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Given a finite set E and a subset I of the power set of E (the set of feasible
solutions). Given, moreover, a value (cost, length,…) c(e) for all elements e of E. 
Find, among all sets in I, a set I such that its total value c(I) (= sum of the
values of all elements in I) is as small (or as large) as possible.

The parameters of a combinatorial optimization problem are: (E, I, c).

Combinatorial optimization

I
min (I) ( ) | I , 2E

e
c c e I where I and E finite

∈

⎧ ⎫= ∈ ⊆⎨ ⎬
⎩ ⎭

∑

Important issues: 

How is I  given?

What is the encoding length of an instance?

How do we measure running time?
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Important issues: 

How is I  given?

What is the encoding length of an instance?

How do we measure running time?
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Special „simple“
combinatorial optimization problems
Finding a

minimum spanning tree in a graph

shortest path in a directed graph

maximum matching in a graph

a minimum capacity cut separating two given nodes of a graph or
digraph

cost-minimal flow through a network with capacities and costs on all 
edges

…

These problems are solvable in polynomial time. 

Is the number of feasible solutions relevant?
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Special „hard“
combinatorial optimization problems

travelling salesman problem (the prototype problem)

location und routing

set-packing, partitioning, -covering

max-cut

linear ordering

scheduling (with a few exceptions)

node and edge colouring

…

These problems are NP-hard
(in the sense of complexity theory).
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Complexity theory came formally into being in the years 1965 – 1972 
with the work of Cobham (1965), Edmonds(1965), Cook (1971), Karp(1972) 
and many others

Of course, there were many forerunners (Gauss has written about the number of 

elementary steps in a computation, von Neumann, Gödel, Turing, Post,…).

But modern complexity theory is a the result of the combined research 
efforts of many, in particular, of many computer scientists and mathematical 
programmers trying to understand the structures underlying computational 
processes.



Martin
Grötschel

9

CO at
Work Complexity Theory

Stephen Cook
University of Toronto

1965 Polynomial time
Class P

Nondeterministic polynomial time
Class NP
Edmonds, Cobham

1971 Cook "The Complexity of Theorem 
Proving Procedures" 
introduced the theory of 
NP completeness

Hierarchies of complexity classes...

The most important open problem:

P = NP ?
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P versus NP

The Hodge Conjecture

The Poincaré Conjecture

The Riemann Hypothesis

Yang-Mills Existence and Mass Gap

Navier-Stokes Existence and Smoothness

The Birch and Swinnerton-Dyer Conjecture

Announced 16:00, on Wednesday, May 24, 2000
Collège de France

dedicated to increasing and disseminating mathematical knowledge

Millennium Prize Problems
Announcement

Rules for the CMI Millennium 
Prize Problems

Publication Guidelines

Historical Context

Press Statement

Press Reaction

Clay Mathematics Institute 

Prize:

1 million $
for a solution
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Satisfiability: Is there a truth assignmeent to the 
following formula:

1 2 1 2 3 1 2 1 2 3 1 2( ) ( ) ( ) ( ) ( )x x x x x x x x x x x x¬ ∨ ∧ ∨ ∨ ∧ ∨ ¬ ∧ ∨ ∨ ¬ ∧ ¬ ∨ ¬

Truly important Application:
Verification of computer chips and 
“systems on chips”

A design is correct  iff a certain 
SAT formula associated with the 
chip has no truth assignment.
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Given n „cities“ and „distances“ between them. Find a tour 
(roundtrip) through all cities visiting every city exactly
once such that the sum of all distances travelled is as 
small as possible. (TSP)

The TSP is called symmetric (STSP) if, for every pair of 
cities i and j, the distance from i to j is the same as the
one from j to i, otherwise the problem is called
aysmmetric (ATSP).



Martin
Grötschel

13

CO at
Work The travelling salesman problem

1. :
( , ) ( )

.
( ) .

min{ ( ) | }.

