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Dual Simplex Algorithm
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Some Motivation

Dual simplex vs. primal:   Dual > 2x faster
Best algorithm of  MIP
There isn’t much in books about implementing the 
dual.
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Dual Simplex Algorithm
(Lemke, 1954:  Commercial codes ~1990)

Input:  A dual feasible basis B and vectors 
XB = AB

-1b and   DN = cN – AN
TB-TcB.

Step 1: (Pricing) If XB≥ 0, stop, B is optimal;  else let
i = argmin{XBk : k∈{1,…,m}}.

Step 2: (BTRAN) Solve BTz = ei.  Compute αN=-AN
Tz.

Step 3: (Ratio test) If αN ≤ 0, stop, (D) is unbounded; else, let 
j = argmin{Dk/αk: αk > 0}.

Step 4: (FTRAN) Solve  ABy = Aj.
Step 5: (Update) Set Bi=j.  Update XB (using y) and DN (using αN)
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Implementing the Dual 
Simplex Algorithm
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Implementation Issues for Dual Simplex

1. Finding an initial feasible basis, or the concluding 
that there is none:  Phase I of simplex algorithm.

2. Pricing:  Dual steepest edge
3. Solving the linear systems

LU factorization and factorization update
BTRAN and FTRAN – exploiting sparsity

4. Numerically stable ratio test: Bound shifting and 
perturbation

5. Bound flipping:  Exploiting “boxed” variables to 
combine many iterations into one.
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Issue 0
Preparation:  Bounds on Variables

In practice, simplex algorithms need to accept LPs in the following form:

Minimize         cTx
Subject to  Ax = b

l ≤ x ≤ u
where l is an n-vector of lower bounds and u an n-vector of upper bounds. l 
is allowed to have -∞ entries and u is allowed to have +∞ entries.  (Note that 
(PBD) is in standard form if lj = 0, uj = +∞ ∀ j.)

(PBD)



9

(Issue 0 – Bounds on variables)
Basic Solution

A basis for (PBD) is a triple (B,L,U) where B is an ordered m-
element subset of {1,…,n} (just as before), (B,L,U) is a partition of 
{1,…,n}, lj > -∞ ∀ j∈L, and uj < +∞ ∀ j∈U.  N = L∪U is the set of
nonbasic variables.  The associated (primal) basic solution X is 
given by XL = lL, XU = uU and

XB = AB
-1(b – ALlL – AUuU).

This solution is feasible if
lB ≤ XB ≤ uB.

The associated dual basic solution is defined exactly as before:
DB=0, Π TAB = cB

T, DN = cN – AN
T Π.  It is dual feasible if

DL ≥ 0  and  DU ≤ 0.
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(Issue 0 – Bounds on variables)
The Full Story

Modify simplex algorithm 
Only the “Pricing” and “Ratio Test” steps must be 
changed substantially.
The complicated part is the ratio test

Reference:  See Chvátal for the primal
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Issue 1
The Initial Feasible Basis – Phase I
Two parts to the solution
1. Finding some initial basis (probably not feasible)
2. Modified simplex algorithm to find a feasible basis

Reference for Primal: R.E. Bixby (1992). “Implementing the 
simplex method: the initial basis”, ORSA Journal on Computing 4, 
267—284.
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(Issue 1 – Initial feasible basis)
Initial Basis

Primal and dual bases are the same.  We begin in the context of the 
primal.   Consider

Assumption:  Every variable has some finite bound.
Trick:  Add artificial variables xn+1,…,xn+m:

where  lj = uj = 0 for j = n+1,…,n+m. 
Initial basis: B = (n+1,…,n+m) and for each j ∉ B, pick some 
finite bound and place j in L or U, as appropriate.
Free Variable Refinement: Make free variables non-basic at value 0.  
This leads to a notion of a superbasis, where non-basic variables can be 
between their bounds. 

Minimize         cTx
Subject to  Ax = b

l ≤ x ≤ u
(PBD)

Ax + I = b
xn+1

.

.
xn+m
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(Issue 1 – Initial feasible basis)
Solving the Phase I

If the initial basis is not dual feasible, we consider the problem:

This problem is “locally linear”:  Define κ∈Rn by κj = 1 if Dj < 0, and 0
otherwise.   Let 

K = {j: Dj < 0}  and  K = {j: Dj ≥ 0}
Then our problem becomes

Apply dual simplex, and whenever dj for j∈K becomes 0, move it to K.

