
Solving Linear
and

Integer Programs

Robert E. Bixby
ILOG, Inc. and Rice University

2

Dual Simplex Algorithm

3

Some Motivation

Dual simplex vs. primal: Dual > 2x faster
Best algorithm of MIP
There isn’t much in books about implementing the
dual.

4

Dual Simplex Algorithm
(Lemke, 1954: Commercial codes ~1990)

Input: A dual feasible basis B and vectors
XB = AB

-1b and DN = cN – AN
TB-TcB.

Step 1: (Pricing) If XB≥ 0, stop, B is optimal; else let
i = argmin{XBk : k∈{1,…,m}}.

Step 2: (BTRAN) Solve BTz = ei. Compute αN=-AN
Tz.

Step 3: (Ratio test) If αN ≤ 0, stop, (D) is unbounded; else, let
j = argmin{Dk/αk: αk > 0}.

Step 4: (FTRAN) Solve ABy = Aj.
Step 5: (Update) Set Bi=j. Update XB (using y) and DN (using αN)

5

Dual Simplex Algorithm
(Lemke, 1954: Commercial codes ~1990)

Input: A dual feasible basis B and vectors
XB = AB

-1b and DN = cN – AN
TAB

-TcB.
Step 1: (Pricing) If XB≥ 0, stop, B is optimal; else let

i = argmin{XBk : k∈{1,…,m}}.
Step 2: (BTRAN) Solve BTz = ei. Compute αN=-AN

Tz.
Step 3: (Ratio test) If αN ≤ 0, stop, (D) is unbounded; else, let

j = argmin{Dk/αk: αk > 0}.
Step 4: (FTRAN) Solve ABy = Aj.
Step 5: (Update) Set Bi=j. Update XB (using y) and DN (using αN)

6

Implementing the Dual
Simplex Algorithm

7

Implementation Issues for Dual Simplex

1. Finding an initial feasible basis, or the concluding
that there is none: Phase I of simplex algorithm.

2. Pricing: Dual steepest edge
3. Solving the linear systems

LU factorization and factorization update
BTRAN and FTRAN – exploiting sparsity

4. Numerically stable ratio test: Bound shifting and
perturbation

5. Bound flipping: Exploiting “boxed” variables to
combine many iterations into one.

8

Issue 0
Preparation: Bounds on Variables

In practice, simplex algorithms need to accept LPs in the following form:

Minimize cTx
Subject to Ax = b

l ≤ x ≤ u
where l is an n-vector of lower bounds and u an n-vector of upper bounds. l
is allowed to have -∞ entries and u is allowed to have +∞ entries. (Note that
(PBD) is in standard form if lj = 0, uj = +∞ ∀ j.)

(PBD)

9

(Issue 0 – Bounds on variables)
Basic Solution

A basis for (PBD) is a triple (B,L,U) where B is an ordered m-
element subset of {1,…,n} (just as before), (B,L,U) is a partition of
{1,…,n}, lj > -∞ ∀ j∈L, and uj < +∞ ∀ j∈U. N = L∪U is the set of
nonbasic variables. The associated (primal) basic solution X is
given by XL = lL, XU = uU and

XB = AB
-1(b – ALlL – AUuU).

This solution is feasible if
lB ≤ XB ≤ uB.

The associated dual basic solution is defined exactly as before:
DB=0, Π TAB = cB

T, DN = cN – AN
T Π. It is dual feasible if

DL ≥ 0 and DU ≤ 0.

10

(Issue 0 – Bounds on variables)
The Full Story

Modify simplex algorithm
Only the “Pricing” and “Ratio Test” steps must be
changed substantially.
The complicated part is the ratio test

Reference: See Chvátal for the primal

11

Issue 1
The Initial Feasible Basis – Phase I
Two parts to the solution
1. Finding some initial basis (probably not feasible)
2. Modified simplex algorithm to find a feasible basis

Reference for Primal: R.E. Bixby (1992). “Implementing the
simplex method: the initial basis”, ORSA Journal on Computing 4,
267—284.

