Solving Linear and Integer Programs

Robert E. Bixby ILOG, Inc. and Rice University

Dual Simplex Algorithm

Some Motivation

- \Box Dual simplex vs. primal: Dual > 2x faster
- □ Best algorithm of MIP
- There isn't much in books about implementing the dual.

Dual Simplex Algorithm (Lemke, 1954: Commercial codes ~1990)

Input: A dual feasible basis *B* and vectors

$$X_B = A_B^{-1}b$$
 and $D_N = c_N - A_N^T B^{-T} c_B^{-T}$.

- □ Step 1: (Pricing) If $X_B \ge 0$, stop, *B* is optimal; else let $i = argmin\{X_{Bk} : k \in \{1, ..., m\}\}$.
- **Step 2:** (BTRAN) Solve $B^T z = e_i$. Compute $\alpha_N = -A_N^T z$.
- □ **Step 3:** (Ratio test) If $\alpha_N \le 0$, stop, (D) is unbounded; else, let

 $j = argmin\{D_k/\alpha_k: \alpha_k > 0\}.$

Step 4: (FTRAN) Solve $A_B y = A_j$.

□ Step 5: (Update) Set $B_i = j$. Update X_B (using y) and D_N (using α_N)

Dual Simplex Algorithm (Lemke, 1954: Commercial codes ~1990)

Input: A dual feasible basis *B* and vectors

$$X_B = A_B^{-1}b$$
 and $D_N = c_N - A_N^T A_B^{-T} c_B$.

- □ Step 1: (Pricing) If $X_B \ge 0$, stop, *B* is optimal; else let $i = argmin\{X_{Bk}: k \in \{1, ..., m\}\}$.
- □ Step 2: (BTRAN) Solve $B^T z = e_i$. Compute $\alpha_N = -A_N^T z$.
- □ **Step 3:** (Ratio test) If $\alpha_N \le 0$, stop, (D) is unbounded; else, let

 $j = argmin\{D_k/\alpha_k: \alpha_k > 0\}.$

- **Step 4:** (FTRAN) Solve $A_{By} = A_{j}$.
- □ Step 5: (Update) Set $B_i = j$. Update X_B (using y) and D_N (using α_N)

Implementing the Dual Simplex Algorithm

Implementation Issues for Dual Simplex

- 1. Finding an initial feasible basis, or the concluding that there is none: Phase I of simplex algorithm.
- 2. Pricing: Dual steepest edge
- **3.** Solving the linear systems
 - LU factorization and factorization update
 - □ BTRAN and FTRAN exploiting sparsity
- 4. Numerically stable ratio test: Bound shifting and perturbation
- 5. **Bound flipping:** Exploiting "boxed" variables to combine many iterations into one.

Preparation: <u>Issue 0</u> Bounds on Variables

In practice, simplex algorithms need to accept LPs in the following form:

$$\begin{array}{ll} \text{Minimize} & c^T x\\ \text{Subject to } Ax = b & (P_{BD})\\ & l \leq x \leq u \end{array}$$

where *l* is an n-vector of **lower bounds** and *u* an n-vector of **upper bounds**. *l* is allowed to have $-\infty$ entries and u is allowed to have $+\infty$ entries. (Note that (P_{BD}) is in standard form if $l_j = 0$, $u_j = +\infty \forall j$.)

(Issue 0 – Bounds on variables) Basic Solution

A basis for (P_{BD}) is a triple (B,L,U) where *B* is an ordered *m*element subset of $\{1,...,n\}$ (just as before), (B,L,U) is a partition of $\{1,...,n\}, l_j > -\infty \forall j \in L$, and $u_j < +\infty \forall j \in U$. $N = L \cup U$ is the set of **nonbasic** variables. The associated (**primal**) **basic solution** *X* is given by $X_L = l_L, X_U = u_U$ and

$$X_B = A_B^{-1}(b - A_L l_L - A_U u_U).$$

This solution is **feasible** if

$$l_B \leq X_B \leq u_B.$$

The associated **dual basic solution** is defined exactly as before: $D_B = 0$, $\Pi^T A_B = c_B^T$, $D_N = c_N - A_N^T \Pi$. It is **dual feasible** if $D_L \ge 0$ and $D_U \le 0$.

