, but polynomially solvable.

Exercise 1b: Devise a polynomial separation algorithm for inequalities (1).

Obs: Model 1 has an integer solution if and only if the open cone

is non-empty. Any λ in this cone is a compatible metric.



Inverse Shortest Paths Problem: Model 1 – Separation Algorithm

(1)

(1)



Inverse Shortest Paths Problem: Model 2

Model 2 is polynomially large: O(|V|2) variables and O(|Q||V|3) constraints.



O(V)-approximation for Min-Arc-ISP

Thm: ISP-Rounding is a |V|/2-approximation algorithm for Min-Arc-ISP.

Algorithm ISP-Rounding

1. Solve the following linear program:

2. Round optimal solution λ*

Proof: λ*
max · |V|/2 Opt(LP-Relaxation of Model 1) · |V|/2 Opt(Model 1)

|P´∪ P|· |V| for all pairs P´,P in inequality (3)
At least one arc a∈ P´ appears in each inequality (3)
Hence, [λ*] satisfies all inequalities (2).



Further Results for Inverse Shortest Paths

Thm [BenAmeurGourdin00]: Min-Arc-ISP and Min-Path-ISP are approximable 
within a factor of min( |V|/2, maxP∈Q|P| ).

Thm [B‘04]: It is NP-hard to approximate Min-Arc-ISP within a factor of 9/8-ε, 
for any ε>0.

Thm [B‘04]: It is NP-hard to approximate Min-Path-ISP within a factor of 8/7-ε, 
for any ε>0.



Bellman property

Def: P1 and P2 have the B-property if P1[u,v]=P2[u,v] for all u,v 
with P1[u,v] ≠ ∅ and P2[u,v] ≠∅. Otherwise P1 and P2 conflict.

Obs: Any SPS has B-property.

Thm: Any path set |Q|· 3 with B-property is an SPS.



Bellman property

Obs [BenAmeur00]: In undirected cactus graphs, any path set with the
B-property is an SPS.



Bellman property

Obs: There are non-SPS path sets with B-property.



OBS: Shortest Path Systems form an indepenendence system                    ,
but not a matroid.

Representation: weakly stable sets in conflict hypergraph

Shortest Path Systems

Maximal SPS        = bases in indep. system = maximal weakly stable sets
Minimal Non-SPS  = circuit in indep. system = conflict hyperedges
Conflicting paths  = rank 1 circuits             = simple conflict edges



Shortest Path Systems

Example: Why is                     not a matroid?

{P1,P2} is an SPS and {P3} is an SPS.
{P1,P3} and {P2,P3} are no SPSs.

OBS: Shortest Path Systems form an indepenendence system                    ,
but not a matroid.

Obs: The rank quotient of           may become arbitrarily large.



Theorem: One can decide polynomially whether                 or not.

Shortest Path Systems

Corollary: Computing the rank of an arbitrary path set is NP-hard.

Corollary: Given a non-SPS                , one can find in polynomial 
time an irreducible non-SPS               with           .

Algorithm: Greedily remove paths from Q and check if rest is SPS. 

Theorem [B’04]: Finding the minimum cardinality or minimum weight 
irreducible non-SPS for                    is NP-hard.

Theorem [B’04]: Finding the maximum cardinality or maximum weight SPS
for some                  is NP-hard.



ILP models for capacitated unsplittable shortest path routing

Given: Digraph D=(V,A) with capacities ca
Commodity set K⊂ V2 with demands d(s,t)

Task: Find USPR such that the flows do not exceed the capacities.

(1)-(3): Choose one path for each commodity.
(4): Flows do not exceed the capacities.
(5): The paths must form an SPS (i.e., there is a compatible metric).



ILP models for capacitated unsplittable shortest path routing

Thm: (1)-(5) is a correct model for CapUSPR.

Proof: (1)-(4) is a correct model for capacitated unsplittable flow.
(5) ensures that no integer solution `contains´ an (irreducible) non-SPS.

Model (1)-(5) contains exponentially many variables and exponentially many 
constraints.

Thm: There are instances, where the optimal solution of the linear programming 
relaxation of (1)-(5) has exponentially many active path variables xP.



ILP models for capacitated unsplittable shortest path routing

Thm: Separation problem for inequalities (5) is NP-hard for x∈ [0,1]P.

Proof: Equivalent to finding a minimum weight non-SPS      .

Thm: Separation problem for inequalities (5) is polynomial for x∈ {0,1}P.

Proof: For x∈ {0,1}P, inequality (5) is violated for all irreducible non-SPS
, and only for those.

Greedily remove paths from                           and check whether the rest 
is an SPS or not.

We can at least cut-off infeasible binary vectors x∈ {0,1}P efficiently in a Branch-
and-Cut Framework based on formulation (1)-(5).



ILP models for capacitated unsplittable shortest path routing

Model (1)-(5) is intersection of 
• Capacitated unsplittable flow polytope UFP and 
•

Cor: Any valid inequality for UFP and                      is valid for (1)-(5), too.

Rank inequalities:

Contains clique and odd hole inequalities in the conflict (hyper)graph.

Thm: Separation of rank inequalities is NP-hard. (Even computing the rhs 
of a given set is NP-hard!)

Thm: Gap between                       and its linear relaxation with rank 
inequalities                    may become arbitrarily large.



ILP models for capacitated unsplittable shortest path routing

Joint inequalities induced by shortest path routing + capacities:
Induced cover inequalities

Every arc capacity defines a knapsack with precedence constraints:

Induced cover is a set                                 :

Induced cover inequality:

Precedence graph has bounded tree width ⇒ separable via dyn. prog.



Variables
(Link capacities etc.)
Path or Arc-flow variables

Constraints
(Admissible hardward configuration)
Capacity constraints
Flow conservation and integrality 
Shortest path routing (easy)
Shortest path routing (hard) Compatible routing weights

Linear programming

Mixed-integer programming model

Solution approach

Network design and
end-to-end routing
• Cutting plane algorithm
• Branch & Cut (& Price)
• Heuristics

Algorithms

Separation of (5)



Traffic Engineering: Results

Task: Reduce maximum link load by 
optimizing the routing weights.
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