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Given a finite set E and a subset 7 of the power set of E (the set of feasible
solutions). Given, moreover, a value (cost, length,...) c(e) for all elements e of E.
Find, among all sets in Z, a set I such that its total value c(I) (= sum of the
values of all elements in I) is as small (or as large) as possible.

The parameters of a combinatorial optimization problem are: (E, 7, c).

min{c(l):Zc(e)Ie I}, where | = 2%and E finite

ecl

Important issues:
= How is / given?
= What is the encoding length of an instance?

= How do we measure running time?
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Important issues:

= How is I given?
= What is the encoding length of an instance?

= How do we measure running time?
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ot Specigl ,,sin?ple“ o
work combinatorial optimization problems
Finding a

= minimum spanning tree in a graph
= shortest path in a directed graph
= maximum matching in a graph

= a minimum capacity cut separating two given nodes of a graph or
digraph

= cost-minimal flow through a network with capacities and costs on all
edges

These problems are solvable in polynomial time.

Is the number of feasible solutions relevant?
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. Opecial ,,hard
work combinatorial optimization problems

= travelling salesman problem (the prototype problem)
= |ocation und routing

= set-packing, partitioning, -covering

= max-cut

= linear ordering

= scheduling (with a few exceptions)

= node and edge colouring

These problems are NP-hard
(in the sense of complexity theory).
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=  Complexity theory came formally into being in the years 1965 — 1972
with the work of Cobham (1965), Edmonds(1965), Cook (1971), Karp(1972)
and many others

= Of course, there were many forerunners (Gauss has written about the number of
elementary steps in a computation, von Neumann, Godel, Turing, Post,...).

=  But modern complexity theory is a the result of the combined research
efforts of many, in particular, of many computer scientists and mathematical
programmers trying to understand the structures underlying computational
processes.
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1965 Polynomial time
Class P
Nondeterministic polynomial time
Class NP
Edmonds, Cobham

1971 Cook "The Complexity of Theorem
Proving Procedures”
introduced the theory of
NP completeness

Hierarchies of complexity classes...
The most important open problem:

P=NP?
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coat - Clay Mathematics Institute

Work dedicated to increasing and disseminating mathematical knowledge

Millennium Prize Problems

Announcement

P versus NP
Rules for the CMI Millennium
Prize Problems

The Hodge Conjecture

Publication Guidelines

Historical Context The Poincaré Conjecture

Press Statement

Press Reaction The Riemann Hypothesis

Yang-Mills Existence and Mass Gap

Prize: Navier-Stokes Existence and Smoothness
1 million $ The Birch and Swinnerton-Dyer Conjecture
for d SO|Ut|0n Announced 16:00, on Wednesday, May 24, 2000

College de France
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Satisfiability: Is there a truth assignmeent to the
following formula:
(=X VX ) A XV X VX)) AKXV =X) A (X VX V=X) A (=X vV —X,)

Truly important Application:
Verification of computer chips and LT
“systems on chips” "

s
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Given n ,cities" and , distances” between them. Find a tour

(roundtri
once suc
small as

n) through all cities visiting every city exactly
N that the sum of all distances travelled is as

possible. (TSP)

The TSP is called symmetric (STSP) if, for every pair of
cities i and j, the distance from i to j is the same as the
one from j to i, otherwise the problem is called
aysmmetric (ATSP).
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Two mathematical formulations of the TSP

1. Version:
Let K, =(V,E) be the complete graph (or digraph)with n nodes
and let c, be the length of e< E. Let H be the setof all
hamiltonian cycles (tours) in K, . Find

min{c(T)|T € H}.

2. Version:
Find a cyclic permutation 7 of {l,...,n} such that

n
2 Cieai
i=1

Is as small as possible.

ZIBE = Does that help solve the TSP?

