MIP Heuristics
Why not wait for branching?

• Produce feasible solutions as quickly as possible
 • Often satisfies user demands
 • Avoid exploring unproductive subtrees
 • Better reduced-cost fixing

• Avoid “tree pollution”
 • Good fixings in a heuristic are often not good branches
CPLEX Heuristics

Two classes

- **Plunging heuristics:**
 - Maintain linear feasibility
 - Try to achieve integer feasibility

- **Local improvement heuristics:**
 - Maintain integer feasibility
 - Try to achieve linear feasibility
Plunging Heuristic Structure

• Fix a set of integer infeasible variables
 • Usually by rounding
• Perform bound strengthening to propagate implications
• Solve LP relaxation
• Repeat
• Methods for choosing fixings:
 • Non-basic variables
 • Sorted in order of increasing d_j
 • Fractional variables
 • Sorted in order of increasing distance to an integer in relaxation
How many variables to fix per round:

- All of them?
 - Inexpensive; no need to solve LP relaxations
 - But ‘flying blind’ after a few fixings
 - Bound strengthening helps

- A few?
 - More expensive
 - LP relaxation can guide later choices
 - (variable values, reduced costs, etc.)

In what order are variables fixed?

- Variations useful for diversification
Local Improvement Heuristics

High-level structure

- Choose integer values for all integer variables
 - Produces linear infeasibility
- Iterate over integer variables:
 - Does adding/subtracting 1 reduce linear infeasibility?
- Infeasibility metrics:
 - Primary: number of violated constraints
 - Secondary: |b-Ax|
Local Improvement Details

• What initial values to assign to integer variables?
 • Rounded relaxation values
 • Bounds

• What to do when local improvement gets stuck?
 • Reverse infeasibility metrics
General Heuristic Strategies

Apply 11 different variations

- Apply all heuristics before beginning the branch and bound search
- Apply the least expensive heuristics after every round of root cutting planes
- Apply them every 10 nodes in the MIP tree
- Decrease the frequency of a particular heuristic when it is not finding new feasible solutions
Heuristic Results

Effectiveness

• Feasible solution found for most models before branch and bound begins

• Roughly 10% improvement in time to proven optimality (978 model test set)

• Often finds solutions branching does not
Combining Local Search and MIP Heuristics to Solve Very Difficult MIP Models
Local Search for MIP

Relaxation Induced Neighborhood Search (RINS)

• New local search heuristic in CPLEX
• Local search uses *neighborhoods* to improve a given solution
 • Neighborhoods generally based on problem structure
 • Example: Nodes and edges in a graph
 • No high level structural information available in an arbitrary MIP model
Local Search for MIP

Basic Approach

• Form sub-MIP from variables whose values differ in incumbent and relaxation

• Combine desirable properties of two solutions:
 • Incumbent: feasible
 • Relaxation: optimal

• Neighborhood contains both solutions

• Extend promising partial solution
Local Search for MIP

Example: RINS = off

<table>
<thead>
<tr>
<th>Node</th>
<th>Left</th>
<th>Objective</th>
<th>IInf</th>
<th>Best Integer</th>
<th>Best Node</th>
<th>ItCnt</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>6.5256e+08</td>
<td>191</td>
<td>6.5256e+08</td>
<td>6.5256e+08</td>
<td>1425</td>
<td>5.21%</td>
</tr>
<tr>
<td>*</td>
<td>0+</td>
<td>0</td>
<td>0</td>
<td>6.8841e+08</td>
<td>6.5256e+08</td>
<td>1425</td>
<td>5.03%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.5343e+08</td>
<td>208</td>
<td>6.8841e+08</td>
<td>Cuts: 118</td>
<td>1716</td>
<td>5.08%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.5380e+08</td>
<td>184</td>
<td>6.8841e+08</td>
<td>Cuts: 87</td>
<td>2042</td>
<td>5.03%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.5381e+08</td>
<td>185</td>
<td>6.8841e+08</td>
<td>GUBcuts: 3</td>
<td>2083</td>
<td>5.03%</td>
</tr>
<tr>
<td>*</td>
<td>2320+2317</td>
<td>0</td>
<td>6.7979e+08</td>
<td>6.5383e+08</td>
<td>28773</td>
<td>3.82%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>3961</td>
<td>6.7069e+08</td>
<td>22</td>
<td>6.7979e+08</td>
<td>6.5385e+08</td>
<td>48444</td>
</tr>
</tbody>
</table>

Elapsed time = 478.14 sec. (tree size = 20.75 MB)
Local Search for MIP

Example: RINS = 100

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Objective</th>
<th>IIInf</th>
<th>Best Integer</th>
<th>Cuts/</th>
<th>Best Node</th>
<th>ItCnt</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>Left</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>6.5256e+08</td>
<td>191</td>
<td></td>
<td>6.5256e+08</td>
<td>1425</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>0+</td>
<td>6.8841e+08</td>
<td>6.5256e+08</td>
<td>1425</td>
<td></td>
<td>5.21%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.5343e+08</td>
<td>6.8841e+08</td>
<td>1716</td>
<td></td>
<td>5.08%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.5380e+08</td>
<td>6.8841e+08</td>
<td>2042</td>
<td></td>
<td>5.03%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.5381e+08</td>
<td>6.8841e+08</td>
<td>2083</td>
<td></td>
<td>5.03%</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>100+</td>
<td>6.7642e+08</td>
<td>6.7642e+08</td>
<td>5059</td>
<td>6.5383e+08</td>
<td>3.34%</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>400+</td>
<td>6.7190e+08</td>
<td>6.7190e+08</td>
<td>10388</td>
<td></td>
<td>2.69%</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>500+</td>
<td>6.7153e+08</td>
<td>6.7153e+08</td>
<td>11797</td>
<td></td>
<td>2.64%</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>600+</td>
<td>6.7138e+08</td>
<td>6.7138e+08</td>
<td>13408</td>
<td></td>
<td>2.61%</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>1200+</td>
<td>6.7137e+08</td>
<td>6.7137e+08</td>
<td>23258</td>
<td></td>
<td>2.61%</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>1300+</td>
<td>6.7046e+08</td>
<td>6.7046e+08</td>
<td>25503</td>
<td></td>
<td>2.48%</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>2100+</td>
<td>6.6916e+08</td>
<td>6.6916e+08</td>
<td>40180</td>
<td></td>
<td>2.28%</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>2817</td>
<td>6.6233e+08</td>
<td>6.6233e+08</td>
<td>61274</td>
<td></td>
<td>2.28%</td>
<td></td>
</tr>
</tbody>
</table>

Elapsed time = 456.37 sec. (tree size = 14.94 MB)