2. :
{1,..., }

n

e

n

Version
Let K V E be the complete graph or digraph with n nodes
and let c be the length of e E Let H be the set of all
hamiltonian cycles tours in K Find

c T T H

Version
Find a cyclic permutation of n such thaπ

=

∈

∈

( )
1

.

n

i i
i

t

c

is as small as possible

π
=
∑

Two mathematical formulations of the TSP

Does that help solve the TSP?
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http://www.tsp.gatech.edu/
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Usually quoted as 
the forerunner of 
the TSP

Usually quoted as 
the origin of 
the TSP
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about 100
years
earlier
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By a proper choice and
scheduling of the tour one
can gain so much time 
that we have to make
some suggestions

The most important
aspect is to cover as many
locations as possible
without visiting a
location twice
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The distance table
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optimal „Ulysses tour“
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Malen nach Zahlen
TSP in art ?

When was this invented?
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Flinders Petrie (1853-1942) and the Luxor graves
In the words of James Baikie, author of the book A Century of 
Excavation in the Land of the Pharaohs, "if the name of any one man 
must be associated with modern excavation as that of the chief 
begetter of its principles and methods, it must be the name of 
Professor Sir W.M. Flinders Petrie. It was he…who first called the 
attention of modern excavators to the importance of "unconsidered 
trifles" as means for the construction of the past…the broken 
earthenware of a people may be of far greater value than its most 
gigantic monuments." 
Petrie began to analyze the grave goods methodically. Grave A might 
contain certain types of pot in common with Grave B; Grave B also 
contained a later style of pot, the only type to be found in Grave C. By 
writing cards for each grave and filing them in logical order, Petrie 
established a full sequence for the cemetery, concluding that the last 
graves were probably contemporary with the First Dynasty. The 
development of life along the Nile thus was revealed, from early
settlers to farmers to political stratification.
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The TSP in archeology: 
Flinders Petrie’s contribution 

Introduction of the “Hamming distance of graves”, before 
Richard Wesley Hamming (1915 –1998)  introduced it in 
mathematics. 
(The Hamming distance is used in telecommunication to count the number of flipped 
bits in a fixed-length binary word, an estimate of error. Hamming weight analysis of bits 
is used in several disciplines including information theory, coding theory, and 
cryptography.)

Definition of the hamiltonian path problem through 
“graves”.
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Literature: more than 800 entries in Zentralblatt/Math

Zbl 0562.00014 Lawler, E.L.(ed.); Lenstra, J.K.(ed.); Rinnooy Kan, 
A.H.G.(ed.); Shmoys, D.B.(ed.)
The traveling salesman problem. A guided tour of combinatorial
optimization. Wiley-Interscience Series in Discrete Mathematics. A Wiley-
Interscience publication. Chichester etc.: John Wiley \& Sons. X, 465 p. 
(1985). MSC 2000: *00Bxx 90-06

Zbl 0996.00026 Gutin, Gregory (ed.); Punnen, Abraham P.(ed.)
The traveling salesman problem and its variations. Combinatorial
Optimization. 12. Dordrecht: Kluwer Academic Publishers. xviii, 830 p. 
(2002). MSC 2000: *00B15 90-06 90Cxx

http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0562.00014&format=complete
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&au=Lawler,+E&type=html&format=short
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&au=Lenstra,+J&type=html&format=short
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&au=Rinnooy+Kan,+A&type=html&format=short
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&au=Rinnooy+Kan,+A&type=html&format=short
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&au=Rinnooy+Kan,+A&type=html&format=short
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?format=short&maxdocs=20&type=html&cc=00Bxx
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?format=short&maxdocs=20&type=html&cc=90-06
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?format=short&maxdocs=20&type=html&cc=90-06
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0996.00026&format=complete
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&au=Gutin,+G&type=html&format=short
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&au=Punnen,+A&type=html&format=short
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?format=short&maxdocs=20&type=html&cc=00B15
http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?format=short&maxdocs=20&type=html&cc=90Cxx
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The Seminal DFJ-Paper of 1954
preprint
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IP Formulation

Polyhedral Approach
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Subtour
Elimination
Constraints

in
several forms
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The preprint version is much clearer than the published paper. The editors 
have replaced abstract insight by a sequence of examples and thus almost 
destroyed the “real” contents of the paper.

The authors outline the branch and bound techniquebranch and bound technique.

They explain the cutting plane methodologycutting plane methodology and observe clearly where the 
difficulties and chances of this method are.