Martin
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14 The Froblem

CO at
Work (mwen a collection of cities and the cost of travel between each pair of thetn, the traveling salesman

prohlem, or TSP for short, 15 to find the cheapest way of wistting all of the cities and returning to your
WS ctarting point. In the case we study, the travel costs are symmetric m the sense that traveling from city 30
to city ¥ costs just as much as traveling from Y to 2

http://www.tsp.gatech.edu/

The sinplicity of the statement of the problem 15 deceptive -- the TSP 15 one of the most mtensely studied

ZAB problems m computational mathematics and yet no effective solution method 15 kenown for the general
W Casc Indeed, the resolution of the TSP would settle the P versus IMF problem and fetch a 51,000, 000
S sl prize from the Clay MMathematics Institute.
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16 History of the TSP

COat Idathematical problems related to the traveling salesman problem were treated i the 1800z by the Irish
Work mathematician S Willlamn Eowan Harmmilton and by the British mathematician Thomas Penyngton
mmmm [itliman. The picture below 15 a photograph of Hamilton's Icosian Game that requires playvers to
cotmplete tours through the 20 pomnts using only the specified connections. A nice discussion of the early
worl of Hamilton and Eirloman can be found m the bool Grapd Theormy J756-7056 by M. L. Bigas, E.
E. LLovd, and E. J “Wilson, Clarendon Press, Osford, 15976,

Usually quoted as
the forerunner of

the TSP s

The general form of the TSP appears to be have been frst studied by mathematicians starting in the
12205 by Earl Menger in Vienna and Harvard. The problem was later promoted by Hassler "Wihatney
atid Iderrill Flood at Princeton. 4 detaled treattment of the connection between Menger and Whitnewy,
ZD atid the growth of the TS as a topic of study can be found in Alexander Schryver's paper ' On the
Vel history of combinatonal optimzation (all 126070

Grotschel
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bout 100 . . ’
e wie et {ein {ol!

earlier
und wasd er ju thun bat, um Auftrdge
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aber ¢8 Fann durd) eine By a proper choice and
gwemigige Wahl und ECintheilung der Jour, scheduling of the tour one

. . . . ., Can gain so much time
¢
mancdhymal fo viel 3eit gewonnen werden, daf wic that we have to make

e6 nicht glauben wmgehen gu diivfen, aud) ieviiber some suggestions
einige Borfchriften gt geben,

worauf ber RNeifende The most important
bauptf{da Hlidy 3u fehen hat, de8 Hin- und Hevrveiz aspect is to cover as many
ST I locations as possible
fens, mit mebe Pefononue' enmn'td)tm. Die without visiting a
Dauptfede befteht immer davin: fo viele Orte wie |ocation twice
moglich mitgunehmen, obhne den ndmlichen Ort

gweimal herithren zu miiffen,
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2 3 4 & 6 7 8§ 9 1 11

12

13

14 15 1§

G509 5013121019 736 656 601039 7262314
126474 1526 1226 1133 532 14498 1122 2739
54115161184 1084 536 1371 10452724
1157 980 9192711333 1029 2553

478 583996 853 855 1H04

115740 470 3791581

667 455 288 1661

1066 7592320

3281387

1697

479
258
913
Thl
677
71
177
443
591
333

448
241
904
704
681
289
216
454
G50
440

L

478 §19 150
9781127 h42
9461115 469
720 783 455
600 4011033
261 308 687
207 343 592
479 598 206
656 776 933
437 622 §10

1838 1868 1841 17892248

105 336 417
b2 287 406
237 448
636

Table 2. The distance table for Tllymes 2000.

The distance table

Table 1. Polar ecoordinales of the 16 locations in the Mediierranean.

1 | Tihaca 35.24N | 20.42E
2 | Troy 39.57TN | 26.15E
d | Maronia 40.56N | 25.32F
4 | Malea J6.26N | 2).12E
5 | Djerba 33.43N | 10.54E
G | Favignana | 37.56N | 12.19E
T | Usiica 35.42N | 13.11E
8 | Zakinihos | 37.52N | 20.44E
4 | Bonifaccio | 41.23N | 9.10E
10 | (ireeo 41.1TN | 13.05E
11 | Gibraltar | 36.08N | 5.21W
12 | Slromboli | 38.47TN | 15.13E
13 | Messina 38.15N | 15.35E
14 | Taormina | 37.51N | 15.17E
15 | Birzebbuga | 35.49N | 14.32E
1§ | Corlu 30.96N | 19.56E
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optimal ,,Ulysses tour"
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I\/I al e n n aC h Zah I e n » Die Prinzessin muss auf alles verzichten, was
ihr lieb und teuer ist. Verbinde die Punkte, und
] du weiBt, wen sie auf dem Schloss auch
noch zuriicklassen musste !«
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= Flinders Petrie (1853-1942) and the Luxor graves

= In the words of James Baikie, author of the book A Century of
Excavation in the Land of the Pharaohs, "if the name of any one man
must be associated with modern excavation as that of the chief
begetter of its principles and methods, it must be the name of
Professor Sir W.M. Flinders Petrie. It was he...who first called the
attention of modern excavators to the importance of "unconsidered
trifles" as means for the construction of the past...the broken
earthenware of a people may be of far greater value than its most
gigantic monuments."