12

(Issue 1 – Initial feasible basis)
Initial Basis

Primal and dual bases are the same. We begin in the context of the
primal. Consider

Assumption: Every variable has some finite bound.
Trick: Add artificial variables xn+1,…,xn+m:

where lj = uj = 0 for j = n+1,…,n+m.
Initial basis: B = (n+1,…,n+m) and for each j ∉ B, pick some
finite bound and place j in L or U, as appropriate.
Free Variable Refinement: Make free variables non-basic at value 0.
This leads to a notion of a superbasis, where non-basic variables can be
between their bounds.

Minimize cTx
Subject to Ax = b

l ≤ x ≤ u
(PBD)

Ax + I = b
xn+1

.

.
xn+m

13

(Issue 1 – Initial feasible basis)
Solving the Phase I

If the initial basis is not dual feasible, we consider the problem:

This problem is “locally linear”: Define κ∈Rn by κj = 1 if Dj < 0, and 0
otherwise. Let

K = {j: Dj < 0} and K = {j: Dj ≥ 0}
Then our problem becomes

Apply dual simplex, and whenever dj for j∈K becomes 0, move it to K.

Maximize Σ (dj : dj < 0)
Subject to ATπ + d = c

Maximize κTd
Subject to ATπ + d = c

dK ≤ 0, dK ≥ 0

14

Solving Phase I:
An Interesting Computation

Suppose dBi is the entering variable. Then XBi < 0 where XB is obtained using
the following formula:

XB = AB
-1AN κ

Suppose now that dj is determined to be the leaving variable. Then in terms of
the phase I objective, this means κj is replace by κj + ε ej, where ε ∈ {0,+1,-1}.
It can then be shown that

xBi = XBi + ε αj

Conclusion: If xBi < 0, then the current iteration can continue without the
necessity of changing the basis.
Advantages

Multiple iterations are combined into one.

xBi will tend not to change sign precisely when αj is small. Thus this
procedure tends to avoid unstable pivots.

15

Issue 2
Pricing

The texbook rule is TERRIBLE: For a problem in standard
form, select the entering variable using the formula

j = argmin{XBi : i = 1,…,m}
Geometry is wrong: Maximizes rate of change relative to axis;
better to do relative to edge.
Goldfard and Forrest 1992 suggested the following steepest-edge
alternative

j = argmin{XBi /ηi : i = 1,…,m}
where ηi = ||ei

TAB
-1||2, and gave an efficient update.

Note that there are two ingredients in the success of Dual SE:
Significantly reduced iteration counts
The fact that there is a very efficient update for ηis

16

Pricing: Greatest infeasibility

Dual simplex - Optimal: Objective = 1.1266396047e+07
Solution time = 1339.86 sec. Iterations = 771647 (0)

Pricing: Goldfarb-Forrest steepest-edge

Dual simplex - Optimal: Objective = 1.1266396047e+07
Solution time = 24.48 sec. Iterations = 18898 (0)

Example: Pricing
Model: dfl001

17

Issue 3
Solving FTRAN, BTRAN

Computing LU factorization: See Suhl & Suhl
(1990). “Computing sparse LU factorization for large-
scale linear programming basis”, ORSA Journal on
Computing 2, 325-335.
Updating the Factorization: Forrest-Tomlin update
is the method of choice. See Chvátal Chapter 24.

There are multiple, individually relatively minor
tweaks that collectively have a significant effect on
update efficiency.

Further exploiting sparsity: This is the main recent
development.