They mention the importance of heuristicsheuristics.

They are modest:



Martin
Grötschel

31

CO at
Work

The Authors
provide data

Distance table
hand-written

by D. R. Fulkerson
(from the preprint
Bob Bland owns) 
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The Travelling Salesman Problem 
and Some of its Variants

The symmetric TSP
The asymmetric TSP
The TSP with precedences or time windows
The online TSP
The symmetric and asymmetric m-TSP
The price collecting TSP
The Chinese postman problem
(undirected, directed, mixed)
Bus, truck, vehicle routing
Edge/arc & node routing with capacities
Combinations of these and more
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http://www.densis.fee.unicamp.br/~m
oscato/TSPBIB_home.html
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An excellent TSP Web site
http://www.tsp.gatech.edu/index.html
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Application list from
http://www.tsp.gatech.edu/index.html
Applications

Genome

Starlight

Scan Chains

DNA

Whizzkids

Baseball

Coin Collection

Airport Tours

USA Trip

Sonet Rings

Power Cables

We will see many

TSP applications.

http://www.tsp.gatech.edu/apps/genome.html
http://www.tsp.gatech.edu/apps/starlight.html
http://www.tsp.gatech.edu/apps/scan.html
http://www.tsp.gatech.edu/apps/dna.html
http://www.tsp.gatech.edu/apps/whizzkids.html
http://www.tsp.gatech.edu/apps/ballparks.html
http://www.tsp.gatech.edu/apps/coins.html
http://www.tsp.gatech.edu/apps/airports.html
http://www.tsp.gatech.edu/apps/usatrip.html
http://www.tsp.gatech.edu/apps/sonet.html
http://www.tsp.gatech.edu/apps/cables.html
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Many real-world instances of hard combinatorial optimization 
problems are (still) too large for exact algorithms.

Or the time limit stipulated by the customer for the solution is too 
small. 

Therefore, we need heuristics!

Exact algorithms usually also employ heuristics.

What is urgently needed is a decision guide:

Which heuristic will most likely work well on what problem ?
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Primal Heuristic: Finds a (hopefully) good feasible solution.

Dual Heuristic: Finds a bound on the optimum solution value 
(e.g., by finding a feasible solution of the LP-dual of an LP-relaxation of a 
combinatorial optimization problem).

Minimization:

dual heuristic value ≤ optimum value ≤ primal heuristic value

(In maximization the inequalities are the other way around.)

quality guarantee
in practice and theory
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Primal and Dual Heuristics give rise to worst-case guarantee:

Minimization:
optimum value ≤ primal heuristic value 

≤ (1+ε) optimum value
dual heuristic value ≤ primal heuristic value 

≤ (1+ε) dual heuristic value

(In maximization the inequalities are the other way around.)

quality guarantee
in practice and theory
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Greedy Algorithms

Exchange & Insertion Algorithms

Neighborhood/Local Search

Variable Neighborhood Search, Iterated Local Search 

Random sampling

Simulated Annealing 

Taboo search

Great Deluge Algorithms

Simulated Tunneling

Neural Networks

Scatter Search

Greedy Randomized Adaptive Search Procedures
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Genetic, Evolutionary, and similar Methods

DNA-Technology

Ant and Swarm Systems

(Multi-) Agents

Population Heuristics 

Memetic Algorithms (Meme are the “missing links” gens and mind)

Space Filling Curves

Fuzzy Logic Based…

Fuzzy Genetics-Based Machine Learning 

Fast and Frugal Method (Psychology) 

Ecologically rational heuristic (Sociology)

Method of Devine Intuition (Psychologist Thorndike)

…..
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There is a marketing battle going on with unrealistic, or even 
ideological, claims about the quality of heuristics – just to catch 
attention

Linguistic Overkill:

Simulated hybrid meta GA-based neural evolutionary fuzzy 
variable adaptive search parallel DNA-driven multi-ant-agent 
method with devine swarm taboo intuitionVodoo Approach
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Quote:
Genetic Programming is an evolutionary computation technique
which searches for those computer programs that best solve a 
given problem. 