= Petrie began to analyze the grave goods methodically. Grave A might
contain certain types of pot in common with Grave B; Grave B also
contained a later style of pot, the only type to be found in Grave C. By
writing cards for each grave and filing them in logical order, Petrie
established a full sequence for the cemetery, concluding that the last
graves were probably contemporary with the First Dynasty. The
development of life along the Nile thus was revealed, from early
settlers to farmers to political stratification.

1B
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. 1he TSP In archeology:
work Flinders Petrie’s contribution

= Introduction of the "Hamming distance of graves”, before
Richard Wesley Hamming (1915 —1998) introduced it in

mathematics.

(The Hamming distance is used in telecommunication to count the number of flipped
bits in a fixed-length binary word, an estimate of error. Hamming weight analysis of bits
is used in several disciplines including information theory, coding theory, and

cryptography.)
= Definition of the hamiltonian path problem through
“graves”.
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Literature: more than 800 entries in Zentralblatt/Math

Zbl 0562.00014 Lawler, E.L.(ed.); Lenstra, J.K.(ed.); Rinnooy Kan,
A.H.G.(ed.); Shmoys, D.B.(ed.)
The traveling salesman problem. A guided tour of combinatorial
optimization. Wiley-Interscience Series in Discrete Mathematics. A Wiley-
Interscience publication. Chichester etc.: John Wiley \& Sons. X, 465 p.
(1985). MSC 2000: *00Bxx 90-06

Zbl 0996.00026 Gutin, Gregory (ed.); Punnen, Abraham P.(ed.)
The traveling salesman problem and its variations. Combinatorial
Optimization. 12. Dordrecht: Kluwer Academic Publishers. xviii, 830 p.
(2002). MSC 2000: *00B15 90-06 90Cxx
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SOLUTION OF A LARGE-SCALE TRAVELING-SALESMAN
PROBLEM*

G. DANTZIG, R. FULKERSON, anp S. JOHNSON
The Rand Corporation, Santa Monica, California
(Received August 9, 1954)

It is shown that a certain tour of 49 cities, one in each of the 48 states and
Washington, D. C., has the shortest road distance.

ZA0B

Martin
Grotschel




" The Seminal DFJ-Paper of 1954
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4 I

SOLUTION OF A LARGE SCALE TRAVELING
SALESMAN PROBLEM |

by

G. Dantzig, R. Fulkerson
and
S. Johnson

P—510

12 April 1554 J,/

(5. Dantzig, R. Fulkerson, S. Johnson, Selution of a Large Scale Traveling
Salesman Problem, Paper P-510, The RAND Corporation, Santa Monica,
California, [12 April] 1954. [53, 984, 997, 999, 1003]

(5. Dantzig, R. Fulkerson. S. Johnson, Solution of a large-scale traveling-
salesman problem, Journal of the Operations Hesearch Society of America

IZAIBR 2 (1954) 303-410. [6, 53, 984, 995

Martin
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Since there are only a finite
number of possibilities (at most 14 (n—1)!) to consider, the problem 1s
to devise a method of picking out the optimal arrangement which is

reasonably efficient for fairly large values of n.
For undirected tours, the symbol z;," will be treated identically with

x;; 80 that we may rewrite (1) as

I=1

The problem is to find the minimum of the linear form
D(z)=2_ dis 21, (3)

>

where the z,, =0 or 1 and the z,,=1 form a tour, and where the sum-
mation in (3) extends over all indices (I,J) such that I>J.
To make a linear programming problem out of this (see ref. 2) one

