01M2 Lecture Basics of Polyhedral Theory

Martin Grötschel

Block Course at TU Berlin "Combinatorial Optimization at Work" October 4 - 15, 2005

- Institut für Mathematik, Technische Universität Berlin (TUB)
- DFG-Forschungszentrum "Mathematik für Schlüsseltechnologien" (MATHEON)
- Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

1. Linear programs
2. Polyhedra
3. Algorithms for polyhedra

- Fourier-Motzkin elimination
- some Web resources

4. Semi-algebraic geometry
5. Faces of polyhedra
6. Linear programs
7. Polyhedra
8. Algorithms for polyhedra

- Fourier-Motzkin elimination
- some Web resources

4. Semi-algebraic geometry
5. Faces of polyhedra
$\max C_{1} X_{1}+c_{2} X_{2}+\ldots+c_{n} X_{n}$ subject to

$$
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1}
$$

$$
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2}
$$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
$$

$$
x_{1}, x_{2}, \ldots, x_{n} \geq 0
$$

$\max C^{T} X$
$A x=b$

$$
x \geq 0
$$

linear program in standard form

$$
\begin{gathered}
\max c^{T} x \\
A x=b \\
x \geq 0
\end{gathered}
$$

linear
program
in
standard form

$$
\begin{gathered}
\max c^{T} x \\
A x \leq b \\
-A x \leq-b \\
-x \leq 0
\end{gathered}
$$

$$
\begin{gathered}
\max c^{T} x^{+}-c^{T} x^{-} \\
A x^{+}+A x^{-}+I s=b \\
x^{+}, x^{-}, s \geq 0 \\
\left(x=x^{+}-x^{-}\right)
\end{gathered}
$$

1. Linear programs
2. Polyhedra
3. Algorithms for polyhedra

- Fourier-Motzkin elimination
- some Web resources

4. Semi-algebraic geometry
5. Faces of polyhedra

为

(
(
(
(
(
(

Parn
(
n

.

 \qquad

co at Work A Polytope in 3－dimensional space
 \qquad

正路

－

0

．
｜
－

品

品
品品品

 － － ， － － － － ＝
 \square
品
足足品品品品品
（a）
－

\qquad

Abstract

\qquad \qquad － \square

\square

Abstract

\qquad

\qquad
\qquad

CO at Work
 \section*{Polyhedra-Poster
 \section*{Polyhedra-Poster

 http:/ / www.peda.com/ posters/ Welcome.html}

 http:/ / www.peda.com/ posters/ Welcome.html}

Polyhedra
 Pedagofuery software wworeda.comfooly

Platonic Solids

Poster
which displays all convex polyhedra with regular polygonal faces

Archimedean Solids

Prisms and Anti-Prisms

Johnson Solids

(9200.203 Lat

EG-Models - a new archive of electronic geometry models Internal Links: Upload Review
Home Models No Applet Search Submit Instructions Links Help/Copyright

Managing Editors:

Michael Joswig, Konrad Polthier
Editorial Board:
Thomas Banchoff, Claude Paul Bruter, Antonio F. Costa, Ivan Dynnikov, John M. Sullivan, Stefan Turek

Note: Some browser versions do not display Java applets. Please, press the 'No Applet' button in the navigation bar to avoid using Java.

Anschauliche Geometrie - A tribute to Hilbert, Cohn-Vossen, Klein and all other geometers.

Electronic Geometry Models

This archive is open for any geometer to publish new geometric models, or to browse this site for material to be used in education and research. These geometry models cover a broad range of mathematical topics from geometry, topology, and to some extent from numerics.

Click "Models" to see the full list of published models. See here for details on the submission and review process.
Selection of recently published models

Model 2003.04 .001 by Anders Björner and Frank H. Lutz: A 16-Vertex Triangulation of the Poincaré
Homology 3-Sphere and Non-PL Spheres with Few Vertices.
Section: Discrete Mathematics / Simplicial Manifolds
We present a 16 -vertex triangulation of the Poincaré homology 3 -sphere that can be taken as the starting point for a series of non-PL d-spheres with $d+13$ vertices in dimensions $d \geqslant 5$.

Model 2001.11.001 by John M. Sullivan: Tight Clasp.
Section: Curves / Space Curves
This model simulates the shape of a tight clasp, that is, a ropelength-minimizing configuration of two linked arcs with endpoints fixed in parallel planes.