18

(Issue 3 – Solving FTRAN & BTRAN)

We must solve two linear systems per iteration:
FTRAN BTRAN

ABy = Aj AB
Tz = ei

where
AB = basis matrix (very sparse)
Aj = entering column (very sparse)
ei = unit vector (very sparse)

⇒ y an z are typically very sparse

Example: Model pla85900 (from TSP)
Constraints 85900
Variables 144185
Average |y| 15.5

19

AB = L
U

Triangular solve: Lw=Aj (ABy = L(Uy) = Aj)
w

×

×
×

×

×

L w Aj

Graph structure: Define an acyclic digraph D = ({1,…,m}, E)
where (i,j)∈E ⇔ lij ≠ 0 and i ≠ j.
Solving using D: Let X = {i∈V: Aij ≠ 0}. Compute

X = {j∈V: ∃ a directed path from j to X}.
X can be computed in time linear in |E(X)|+|X|.

update

update
=

Known in
advance

Need to find
w/o searching

20

PDS Models
“Patient Distribution System”: Carolan, Hill, Kennington, Niemi, Wichmann, An

empirical evaluation of the KORBX algorithms for military airlift applications, Operations
Research 38 (1990), pp. 240-248

MODEL ROWS
pds02 2953
pds06 9881
pds10 16558
pds20 33874
pds30 49944
pds40 66844
pds50 83060
pds60 99431
pds70 114944

CPLEX1.0
1988
0.4

26.4
208.9

5268.8
15891.9
58920.3

122195.9
205798.3
335292.1

CPLEX5.0
1997
0.1
2.4

13.0
232.6

1154.9
2816.8
8510.9
7442.6

21120.4

CPLEX8.0
2002
0.1
0.9
2.6

20.9
39.1
79.3

114.6
160.5
197.8

SPEEDUP
1.0 8.0

4.0
29.3
80.3

247.3
406.4
743.0

1066.3
1282.2
1695.1

Primal
Simplex

Dual
Simplex

Dual
Simplex

21

Not just faster -- Growth with size:
Quadratic then & Linear now !

.00

50000.00

100000.00

150000.00

200000.00

250000.00

300000.00

350000.00

400000.00

.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

Time Periods: PDS02 -- PDS70

C
PL

EX
 1

.0
 s

ec
on

ds

.00

50.00

100.00

150.00

200.00

250.00

C
PL

EX
 8

.0
 s

ec
on

ds

22

Issue 4
Ratio Test and Finiteness

The “standard form” dual problem is
Maximize bTπ
Subject to ATπ + d = c

d ≥ 0

Feasibility means
d ≥ 0

However, in practice this condition is replaced by
d ≥ - ε e

where eT=(1,…,1) and ε =10-6. Reason: Degeneracy.
In 1972 Paula Harris proposed suggested exploiting this
fact to improve numerical stability.

23

(Issue 4 – Ratio test & finiteness)

Motivation: Feasibility ⇒ step length θ satisfies

DN – θαN ≥ 0

However, the bigger the step length, the bigger the
change in the objective. So, we choose

θmax = min{Dj /αj : αj > 0}

Using ε, we have

θ ε
max = min{(Dj+ε)/αj : αj > 0} > θmax

STD. RATIO TEST jenter = argmin{Dj /αj : αj > 0}

HARRIS RATIO TEST jenter = argmax{αj : Dj /αj ≤ θ ε
max}

24

(Issue 4 – Ratio test & finiteness)

Advantages
Numerical stability – αjenter = “pivot element”
Degeneracy – Reduces # of 0-length steps

Disadvantage
Djenter < 0 ⇒ objective goes in wrong direction

Solution: BOUND SHIFTING
If Djenter < 0, we replace the lower bound on djenter by
something less than its current value.
Note that this shift changes the problem and must be
removed: 5% of cases, this produces dual infeasibility
⇒ process is iterated.

25

Problem 'pilot87.sav.gz' read.
Reduced LP has 1809 rows, 4414 columns, and 70191 nonzeros.

Iteration log . . .
Iteration: 1 Scaled dual infeas = 0.697540
Iteration: 733 Scaled dual infeas = 0.000404
Iteration: 790 Dual objective = -185.892207
...
Iteration: 16326 Dual objective = 302.786794
Removing shift (3452).
Iteration: 16417 Scaled dual infeas = 0.207796
Iteration: 16711 Scaled dual infeas = 0.000021
Iteration: 16726 Dual objective = 296.758656
Elapsed time = 104.36 sec. (17000 iterations).
Iteration: 17072 Dual objective = 300.965492
...
Iteration: 17805 Dual objective = 301.706409
Removing shift (76).
Iteration: 17919 Scaled dual infeas = 0.000060
Iteration: 17948 Dual objective = 301.708660
Elapsed time = 114.42 sec. (18000 iterations).
Removing shift (10).
Iteration: 18029 Scaled dual infeas = 0.000050
Iteration: 18039 Dual objective = 301.710058
Removing shift (1).