(Will this also solve P = NP?)
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Kalyanmoy Deb:
„Multi-objective optimization using evolutionary
algorithms“ (Wiley, 2001)

from the Preface

Optimization is a procedure of finding and comparing feasible
solutions until no better solution can be found. 

Evolutionary algorithms (EAs), on the other hand, can find 
multiple optimal solutions in one single simulation run due to 
their population-approach. Thus, EAs are ideal candidates for
solving…

?
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Currently best heuristic with respect to worst-case guarantee:
Christofides heuristic

compute a shortest spanning tree

compute a minimum perfect 1-matching of the graph induced by the odd 
nodes of the minimum spanning tree

the union of these edge sets is a connected Eulerian graph

turn this graph into a TSP-tour by making short-cuts.

For distance functions satisfying the triangle inequality, the resulting tour is at 
most 50% above the optimum value
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Understanding Heuristics, 
Approximation Algorithms

worst case analysisworst case analysis
There is no polynomial time approx. algorithm for STSP/ATSP.
Christofides algorithm for the STSP with triangle inequality

average case analysisaverage case analysis
Karp‘s analysis of the patching algorithm for the ATSP

probabilistic problem analysisprobabilistic problem analysis
for Euclidean STSP in unit square: TSP constant 1.714..n½

polynomial time approximation schemes (PAS)polynomial time approximation schemes (PAS)
Arora‘s polynomial-time approximation schemes for
Euclidean STSPs

fullyfully--polynomial time approximation schemes (FPAS)polynomial time approximation schemes (FPAS)
not for TSP/ATSP but, e.g., for knapsack (Ibarra&Kim)

These concepts – unfortunately – often do not really help to guide 
practice.

experimental evaluationexperimental evaluation
Lin-Kernighan for STSP (DIMACS challenges))
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STSP-, ATSP-,TSP-with-side-constraints-

Polytope:=  Convex hull of all incidence
vectors of feasible tours

To be investigated:

Dimension

Equation system defining the affine hull

Facets

Separation algorithms

|: { } ( 1 , 0)n T E T
T n ijT tour in KQ conv if ij T elseχ χ= ∈ = ∈ =Z
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{ }

{ }
{ }

|: { } ( 1 , 0)

{ | ( ( )) 2
( ( )) | | 1 \ 1 ,3 | | 3

0 1 }

min
( ( )) 2
( ( )) | | 1 \ 1 ,3 | | 3

0,1

n T E T
T n ij

E

ij

T

ij

T tour in KQ conv if ij T else

x x i i V
x E W W W V W n

x ij E

c x
x i i V
x E W W W V W n

x ij E

χ χ

δ

δ

= ∈ = ∈ =

⊆ ∈ = ∀ ∈

≤ − ∀ ⊂ ≤ ≤ −

≤ ≤ ∀ ∈

= ∀ ∈

≤ − ∀ ⊂ ≤ ≤ −

∈ ∀ ∈

Z

R

IP formulation

The LP relaxation is solvable in polynomial time.
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Proof
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Open Problem:

If costs satisfy the triangle inequality, then

IP-OPT <= 4/3 LP-SEC

IP-OPT <= 3/2 LP-SEC (Wolsey)
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Finding facets!

Proving that an inequality defines a facet!

Finding exact or heuristic separation algorithms to be used 
in a cutting plane algorithm!
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{ }

An integer programming formulation from a textbook:

min
( ( )) 2
( )

( ) | | 1 , a nonhamiltonian cycle
0,1

T

ij

c x
x i i V
X E n
x C C C E C
x ij E

δ = ∀ ∈
=

≤ − ∀ ⊂

∈ ∀ ∈

What would you say?
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Subtour elimination constraints:
equivalent versions

SEC constraints

cut constraints
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General cutting plane theory:
Gomory Cut (the „rounding trick“)

Observation: For any

is a valid inequality for P.

m

T T

y
y Ax y b

∈

≤

¡

Let                              be a polyhedron, and we 
suppose that A and b are integral.

{ | }nP x Ax b= ∈ ≤R

We would like to describe the convex hull PI of 
all integral points in P.