397

needs, as we have observed, a way to describe tours by more linear re-
straints than that given by (2). This is extremely difficult to do as illus-
trated by work of I. Heller' and H. Kuhn.®* They point out that such
relations always exist. However, there seems to be no simple way to
characterize them and for moderate size n the number of such restraints

Martin N \
Sl appears to be astronomical. In spite of these difficulties, this paper will



An mmportant class orf conditions that tours satisity, which eXcludes
many non-tour cases satisfying (2), are the ‘loop conditions.” ‘These are
linear inequality restraints that cxclude subeycles or loops. Consider a
non-tour solution to (2) which has a subtour of n,<n cities; we note that
the sum of the x,; for those links (7,J) in the subtour is #,. Hence we can

&

AND JOHNSON

308 DANTZIG, FUlLnpson
bl |

climinate this type of solution by in
T15 over all links (1,J) connee
than n,, ie.,

| \posing the condition that the sum of
Ling cities in the subset S of n, cities be less

2w <m—1 @)

where the summation extends over all

i I.J) with I and J in the n, cities S.
From (2) we note that two othe A N " :

r conditions, each equivalent to (4), are
2 x,<n —n;—1, (5)
L]

where S means the summation ey,

nor J is in S, and nds over all (I,J) such thatlnmtjher I

2o a2, | (6)

:ﬁl:!erc S8 means that the summ
151 S and J not in S,

TEere are, however, other may complicated types of restraints which
sometimes must be added to (2) in addition to an assortment of loop con-

(]il-tltl.';]nﬁ in _order to exclude solutiong involving fractional weights z.,.
N — 4.9'*?“'}’ case we needed {wq such conditions. However. later when

ttion extends over all (I,J) such that /
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The preprint version is much clearer than the published paper. The editors
have replaced abstract insight by a sequence of examples and thus almost
destroyed the “real” contents of the paper.

The authors outline the branch and bound technique.

They explain the cutting plane methodology and observe clearly where the
difficulties and chances of this method are.

They mention the importance of heuristics.

They are modest:

CONCLUDING REMARK

It 1s clear that we have left unanswered practically any question one
might pose of a theoretical nature concerning the traveling-salesman
problem; however, we hope that the feasibility of attacking problems
involving a moderate number of points has been successfully demon-
strated, and that perhaps some of the ideas can be used in problems of
similar nature.
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in Adjusted Uriste The Authors
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Thix tour has o leagth of 12,345 miles when
the odjusted units ore sxpressed fn miles

ZD Fia. 16. The optimal tour of 40 cities.
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o The Travelling Salesman Problem
Work and Some of its Variants

= The symmetric TSP

= The asymmetric TSP

= The TSP with precedences or time windows
= The online TSP

= The symmetric and asymmetric m-TSP

= The price collecting TSP

= The Chinese postman problem
(undirected, directed, mixed)

i = Bus, truck, vehicle routing
= Edge/arc & node routing with capacities
= Combinations of these and more

ZAIB
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. Nttp://www.densis.fee.unicamp.br/—m
work goscato/TSPBIB_home.html

TSPBIB Home Page

Thiz page mtends to be a comprehensive hsting of papers, source code, preprints, technical repotts, etc,
available on the Internet about the Traveling Salesman Problem (TSF) and some associated problems.

Flease send us information about any ofher work vou consider i should be included in this page.

Pablo Moscato

emils moscato@densis, fee.unicamp. by
ZD The picture above shows an mstance of the Euclidean, Planar TS

emails moscale@eacr.caltech edu %
and the optimal curve among the set of cities.
Thiz mstance has been named MNPeanoe Order 2.

Martin
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An excellent TSP Web site
work Nttp://www.tsp.gatech.edu/index.html

CO at

Proctor and Gamble's
1962 TSP Contest

WERE'E THE EBFRSET Rlaal

CENLE s N W

=» Contest

=»= 0%Sopt Linear Programiming Sohver
The executable versions of the Caoncaorde TSP code dncluding
the Windows GUIY are built with the QSopt callable library.