(Issue 0 – Bounds on variables) The Full Story

Modify simplex algorithm

Only the "Pricing" and "Ratio Test" steps must be changed substantially.

□ The complicated part is the ratio test

Reference: See Chvátal for the primal

<u>Issue 1</u> The Initial Feasible Basis – Phase I

Two parts to the solution

- 1. Finding some initial basis (probably not feasible)
- 2. Modified simplex algorithm to find a feasible basis

Reference for Primal: **R.E. Bixby (1992). "Implementing the** simplex method: the initial basis", *ORSA Journal on Computing* 4, 267—284.

(Issue 1 – Initial feasible basis) Initial Basis

Primal and dual bases are the same. We begin in the context of the primal. Consider

$$\begin{array}{ll} Minimize & c^{T}x \\ Subject \ to \ Ax = b \\ l \leq x \leq u \end{array} \quad (P_{BD}) \end{array}$$

- □ Assumption: Every variable has some finite bound.
- **Trick:** Add **artificial variables** $x_{n+1}, ..., x_{n+m}$:

$$Ax + I \begin{pmatrix} x_{n+1} \\ \vdots \\ x_{n+m} \end{pmatrix} = b$$

where $l_j = u_j = 0$ for j = n+1, ..., n+m.

□ Initial basis: B = (n+1, ..., n+m) and for each $j \notin B$, pick some

finite bound and place j in L or U, as appropriate.

□ **Free Variable Refinement:** Make free variables non-basic at value 0. This leads to a notion of a *superbasis*, where non-basic variables can be between their bounds.

(Issue 1 – Initial feasible basis) Solving the Phase I

□ If the initial basis is not dual feasible, we consider the problem:

Maximize
$$\Sigma (d_j : d_j < 0)$$

Subject to $A^T \pi + d = c$

□ This problem is "locally linear": Define $\kappa \in \mathbb{R}^n$ by $\kappa_j = 1$ if $D_j < 0$, and 0 otherwise. Let

$$K = \{j: D_j < 0\}$$
 and $\underline{K} = \{j: D_j \ge 0\}$

Then our problem becomes

$$\begin{array}{ll} Maximize \quad \kappa^{T}d \\ Subject \ to \quad A^{T}\pi + d = c \\ d_{K} \leq 0, \ d_{\underline{K}} \geq 0 \end{array}$$

□ Apply dual simplex, and whenever d_j for $j \in K$ becomes 0, move it to <u>K</u>.

Solving Phase I: An Interesting Computation

□ Suppose d_{Bi} is the entering variable. Then $X_{Bi} < 0$ where X_B is obtained using the following formula:

$$X_B = A_B^{-l}A_N \kappa$$

□ Suppose now that d_j is determined to be the leaving variable. Then in terms of the phase I objective, this means κ_j is replace by $\kappa_j + \varepsilon e_j$, where $\varepsilon \in \{0, +1, -1\}$. It can then be shown that

$$\underline{x}_{Bi} = X_{Bi} + \varepsilon \, \alpha_j$$

- **Conclusion:** If $x_{Bi} < 0$, then the current iteration can continue without the necessity of changing the basis.
- Advantages
 - □ Multiple iterations are combined into one.
 - □ x_{Bi} will tend not to change sign precisely when α_j is small. Thus this procedure tends to avoid unstable pivots.

□ The texbook rule is **TERRIBLE**: For a problem in standard form, select the entering variable using the formula

$$j = argmin\{X_{Bi} : i = 1, ..., m\}$$

- Geometry is wrong: Maximizes rate of change relative to axis; better to do relative to edge.
- Goldfard and Forrest 1992 suggested the following **steepest-edge** alternative

 $j = argmin\{X_{Bi}/\eta_i : i = 1, ..., m\}$

where $\eta_i = ||e_i^T A_B^{-1}||_2$, and gave an efficient update.