I

Observation: For any

is a valid inequality for P .

m

T T

y

y Ax y b

∈

⎢ ⎥ ⎢ ⎥≤⎣ ⎦ ⎣ ⎦

¡

1 1

n m m
T

i ij j i j
j i i

y Ax y a x y b
= = =

⎢ ⎥⎢ ⎥ ⎢ ⎥= ≤ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
∑ ∑ ∑

1 1

n m m
T

i ij j i j
j i i

y Ax y a x y b
= = =

⎢ ⎥⎢ ⎥ = ≤ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑ ∑Choose y so that yiaij is integral:
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Does the rounding procedure deliver PI?

How many rounds of rounding do we need?

Other better methods?
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General cutting plane theory:
Gomory Mixed-Integer Cut

Given and

Rounding: Where define

Then

Disjunction:

Combining

, ,jy x +∈ ¢
, 0ij jy a x d d f f+ = = + >⎢ ⎥⎣ ⎦∑

,ij ij ja a f⎢ ⎥= +⎣ ⎦
( ) ( ): :ij j j ij j jt y a x f f a x f f⎢ ⎥ ⎡ ⎤= + ≤ + > ∈⎣ ⎦ ⎢ ⎥∑ ∑ ¢

( ) ( ): 1 :j j j j j jf x f f f x f f d t≤ + − > = −∑ ∑

( )
( )( )

:

1 : 1

j j j

j j j

t d f x f f f

t d f x f f f

≤ ⇒ ≤ ≥⎢ ⎥⎣ ⎦

≥ ⇒ − > ≥ −⎡ ⎤⎢ ⎥

∑
∑

( )( ) ( ) ( )( ): 1 1 :j j j j j jf f x f f f f x f f⎡ ⎤ 1≤ + − − >⎣ ⎦∑ ∑ ≥
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2-matching constraints

combs

clique tree inequalities

etc.
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Comb inequality

2-matching
constraint

tooth
handle
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Clique Tree Inequalities
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1 1 1

1 1 1 1

( ( )) ( ( )) | | 2

1
( ( )) ( ( )) | | (| | )

2

h h

i i

h h

i

i j i

i

t

j i i

j

t

j ji

t

jT

H

H

H hT t

t
T t

x

x H

x

E x E

= = =

= = = =

∂ + ∂ ≥ + +

+
+ ≤ + − −

∑ ∑ ∑

∑ ∑ ∑ ∑
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Trivial inequalities
Degree constraints
Subtour elimination constraints
2-matching constraints, comb inequalities
Clique tree inequalities (comb)
Bipartition inequalities (clique tree)
Path inequalities (comb)
Star inequalities (path)
Binested Inequalities (star, clique tree)
Ladder inequalities (2 handles, even # of teeth)
Domino inequalities
Hypohamiltonian, hypotraceable inequalities
etc.
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Petersen graph, G = (V, F),
the smallest hypohamiltonian graph

10( ) 9

, 11
T
n
T

x F defines a facet of Q

but not a facet of Q n

≤

≥

M. Grötschel & Y. Wakabayashi
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Valid and facet defining inequalities for
STSP: Survey articles

M. Grötschel, M. W. Padberg (1985 a, b)

M. Jünger, G. Reinelt, G. Rinaldi (1995)

D. Naddef (2002)
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n # tours # different facets # facet classes

3 1 0 0

4 3 3 1

5 12 20 2

6 60 100 4

7 360 3,437 6

8 2520 194,187 24

9 20,160 42,104,442 192

10 181,440 >= 52,043.900.866 >=15,379
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Given a system of valid inequalities (possibly of 
exponential size). 

Is there a polynomial time algorithm (or a good 
heuristic) that, 

given a point, 

checks whether the point satisfies all inequalities of the 
system, and 

if not, finds an inequality violated by the given point?
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K

Grötschel, Lovász, Schrijver:
Separation and optimization
are polynomial time equivalent.
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There has been great success in finding exact 
polynomial time separation algorithms, e.g.,

for subtour-elimination constraints

for 2-matching constraints (Padberg&Rao, 1982)

or fast heuristic separation algorithms, e.g.,
for comb constraints

for clique tree inequalities

and these algorithms are practically efficient
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West-Deutschland und Berlin

120 Städte
7140 Variable

1975/1977/1980

M. Grötschel
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In the old days: 
1975, TSP 120

my drawing of 
Germany
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In the old days: 
1975 TSP 120

optimal LP solution 
after second run
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In the old days: 
1975 TSP 120

optimal LP solution 
after second run
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TSP 120
1975
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This line of research has resulted in powerful cutting 
plane algorithms for combinatorial optimization 
problems. 