ZAIB
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Concorde TSP Solver 24 978

Cities in Sweden

for Windows

Be DM Eibs pevass S few e S e
e P C D T

Far 0. el T3

== Concorde

These pages are devoted to the histary of TSP computation and to on-gaing
research towards the solution of large-scale examples of the TSP. The

Concorde code is due to David Applegate, Robert Bikby, VaSek Chyatal, and
Wlilliarm monle

w0 LITL D2 smsarem A
34 BA2S0T | OFf meconex

== Sweden
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.« Application list from
work ©ttp://www.tsp.gatech.edu/index.html

Applications

= Genome

= Starlight
= Scan Chains We will see many

= DNA TSP applications.
=  Whizzkids

= Baseball

| = Coin Collection

= Airport Tours
= USA Trip
= Sonet Rings

Z[l = Power Cables

Martin
Grotschel


http://www.tsp.gatech.edu/apps/genome.html
http://www.tsp.gatech.edu/apps/starlight.html
http://www.tsp.gatech.edu/apps/scan.html
http://www.tsp.gatech.edu/apps/dna.html
http://www.tsp.gatech.edu/apps/whizzkids.html
http://www.tsp.gatech.edu/apps/ballparks.html
http://www.tsp.gatech.edu/apps/coins.html
http://www.tsp.gatech.edu/apps/airports.html
http://www.tsp.gatech.edu/apps/usatrip.html
http://www.tsp.gatech.edu/apps/sonet.html
http://www.tsp.gatech.edu/apps/cables.html
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Introduction

The TSP and some of its history
The TSP and some of its variants
Some applications

Heuristics

How combinatorial optimizers do it
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work Need for Heuristics

= Many real-world instances of hard combinatorial optimization
problems are (still) too large for exact algorithms.

= QOr the time limit stipulated by the customer for the solution is too
small.

= Therefore, we need heuristics!
= Exact algorithms usually also employ heuristics.

= What is urgently needed is a decision guide:

Which heuristic will most likely work well on what problem ?

ZA0B

Martin
Grotschel




41

CO at i - -
work Primal and Dual Heuristics

Primal Heuristic: Finds a (hopefully) good feasible solution.

= Dual Heuristic: Finds a bound on the optimum solution value
(e.qg., by finding a feasible solution of the LP-dual of an LP-relaxation of a

combinatorial optimization problem).

Minimization:

|dual heuristic value < optimum value < primal heuristic value|

berlin

@} (In maximization the inequalities are the other way around.)

ZA0B

Martin
Grotschel
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work Primal and Dual Heuristics

Primal and Dual Heuristics give rise to worst-case guarantee:

Minimization:
optimum value < primal heuristic value
< (1+¢) optimum value

dual heuristic value < primal heuristic value
< (1+¢) dual heuristic value

(In maximization the inequalities are the other way around.)

P
]
Y

ZAIB

Martin
Grotschel
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work Heuristics: A Survey

= Greedy Algorithms

= Exchange & Insertion Algorithms

= Neighborhood/Local Search

= Variable Neighborhood Search, Iterated Local Search
= Random sampling

= Simulated Annealing

= Taboo search

= Great Deluge Algorithms

= Simulated Tunneling

= Neural Networks

= Scatter Search

= Greedy Randomized Adaptive Search Procedures

ZA0B

Martin
Grotschel




44

CO at

work Heuristics: A Survey

= Genetic, Evolutionary, and similar Methods
= DNA-Technology

= Ant and Swarm Systems

= (Multi-) Agents

= Population Heuristics

= Memetic Algorithms (Meme are the "missing links” gens and mind)
= Space Filling Curves

= Fuzzy Logic Based...

= Fuzzy Genetics-Based Machine Learning

= Fast and Frugal Method (Psychology)

= Ecologically rational heuristic (Sociology)

= Method of Devine Intuition (Psychologist Thorndike)

ZAIB

Martin
Grotschel A ELE
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work A Unfortunate Development

= There is a marketing battle going on with unrealistic, or even

ideological, claims about the quality of heuristics — just to catch
attention

= Linguistic Overkill:

ZA0B

Martin
Grotschel
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work A Quote

Quote:

Genetic Programming is an evolutionary computation technique
which searches for those computer programs that best solve a
given problem.

(Will this also solve P = NP?)

ZA0B

Martin
Grotschel




v Kalyanmoy Deb:

coat ,,Multi-objective optimization using evolutionary
Work' algorithms* (Wiley, 2001)

from the Preface

= Optimization is a procedure of finding and comparing feasible
solutions until no better solution can be found.