□ Note that there are two ingredients in the success of Dual SE:

Significantly reduced iteration counts

The fact that there is a very efficient update for η_i **s**

Example: Pricing Model: dfl001

Pricing: Greatest infeasibility

Dual simplex - Optimal: Objective = 1.1266396047e+07Solution time = 1339.86 sec. Iterations = 771647 (0)

Pricing: Goldfarb-Forrest steepest-edge

Dual simplex - Optimal: Objective = 1.1266396047e+07 Solution time = 24.48 sec. Iterations = 18898 (0)

Issue 3 Solving FTRAN, BTRAN

- Computing LU factorization: See Suhl & Suhl (1990). "Computing sparse LU factorization for largescale linear programming basis", ORSA Journal on Computing 2, 325-335.
- □ Updating the Factorization: Forrest-Tomlin update is the method of choice. See Chvátal Chapter 24.
 - There are multiple, individually relatively minor tweaks that collectively have a significant effect on update efficiency.
- □ Further exploiting sparsity: This is the main recent development.

(Issue 3 – Solving FTRAN & BTRAN)

We must solve two linear systems per iteration:

FTRAN BTRAN

$$A_B y = A_j$$
 $A_B^T z = e_i$

where

$$A_{B} = \text{basis matrix} \quad (\text{very sparse})$$

$$A_{j} = \text{entering column} \quad (\text{very sparse})$$

$$e_{i} = \text{unit vector} \quad (\text{very sparse})$$

$$\Rightarrow y \text{ an } z \text{ are typically very sparse}$$

Example:	Model pla85900 (from TSP)				
	Constraints	85900			
	Variables	144185			
	Average y	15.5			

Graph structure: Define an acyclic digraph $D = (\{1, ..., m\}, E)$ where $(i,j) \in E \Leftrightarrow l_{ij} \neq 0$ and $i \neq j$.

Solving using *D*: Let $X = \{i \in V : A_{ij} \neq 0\}$. Compute $\underline{X} = \{j \in V : \exists a \text{ directed path from } j \text{ to } X\}$. \underline{X} can be computed in time linear in $|E(\underline{X})| + |\underline{X}|$.

PDS Models

"Patient Distribution System": Carolan, Hill, Kennington, Niemi, Wichmann, An empirical evaluation of the KORBX algorithms for military airlift applications, Operations Research 38 (1990), pp. 240-248

		CPLEX1.0	CPLEX5.0	CPLEX8.0	SPEEDUP
MODEL	ROWS	1988	1997	2002	1.0→8.0
pds02	2953	0.4	0.1	0.1	4.0
pds06	9881	26.4	2.4	0.9	29.3
pds10	16558	208.9	13.0	2.6	80.3
pds20	33874	5268.8	232.6	20.9	247.3
pds30	49944	15891.9	1154.9	39.1	406.4
pds40	66844	58920.3	2816.8	79.3	743.0
pds50	83060	122195.9	8510.9	114.6	1066.3
pds60	99431	205798.3	7442.6	160.5	1282.2
pds70	114944	335292.1	21120.4	197.8	1695.1
		Primal Simplex	Dual Simplex	Dual Simplex	

Issue 4 Ratio Test and Finiteness

The "standard form" dual problem is

 $\begin{array}{ll} Maximize & b^T \pi \\ Subject \ to & A^T \pi + d = c \\ & d \geq 0 \end{array}$

Feasibility means

 $d \ge 0$

However, in practice this condition is replaced by

$$d \ge -\varepsilon e$$

where $e^{T}=(1,...,1)$ and $\varepsilon = 10^{-6}$. Reason: Degeneracy. In 1972 Paula Harris proposed suggested exploiting this fact to improve numerical stability.

(Issue 4 – Ratio test & finiteness)

STD. RATIO TEST
$$j_{enter} = argmin\{D_j / \alpha_j : \alpha_j > 0\}$$

Motivation: Feasibility \Rightarrow step length θ satisfies

$$D_N - \theta \alpha_N \ge 0$$

However, the bigger the step length, the bigger the change in the objective. So, we choose

$$\theta_{max} = \min\{D_j / \alpha_j : \alpha_j > 0\}$$

Using ε , we have

$$\theta_{max}^{\varepsilon} = min\{(D_j + \varepsilon)/\alpha_j : \alpha_j > 0\} > \theta_{max}$$

HARRIS RATIO TEST $j_{enter} = argmax\{\alpha_j : D_j / \alpha_j \le \theta_{max}\}$

(Issue 4 – Ratio test & finiteness)

Advantages

□ Numerical stability – α_{jenter} = "pivot element"

□ Degeneracy – Reduces # of 0-length steps

Disadvantage

 $\square D_{jenter} < 0 \implies \text{objective goes in wrong direction}$

Solution: BOUND SHIFTING

- □ If $D_{jenter} < 0$, we replace the lower bound on d_{jenter} by something less than its current value.
- ❑ Note that this shift changes the problem and must be removed: 5% of cases, this produces dual infeasibility ⇒ process is iterated.