Maximize  Σ (dj : dj < 0)
Subject to  ATπ + d = c

Maximize   κTd
Subject to  ATπ + d = c 

dK ≤ 0, dK ≥ 0
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Solving Phase I:
An Interesting Computation

Suppose dBi is the entering variable.  Then XBi < 0 where XB is obtained using 
the following formula:

XB = AB
-1AN κ

Suppose now that dj is determined to be the leaving variable.  Then in terms of 
the phase I objective, this means κj is replace by κj + ε ej, where ε ∈ {0,+1,-1}.   
It can then be shown that 

xBi = XBi + ε αj

Conclusion: If xBi < 0, then the current iteration can continue without the 
necessity of changing the basis.
Advantages

Multiple iterations are combined into one.

xBi will tend not to change sign precisely when αj is small.  Thus this 
procedure tends to avoid unstable pivots.
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Issue 2
Pricing

The texbook rule is TERRIBLE:  For a problem in standard 
form, select the entering variable using the formula

j = argmin{XBi : i = 1,…,m}
Geometry is wrong: Maximizes rate of change relative to axis; 
better to do relative to edge.
Goldfard and Forrest 1992 suggested the following steepest-edge
alternative

j = argmin{XBi /ηi : i = 1,…,m}
where ηi = ||ei

TAB
-1||2,  and gave an efficient update.

Note that there are two ingredients in the success of Dual SE:
Significantly reduced iteration counts
The fact that there is a very efficient update for ηis
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Pricing: Greatest infeasibility

Dual simplex - Optimal:  Objective =    1.1266396047e+07
Solution time = 1339.86 sec.  Iterations = 771647 (0)

Pricing: Goldfarb-Forrest steepest-edge

Dual simplex - Optimal:  Objective =    1.1266396047e+07
Solution time =   24.48 sec.  Iterations = 18898 (0)

Example:  Pricing
Model:  dfl001
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Issue 3
Solving FTRAN, BTRAN

Computing  LU factorization: See Suhl & Suhl
(1990). “Computing sparse LU factorization for large-
scale linear programming basis”, ORSA Journal on 
Computing 2, 325-335.
Updating the Factorization: Forrest-Tomlin update 
is the method of choice.  See Chvátal Chapter 24.

There are multiple, individually relatively minor 
tweaks that collectively have a significant effect on 
update efficiency.

Further exploiting sparsity: This is the main recent 
development.
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(Issue 3 – Solving FTRAN & BTRAN)

We must solve two linear systems per iteration:
FTRAN     BTRAN 

ABy = Aj AB
Tz = ei

where
AB =  basis matrix         (very sparse)
Aj =  entering column  (very sparse)
ei =  unit vector           (very sparse)

⇒ y an  z are typically very sparse

Example: Model pla85900 (from TSP)
Constraints          85900
Variables           144185
Average |y|            15.5
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AB = L
U

Triangular solve: Lw=Aj (ABy = L(Uy) = Aj)
w

×

×
×

×

×

L w Aj

Graph structure: Define an acyclic digraph D = ({1,…,m}, E)
where (i,j)∈E ⇔ lij ≠ 0 and i ≠ j.
Solving using D: Let X = {i∈V: Aij ≠ 0}. Compute

X = {j∈V: ∃ a directed path from j to X}.   
X can be computed in time linear in |E(X)|+|X|.

update

update
=

Known in
advance

Need to find
w/o searching
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PDS Models
“Patient Distribution System”:  Carolan, Hill, Kennington, Niemi, Wichmann, An 

empirical evaluation of the KORBX algorithms for military airlift applications, Operations 
Research 38 (1990), pp. 240-248

MODEL   ROWS
pds02 2953
pds06 9881
pds10 16558
pds20 33874
pds30  49944
pds40  66844   
pds50  83060
pds60  99431
pds70 114944

CPLEX1.0
1988
0.4      

26.4      
208.9     

5268.8    
15891.9   
58920.3   

122195.9   
205798.3   
335292.1 

CPLEX5.0 
1997
0.1      
2.4    

13.0      
232.6     

1154.9     
2816.8     
8510.9    
7442.6    

21120.4

CPLEX8.0  
2002
0.1      
0.9     
2.6     

20.9    
39.1    
79.3    

114.6   
160.5   
197.8 

SPEEDUP
1.0 8.0

4.0
29.3
80.3   

247.3
406.4
743.0

1066.3
1282.2
1695.1 

Primal
Simplex

Dual
Simplex

Dual
Simplex
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Not just faster -- Growth with size:
Quadratic then  & Linear now !
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Issue 4
Ratio Test and Finiteness

The “standard form” dual problem is
Maximize   bTπ
Subject to   ATπ + d = c

d ≥ 0

Feasibility means
d ≥ 0

However, in practice this condition is replaced by
d ≥ - ε e

where eT=(1,…,1) and ε =10-6.  Reason:  Degeneracy.   
In 1972 Paula Harris proposed suggested exploiting this 
fact to improve numerical stability.
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(Issue 4 – Ratio test & finiteness)