They are used in practice to solve 
exactly or approximately (including 
branch & bound) large-scale real-world instances.
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Deutschland
15,112

D. Applegate, R.Bixby, 
V. Chvatal, W. Cook

15,112

cities

114,178,716

variables

2001
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Upper bound:

Heuristic  search
Chained Lin-Kernighan

Lower bound:
Linear programming

Divide-and-conquer

Polyhedral combinatorics

Parallel computation

Algorithms & data structures

The LOWER BOUND is the mathematically and
algorithmically hard part of the work
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Work on LP relaxations of the
symmetric travelling salesman polytope

{ }

{ }

|: { }
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Integer Programming Approach
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cutting plane technique for integer and 
mixed-integer programming

Feasible
integer
solutions

LP-based
relaxation

Convex
hull

Objective
function

Cutting
planes
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Root

Integer

v =0 v =1

x =
 0 x =1

y =
0 y =1

z =
0 z = 1

Lower Bound

Integer

Upper Bound

Infeas

z =
 0

z = 1

G
A
P

Remark:  GAP = 0  ⇒ Proof of optimality

Solve LP relaxation:
v=0.5 (fractional)



Martin
Grötschel

85

CO at
Work

A Branching
Tree

Applegate

Bixby

Chvátal

Cook
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CORE LP

as
tro

no
m

ic
al

|V|(|V|-1)/2
C

ut
s:

 S
ep

ar
at

io
n ~   3|V| variables

~1.5|V| constraints

Column generation:  Pricing.
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A Pictorial History of Some
TSP World Records



Some TSP World Records
year authors # cities # variables

1954 DFJ 42/49 1146

1977 G 120 7140

1987 PR 532 141,246

1988 GH 666 221,445

1991 PR 2,392 2,859,636

1992 ABCC 3,038 4,613,203

1994 ABCC 7,397 27,354,106

2001 ABCC 15,112 114,178,716

2004 ABCC 24,978 311,937,753

1998 ABCC 13,509 91,239,786

number
of cities

700x
increase

500,000
times

problem
size

increase

in 51
years

2005 W. Cook, D. Epsinoza, M. Goycoolea 33,810 571,541,145
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ABCC stands for

D. Applegate, B. Bixby, W. Cook, V. Chvátal

almost 15 years of code development

presentation at ICM’98 in Berlin, see proceedings

have made their code CONCORDE available in the Internet
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49 cities
1146 variables

1954

G. Dantzig, D.R. Fulkerson, S. Johnson
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666 Städte
221.445 Variable

1987/1991

M. Grötschel, O. Holland

city list
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13,509
cities

91,239,786
Variables

1998

D. Applegate, R.Bixby, V. Chvátal, W. Cook
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0.01% 
initial gap
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9539 nodes branching tree

48 workstations (Digital Alphas, Intel Pentium IIs, 
Pentium Pros, Sun UntraSparcs)

Total CPU time:  4 cpu years



Overlay of
3 Optimal
Germany
tours

from
ABCC 2001

http://www.math.princeton.edu/
tsp/d15sol/dhistory.html
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311,937,753
variables

ABCC
plus

Keld Helsgaun
Roskilde Univ. 

Denmark.
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The importance of LP in IP solving 
(slide from Bill Cook)
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World Tour, current status
http://www.tsp.gatech.edu/world/

We give links to several images of the World TSP tour
of length 7,516,353,779 found by Keld Helsgaun in 
December 2003. A lower bound provided by the
Concorde TSP code shows that this tour is at most
0.076% longer than an optimal tour through the
1,904,711 cities. 

http://www.dat.ruc.dk/~keld/


Martin Grötschel Institut für Mathematik, Technische Universität Berlin (TUB)
DFG-Forschungszentrum “Mathematik für Schlüsseltechnologien” (MATHEON)
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groetschel@zib.de http://www.zib.de/groetschel
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