Example: Bound-Shifting Removal

Problem 'pilot87.sav.gz' read. Reduced LP has 1809 rows, 4414 columns, and 70191 nonzeros. Iteration log . . . Iteration: 1 Scaled dual infeas = 0.697540 Scaled dual infeas = Iteration: 733 0.000404 Iteration: 790 Dual objective -185.892207 = . . . Iteration: 16326 Dual objective 302.786794 = Shift 1: $\epsilon = 10^{-7}$ Removing shift (3452) 🗲 Iteration: 16417 Scaled dual infeas = 0.207796 Scaled dual infeas = Iteration: 16711 0.000021 Iteration: 16726 Dual objective 296.758656 = Elapsed time = 104.36 sec. (17000 iterations). Iteration: 17072 Dual objective 300.965492 = . . . Iteration: 17805 Dual objective 301.706409 = Shift 2: $\epsilon = 10^{-8}$ Removing shift (76). Iteration: 17919 Scaled dual infeas = 0.000060 Iteration: 17948 Dual objective 301.708660 = Elapsed time = 114.42 sec. (18000 iterations). Shift 3: $\varepsilon = 10^{-9}$ Removing shift (10). Scaled dual infeas = Iteration: 18029 0.000050 Iteration: 18039 Dual objective 301.710058 = Removing shift (1).

Dual simplex - Optimal: Objective = 3.0171034733e+002 Solution time = 116.44 sec. Iterations = 18095 (1137)

(Issue 4 – Ratio test & finiteness)

Finiteness: Bound shifting is closely related to the "perturbation" method employed in CPLEX if no progress is being made in the objective.

"No progress" \Rightarrow

$$d_j \ge -\varepsilon$$
 $j = 1, ..., n$

is replaced by

$$d_j \geq -\varepsilon - \varepsilon_j$$
 $j = 1, ..., n,$

where ε_i is random uniform on $[0, \varepsilon]$.

Issue 5 Bound Flipping

□ A basis is given by a triple (B,L,U)

 \Box L = non-basics at lower bound: Feasibility D_L ≥ 0

 \Box U = non-basics at upper bound: Feasibility $D_U \le 0$

□ Ratio test: Suppose X_{Bi} is the leaving variable, and the step length is blocked by some variable d_j , $j \in L$, that is about to become negative and such that $u_i < +\infty$:

Flipping means: Move j from L to U.

Check: Do an update to see if X_{Bi} is still favorable (just as we did in Phase I!)

□ Can combine many iterations into a single iteration.

Example: Bound Flipping

Problem 'fit2d.sav.gz' read.						
Initializing dual steep norms						
Iteration log						
Iteration: 1	5	=	-80412.550000			
Perturbation start	ted.					
Iteration: 203	Dual objective	=	-80412.550000			
Iteration: 1313	Dual objective	=	-80412.548666			
Iteration: 2372	Dual objective	=	-77028.548350		w/o flipping	
Iteration: 3413	Dual objective	=	-71980.245530	(w/o mpping	
Iteration: 4316	Dual objective	=	-70657.605570			
Iteration: 5151	Dual objective	=	-68994.477061			
Iteration: 5820	Dual objective	=	-68472.659371			
Removing perturbat	tion.					
Dual simplex - Opt	timal: Objective =	-6.846	54293294e+004			
Solution time = 18.74 sec. Iterations = 5932 (0)						
Problem 'fit2d.say	v.qz' read.			_		
Initializing dual steep norms						
	-					
Iteration log						
	Dual objective	=	-77037.550000	\succ	w/ flipping	
Dual simplex - Optimal: Objective = -6.8464293294e+004						
Solution time = 1.88 sec. Iterations = 201 (0)						
			- (-)			