Motivation: Feasibility ⇒ step length θ satisfies

DN – θαN ≥ 0

However, the bigger the step length, the bigger the 
change in the objective.  So, we choose

θmax = min{Dj /αj : αj > 0}

Using  ε, we have

θ ε
max = min{(Dj+ε)/αj : αj > 0} > θmax

STD. RATIO TEST jenter = argmin{Dj /αj : αj > 0}

HARRIS RATIO TEST jenter = argmax{αj : Dj /αj ≤ θ ε
max}
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(Issue 4 – Ratio test & finiteness)

Advantages
Numerical stability – αjenter = “pivot element”
Degeneracy – Reduces # of 0-length steps

Disadvantage
Djenter < 0 ⇒ objective goes in wrong direction

Solution:  BOUND SHIFTING
If Djenter < 0, we replace the lower bound on djenter by 
something less than its current value.
Note that this shift changes the problem and must be 
removed:  5% of cases, this produces dual infeasibility 
⇒ process is iterated.
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Problem 'pilot87.sav.gz' read.
Reduced LP has 1809 rows, 4414 columns, and 70191 nonzeros.

Iteration log . . .
Iteration:     1   Scaled dual infeas =             0.697540
Iteration:   733   Scaled dual infeas =             0.000404
Iteration:   790   Dual objective     =          -185.892207
...
Iteration: 16326   Dual objective     =           302.786794
Removing shift (3452).
Iteration: 16417   Scaled dual infeas =             0.207796
Iteration: 16711   Scaled dual infeas =             0.000021
Iteration: 16726   Dual objective     =           296.758656
Elapsed time =  104.36 sec. (17000 iterations).
Iteration: 17072   Dual objective     =           300.965492
...
Iteration: 17805   Dual objective     =           301.706409
Removing shift (76).
Iteration: 17919   Scaled dual infeas =             0.000060
Iteration: 17948   Dual objective     =           301.708660
Elapsed time =  114.42 sec. (18000 iterations).
Removing shift (10).
Iteration: 18029   Scaled dual infeas =             0.000050
Iteration: 18039   Dual objective     =           301.710058
Removing shift (1).

Dual simplex - Optimal:  Objective =   3.0171034733e+002
Solution time =  116.44 sec.  Iterations = 18095 (1137)

Shift 3:  ε = 10-9

Example: Bound-Shifting Removal

Shift 1:  ε = 10-7

Shift 2:  ε = 10-8
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(Issue 4 – Ratio test & finiteness)

Finiteness: Bound shifting is closely related to the 
“perturbation” method employed in CPLEX if no 
progress is being made in the objective.   

“No progress” ⇒

dj ≥ -ε j = 1,…,n

is replaced by

dj ≥ -ε – εj j = 1,…,n,

where εj is random uniform on [0,ε].
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Issue 5
Bound Flipping

A basis is given by a triple (B,L,U)
L = non-basics at lower bound: Feasibility DL ≥ 0
U = non-basics at upper bound:   Feasibility DU ≤ 0

Ratio test:  Suppose XBi is the leaving variable, and the 
step length is blocked by some variable dj, j∈L, that is 
about to become negative and such that uj<+∞:

Flipping means: Move j from L to U.
Check: Do an update to see if XBi is still favorable (just 
as we did in Phase I!)

Can combine many iterations into a single iteration.
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Problem 'fit2d.sav.gz' read.
Initializing dual steep norms . . .

Iteration log . . .
Iteration:     1   Dual objective     =        -80412.550000
Perturbation started.
Iteration:   203   Dual objective     =        -80412.550000
Iteration:  1313   Dual objective     =        -80412.548666
Iteration:  2372   Dual objective     =        -77028.548350
Iteration:  3413   Dual objective     =        -71980.245530
Iteration:  4316   Dual objective     =        -70657.605570
Iteration:  5151   Dual objective     =        -68994.477061
Iteration:  5820   Dual objective     =        -68472.659371
Removing perturbation.

Dual simplex - Optimal:  Objective =  -6.8464293294e+004
Solution time =   18.74 sec.  Iterations = 5932 (0)

Problem 'fit2d.sav.gz' read.
Initializing dual steep norms . . .

Iteration log . . .
Iteration:     1   Dual objective     =        -77037.550000

Dual simplex - Optimal:  Objective =  -6.8464293294e+004
Solution time =    1.88 sec.  Iterations = 201 (0)

w/o flipping

w/ flipping

Example: Bound Flipping
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