= Evolutionary algorithms (EAs), on the other hand, can find
multiple optimal solutions in one single simulation run due to
their population-approach. Thus, EAs are ideal candidates for
solving...

f)

ZAIB

Martin
Grotschel
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work Heuristics: A Survey

Currently best heuristic with respect to worst-case guarantee:
Christofides heuristic

= compute a shortest spanning tree

= compute a minimum perfect 1-matching of the graph induced by the odd
nodes of the minimum spanning tree

= the union of these edge sets is a connected Eulerian graph
= turn this graph into a TSP-tour by making short-cuts.

For distance functions satisfying the triangle inequality, the resulting tour is at
most 50% above the optimum value

o o—°
.\O

ZAIB

Martin
Grotschel
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.. Understanding Heuristics,

vek Approximation Algorithms

= worst case analysis
= There is no polynomial time approx. algorithm for STSP/ATSP.
= Christofides algorithm for the STSP with triangle inequality
= average case analysis
= Karp's analysis of the patching algorithm for the ATSP
= probabilistic problem analysis
= for Euclidean STSP in unit square: TSP constant 1.714..n">
= polynomial time approximation schemes (PAS)

= Arora's polynomial-time approximation schemes for
Euclidean STSPs

= fully-polynomial time approximation schemes (FPAS)
= not for TSP/ATSP but, e.g., for knapsack (Ibarra&Kim)

= These concepts — unfortunately — often do not really help to guide
practice.

J * experimental evaluation
4B = Lin-Kernighan for STSP (DIMACS challenges))

Martin
Grotschel
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work  Polyhedral Theory (of the TSP)
STSP-, ATSP-, TSP-with-side-constraints-

Polytope:= Convex hull of all incidence
vectors of feasible tours

Qr=conv{y' eZ"|TtourinK,}  (x; =1if ijeT, else =0)

To be investigated:

= Dimension

S = Equation system defining the affine hull
N = Facets

= Separation algorithms
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Qr=conv{y' eZ"|TtourinK,}  (x; =1if ijeT, else =0)

— {xeR"|x(5(i)) =2 VieV
X(EW)) W |-1 YWV \{1},3 <W |<Kn-3
0<x; <1 Vije E}
= [P formulation
minc' X
X(o(1)) =2 VieV
X(EW)) W |-1 YWV \{1},3 <JW |<n-3
X; €10,1} Vije E

= The LP relaxation is solvable in polynomial time.

Martin

Grotschel
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work DImension of the sym TSP polytope

= Proof
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work Relation between IP and LP-relaxation

Open Problem:

= [If costs satisfy the triangle inequality, then
IP-OPT <= 4/3 LP-SEC
IP-OPT <= 3/2 LP-SEC (Wolsey)
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work Facets of the TSP polytope

= Finding facets!

= Proving that an inequality defines a facet!

= Finding exact or heuristic separation algorithms to be used
in a cutting plane algorithm!
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An 1nteger programming formulation from a textbook:

minc' X

X(o(1)) =2 VieV

X(E)=n

X(C)<|C|-1 VCc E,Canonhamiltonian cycle
X; €10,1} Vij e E

What would you say?




57

Subtour elimination constraints:

CO at

work equivalent versions

= SEC constraints

= cut constraints
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.. ceneral cutting plane theory:
work Gomory Cut (the ,,rounding trick®)

Let P={xeR"|Ax<b} be a polyhedron, and we
suppose that A and b are integral.

We would like to describe the convex hull P; of
all integral points in P.

Observation: Foranyy e " Observation: Forany y €
y'Ax<y'b |y Ax|<|y'b|
1s a valid inequality for P. is a valid inequality for P,.

-3 Blva b 1|

T
72013 Choose y so that Y;a; is integral: Ly AXJ = Z > yax; < {
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= Does the rounding procedure deliver P;?

