Mixed Integer Programming
Mixed Integer Programming (MIP)

Minimize \(c^T x \)

Subject to \(Ax = b \)

\(l \leq x \leq u \)

Some \(x_j \) are integer
Branch and Bound
Solving MIPs: Branch-and-Bound

Solve LP relaxation:
v = 3.5 (fractional)

Remarks:
(1) GAP = 0 \Rightarrow Proof of optimality
(2) In practice: Often good enough to have good Solu
Important Steps
Important Steps

The branch and bound loop

- Choose an unexplored node in the tree
- Solve continuous relaxation
- Strengthen formulation
 - Generate *cutting planes*
 - Perform variable fixing
- Find integer feasible solutions that are “similar” to the relaxation solution (“Heuristics”)
- Choose a variable on which to branch
- Explore logical implications of branch
- Repeat
Important Steps

The branch and bound loop

• Choose an unexplored node in the tree
• Solve relaxation
• Generate cutting planes
• Perform variable fixing
• Find integer feasible solutions that are “similar” to the relaxation solution
• Choose a variable on which to branch
• Explore logical implications of branch
• Repeat
Node Selection

Tradeoff: feasibility versus optimality

- When exploring nodes deep in the search tree...
 - More likely to find integer feasible solutions
 - More likely to explore nodes that would be pruned by later feasible solutions
Node Selection Options

- Depth first
- Breadth first
- Best first
 - Weight objective and # integer infeasibilities
- Best estimate
- Plunging (combined with above)
 - Always choose a child of the previously explored node
 - Probed dive
Important Steps

The branch and bound loop

- Choose an unexplored node in the tree
- **Solve relaxation**
- Generate *cutting planes*
- Perform variable fixing
- Find integer feasible solutions that are “similar” to the relaxation solution
- Choose a variable on which to branch
- Explore logical implications of branch
- Repeat
Node Relaxation Solution

Ideally suited to dual simplex

• Change from parent relaxation is small: a new bound on the branching variable
 • Previous basis remains dual feasible
 • Solution likely to be “close” to previous basis

• A few iterations of dual simplex typically suffice to restore optimality

• Cost per node quite low
Important Steps

The branch and bound loop

- Choose an unexplored node in the tree
- Solve relaxation
- Generate \textit{cutting planes}
- Perform variable fixing
- Find integer feasible solutions that are “similar” to the relaxation solution
- Choose a variable on which to branch
- Explore logical implications of branch
- Repeat
Important Steps

The branch and bound loop

• Choose an unexplored node in the tree
• Solve relaxation
• Generate *cutting planes*
• **Perform variable fixing**
• Find integer feasible solutions that are “similar” to the relaxation solution
• Choose a variable on which to branch
• Explore logical implications of branch
• Repeat
Reduced Cost Fixing

Use reduced costs to fix variables

• Recall: reduced cost D_N is the marginal cost of moving a variable off of its bound

• If $z_{lp} + |D_j| \geq z^*$
 • z^* = objective of best known feasible solution (incumbent)

• Then x_j can be fixed to its current value in this subtree (“region”)

Important Steps

The branch and bound loop

- Choose an unexplored node in the tree
- Solve relaxation
- Generate cutting planes
- Perform variable fixing
- *Find integer feasible solutions that are “similar” to the relaxation solution*
- Choose a variable on which to branch
- Explore logical implications of branch
- Repeat
Important Steps

The branch and bound loop

- Choose an unexplored node in the tree
- Solve relaxation
- Generate cutting planes
- Perform variable fixing
- Find integer feasible solutions that are “similar” to the relaxation solution
- Choose a variable on which to branch
- Explore logical implications of branch
- Repeat
Variable Selection

Greatly affects search tree size

• Guiding principles:
 • Make important decisions early
 • Both directions of branch should have an impact

• Example:
 • Decide whether or not to build a factory first
 • Decide how many lines to place in the factory later
Variable Selection

Predicting impact

• **Question:**
 - How to predict impact of a branch?

• **Possible answers:**
 - Find variables that are furthest from their bounds
 - Maximum infeasibility
 - Measure the impact for each branching candidate
 - Strong branching [Applegate, Bixby, Chvátal, Cook]
 - Use historical information
 - Pseudo-costs
Important Steps

The branch and bound loop

- Choose an unexplored node in the tree
- Solve relaxation
- Generate cutting planes
- Perform variable fixing
- Is the relaxation solution near-feasible?
- Choose a variable on which to branch
- Explore logical implications of branch
- Repeat
• **Simple example:**
 - $x + 2y + 3z \leq 3$, all variables binary
 - $x = 1$ (e.g., fixed during tree exploration)
 - $z = 2/3$ still feasible in LP relaxation

• **Use *bound strengthening* to tighten variable bounds**
• The MIP Landscape
• Heuristic details
• Cutting plane details