Dual simplex - Optimal: Objective = 3.0171034733e+002
Solution time = 116.44 sec. Iterations = 18095 (1137)

Shift 3: ε = 10-9

Example: Bound-Shifting Removal

Shift 1: ε = 10-7

Shift 2: ε = 10-8

26

(Issue 4 – Ratio test & finiteness)

Finiteness: Bound shifting is closely related to the
“perturbation” method employed in CPLEX if no
progress is being made in the objective.

“No progress” ⇒

dj ≥ -ε j = 1,…,n

is replaced by

dj ≥ -ε – εj j = 1,…,n,

where εj is random uniform on [0,ε].

27

Issue 5
Bound Flipping

A basis is given by a triple (B,L,U)
L = non-basics at lower bound: Feasibility DL ≥ 0
U = non-basics at upper bound: Feasibility DU ≤ 0

Ratio test: Suppose XBi is the leaving variable, and the
step length is blocked by some variable dj, j∈L, that is
about to become negative and such that uj<+∞:

Flipping means: Move j from L to U.
Check: Do an update to see if XBi is still favorable (just
as we did in Phase I!)

Can combine many iterations into a single iteration.

28

Problem 'fit2d.sav.gz' read.
Initializing dual steep norms . . .

Iteration log . . .
Iteration: 1 Dual objective = -80412.550000
Perturbation started.
Iteration: 203 Dual objective = -80412.550000
Iteration: 1313 Dual objective = -80412.548666
Iteration: 2372 Dual objective = -77028.548350
Iteration: 3413 Dual objective = -71980.245530
Iteration: 4316 Dual objective = -70657.605570
Iteration: 5151 Dual objective = -68994.477061
Iteration: 5820 Dual objective = -68472.659371
Removing perturbation.

Dual simplex - Optimal: Objective = -6.8464293294e+004
Solution time = 18.74 sec. Iterations = 5932 (0)

Problem 'fit2d.sav.gz' read.
Initializing dual steep norms . . .

Iteration log . . .
Iteration: 1 Dual objective = -77037.550000

Dual simplex - Optimal: Objective = -6.8464293294e+004
Solution time = 1.88 sec. Iterations = 201 (0)

w/o flipping

w/ flipping

Example: Bound Flipping

	Solving Linear �and �Integer Programs
	Dual Simplex Algorithm
	Some Motivation
	Dual Simplex Algorithm �(Lemke, 1954: Commercial codes ~1990)
	Dual Simplex Algorithm �(Lemke, 1954: Commercial codes ~1990)
	Implementing the Dual Simplex Algorithm
	Implementation Issues for Dual Simplex
	Issue 0�Preparation: Bounds on Variables
	(Issue 0 – Bounds on variables)�Basic Solution
	(Issue 0 – Bounds on variables)�The Full Story
	Issue 1�The Initial Feasible Basis – Phase I
	(Issue 1 – Initial feasible basis)�Initial Basis
	(Issue 1 – Initial feasible basis)�Solving the Phase I
	Solving Phase I:�An Interesting Computation
	Issue 2�Pricing
	Issue 3�Solving FTRAN, BTRAN
	(Issue 3 – Solving FTRAN & BTRAN)
	PDS Models�“Patient Distribution System”: Carolan, Hill, Kennington, Niemi, Wichmann, An empirical evaluation of the KORBX al
	Issue 4�Ratio Test and Finiteness
	(Issue 4 – Ratio test & finiteness)
	(Issue 4 – Ratio test & finiteness)
	(Issue 4 – Ratio test & finiteness)
	Issue 5�Bound Flipping