= How many rounds of rounding do we need?
= QOther better methods?
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coat G€Neral cutting plane theory:

Yo' Gomory Mixed-Integer Cut

= Given y,x, e¢ ., and
y+) ax,=d=|d|+f, f>0
Rounding: Where a; =|a; |+ f;, define
t=y+y (| % f<f)+ X ([a|x: ;> f)eg
Then
DX f <)+ (f =1k f, > f=d -t
Disjunction:
t<|d = (fx:f,<f)xf

t>[d]= > ((1-)x: f;> f)=1-1

Combining

Z((fj/f)xj 1y s f)+2([(1— f,-)/(l— f)]xj f > f)21
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work From SECS to

= 2-matching constraints
= combs
= clique tree inequalities

= efc.
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work  Polyhedral Theory of the TSP

Comb inequality

2-matching
constraint

handle
tooth
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Work
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Work Cligue Tree Inequalities

h h
D X@H )+ D x@(T ) 2D | H |+h+2
i=1 j=1 i=1

h h
D XEMH )+ D XECT N H [+ D07 [ )
=1
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= Trivial inequalities

= Degree constraints

= Subtour elimination constraints

= 2-matching constraints, comb inequalities

= Clique tree inequalities (comb)

= Bipartition inequalities (clique tree)

= Path inequalities (comb)

k| = Star inequalities (path)

= Binested Inequalities (star, clique tree)

= Ladder inequalities (2 handles, even # of teeth)
= Domino inequalities

= Hypohamiltonian, hypotraceable inequalities

= efc.
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work A very special case

Petersen graph, G = (V, F),
the smallest hypohamiltonian graph

x(F)<9 defines a facet of Q;°

but not a facet of Q;,n>11

M. Grotschel & Y. Wakabayashi
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o Valid and facet defining inequalities for
work STSP: Survey articles

= M. Grotschel, M. W. Padberg (1985 a, b)
= M. Junger, G. Reinelt, G. Rinaldi (1995)

= D. Naddef (2002)
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Work Counting Tours and Facets
n # tours # different facets # facet classes
3 1 0 0
4 3 3 1
5 12 20 2
6 60 100 4
7 360 3,437 6
8 2520 194,187 24
9 20,160 42,104,442 192
10 181,440 >=52,043.900.866 >=15,379

ZAIB

Martin
Grotschel
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Work Separation Algorithms

= Given a system of valid inequalities (possibly of
exponential size).

= [s there a polynomial time algorithm (or a good
heuristic) that,
= given a point,

= checks whether the point satisfies all inequalities of the
system, and

= if not, finds an inequality violated by the given point?

ZAIB

Martin
Grotschel
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work Separation

Grotschel, Lovasz, Schrijver:
Separation and optimization
are polynomial time equivalent.

ZA0B

Martin
Grotschel
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Work Separation Algorithms

= There has been great success in finding exact
polynomial time separation algorithms, e.g.,

= for subtour-elimination constraints

= for 2-matching constraints (Padberg&Rao, 1982)
= or fast heuristic separation algorithms, e.q.,

= for comb constraints

= for clique tree inequalities

= and these algorithms are practically efficient
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work SEC Separation

=
bl
]

ZAIB

Martin
Grotschel
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w. West-Deutschland und Berlin

Work

120 Stadte
7140 Variable

1975/1977/1980

M. Grotschel
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Work Polyhedral Combinatorics

This line of research has resulted in powerful cutting
plane algorithms for combinatorial optimization
problems.

They are used in practice to solve
exactly or approximately (including
branch & bound) large-scale real-world instances.
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work HOW do we solve a TSP like this?

= Upper bound: = Lower bound:
Heuristic search = Linear programming
= Chained Lin-Kernighan = Divide-and-conquer

= Polyhedral combinatorics

Parallel computation

Algorithms & data structures

The LOWER BOUND is the mathematically and
algorithmically hard part of the work

ZAIB

Martin
Grotschel
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coat WOrk on LP relaxations of the
Work: symmetric travelling salesman polytope

Qr ==conv{y' €Z"|T tour in K_}

minc' X

X(o(1)) =2 VieV

X(EW)) W |-1 YWV \{1},3 <W|£n-3
0<x; <1 Vije E
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.. cutting plane technique for integer and
work Mixed-integer programming

Feasible
integer
solutions

Objective
function

Convex

LP-based
relaxation

Cutting
i planes
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coat | b_-phased Branch & Bound

Work

Solve LP relaxation:

@ v=0.5 (fractional)
R — QG

Oz

/

/
YV,

A\

g

Remark: GAP = 0 = Proof of optimality

ZA0B

Martin
Grotschel
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A Bl‘anCh | ng sw24978 Branching Tree

CO at , , ) _ ) :
Work T re e Computation Carried out in Parallel at Georgia Tech, Princeton, Rice
Applegate
Bixby
Chvatal
Cook

7/

yZAlB

Martin
Grotschel
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- VIAVI-1)/2 "

CORELP | <= (Column generation: Pricing. <===p

N ~ 3|V variables

~1.5|V| constraints

astronomical

=) (Cuts: Separation e=p

ZA0B

Martin
Grotschel
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number
of cities

700x
InCrease

500,000
times
problem
Size
Increase

in 51
years

Some TSP World Records

year authors # cities # variables
1954 DFJ 42/49 1146
1977 G 120 7140
1987 PR 532 141,246
1988 GH 666 221,445
1991 PR 2,392 2,859,636
1992 ABCC 3,038 4,613,203
1994 ABCC 7,397 27,354,106
1998 ABCC 13,509 91,239,786
2001 ABCC 15,112 114,178,716
2004 ABCC 24,978 311,937,753
2005 w. Cook, D. Epsinoza, M. Goycoolea 33,810 571,541,145
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ABCC stands for
D. Applegate, B. Bixby, W. Cook, V. Chvatal

= almost 15 years of code development
= presentation at ICM98 in Berlin, see proceedings
.~ = have made their code CONCORDE available in the Internet
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49 cities
1146 variables

1954

G. Dantzig, D.R. Fulkerson, S. Johnson

ZA0B

Martin
Grotschel
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Work Die Reise um die Welt
666 Stadte
city list 221.445 Variable

1987/1991

M. Grotschel, O. Holland

Martin
Grotschel
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work  USA cities with population =500
U PN 13,509
| : 73 *:, Cities

. rorme 91,239,786

Q . Variables
REsy J (&8 1998

D. Applegate, R.Bixby, V. Chvatal, W. Cook

Martin
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19981200 —
19981250 —
19981300
19981350 —
19981400 —
19081450 —
19081500 —
19981550 —
19981600
199881850 —
199881700 —
19981750 —

19081860 —
19981800 —
19981850 —
19982000 —
19882050 —
19982100 —

19082200 —

19982260 —
19982300 —

19082550 —
19082600 —

19982700

18982860 —

10081800 |

10082150 —

19982360 — |
19982400 7
19882480 — 1
10082500 —

19982650 —

19982750 — |
19982800 — |

Martin
Grotschel

0.01%
initial gap
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= 9539 nodes branching tree

= 48 workstations (Digital Alphas, Intel Pentium IIs,
Pentium Pros, Sun UntraSparcs)

= Total CPU time: 4 CpU years




Overlay of
3 Optimal
Germany
tours

from
ABCC 2001

o C-V Tour

http://www.math.princeton.edu/
tsp/d15sol/dhistory.html




VENTERALE NS
%

TSP | oy

Sweden Tour
24,978 Citles

o &2 100 Wilnmpters
] LRI
Lariuer Cisnborima’ oset Frssetion, il SPEIN.
T

311,937,753
variables

Morwoegran
[L ,,l'rﬂ'll

ABCC

plus
Keld Helsgaun
Roskilde Univ.
Denmark.

Martin
Grotschel
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coat | NE IMportance of LP in IP solving
Work™ (slide from Bill Cook)

1,904,711-City World TSP, 2001

K Optimality Gap

0 0.235%
8 0.190%
12 0.135%
14 0.111%
16 0.103%

Solution of LP Problems takes over 99% of CPU time
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coat VWOrld Tour, current status

Work

http://www.tsp.gatech.edu/world/

We give links to several images of the Wor

d TSP tour

of length 7,516,353,779 found by Keld Helsgaun in

December 2003. A lower bound provided by the
Concorde TSP code shows that this tour is at most

0.076%b longer than an optimal tour throu
peed 1,004,711 cities.

Grotschel
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http://www.dat.ruc.dk/~keld/
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The Travelling Salesman Problem
and some Applications
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Martin Grotschel
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ZD groetschel@zib.de
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