Model 2002.03 .001 by Shimpei Kobayashi: Bubbletons and their parallel surfaces in Euclidean 3-space. Section: Surfaces / Mean Curvature Surfaces

We show one of the cylinder bubbletons in Euclidean 3-space which are constant mean curvature surfaces derived by applying the Backlund-Bianchi transformation to the cylinder. We also show the parallel constant mean curvature surface of this cylinder bubbleton.

\square

CO

! |

4
Adresse 苞httए://www.ac-noumea.nc/maths/amc/polyhedr/index_e.htm

a ride through the polyhedra world

＂Geometry is a skill of the eyes and the hands as well as of the mind．＂（J．Pederson）

the convex polyhedra
the non convex polyhedra
interesting polyhedra
constructions
and other stuff
the LiveGraphics3D applet
（directions for use）and other interesting sites

Plato＇s five regular polyhedra

The regular polyhedra are，in the space，the analogues of the regular polvgons in the plane ；their faces are regular and identical polygons，and their vertices，regular and identical， are regularly distributed on a sphere．Their analogues in dimension four are the reqular polvtopes．
As we do for the polygons，we recognize a convex polyhedron by the very fact that all its diagonals（segments which join two vertices not joined by an edge）are inside the polyhedron．
Whereas there exist an infinity of regular convex polygons，the regular convex polyhedra are only five
The angle of a regular polygon with n sides is $180^{\circ}\left(\mathrm{n}-2 \mathrm{~V} \mathrm{n}: 60^{\circ}\right.$（triangle）， 90°（square）， 108°（pentagon）， 120°（hexagon）．．．
proof ：On a vertex of a regular polyhedron the sum of the face＇s angles（there are at least three）must be smaller than 360° ． Since $6 \times 60^{\circ}=4 \times 90^{\circ}=3 \times 120^{\circ}=360^{\circ}<4 \times 108^{\circ}$ ，there are only five possibilities： 3,4 ，or 5 triangles， 3 squares or 3 pentagons．

faces angle

octahedron 8 equil．triangles
6
12

tetrahedron 4 equil．triangles

dodecahedron
20 equil．triangles 12 regul．pentagons

12	20
30	30
$138^{\circ} 11^{\prime}$	$116^{\circ} 34^{\prime}$

The LiveGraphics3D applet by Martin Kraus（University of Stuttgart）allows you to move these polyhedra with your mouse．

The regular octahedron＇s edges are the sides of three squares with the same centre and orthogonal by pairs．

The regular icosahedron＇s vertices are the vertices of three golden rectangles（sides in golden ratio 1．618．．．） with the same centre and orthogonal by pairs．

Polyhedra have fascinated people work during all periods of our history

From Livre de Perspective by Jean Cousin, 1568.

- book illustrations
- magic objects
- pieces of art
- objects of symmetry
- models of the universe

Linear programming lives (for our purposes) in the n-dimensional real (in practice: rational) vector space.

- convex polyhedral cone: conic combination
(i. e., nonnegative linear combination or conical hull)
of finitely many points
$K=$ cone(E)
- polytope: convex hull of finitely many points:
$P=\operatorname{conv}(\mathrm{V})$
- polyhedron: intersection of finitely many halfspaces

$$
P=\left\{x \in \mathbf{R}^{n} \mid A x \leq b\right\}
$$

I mportant theorems work of polyhedral theory (LP-view)

When is a polyhedron nonempty?

When is a polyhedron nonempty?

The Farkas-Lemma (1908):

A polyhedron defined by an inequality system

$$
A x \leq b
$$

is empty, if and only if there is a vector y such that

$$
y \geq 0, y^{T} A=0^{T}, y^{T} b<0^{T}
$$

Theorem of the alternative

Which forms of representation do polyhedra have?

I mportant theorems
 work of polyhedral theory (LP-view)
 CO at

Which forms of representation do polyhedra have?
Minkowski (1896), Weyl (1935), Steinitz (1916) Motzkin (1936)
Theorem: For a subset P of \mathbf{R}^{n} the following are equivalent:
(1) P is a polyhedron.
(2) P is the intersection of finitely many halfspaces, i.e., there exist a matrix A und ein vector b with

$$
P=\left\{x \in \mathbf{R}^{n} \mid A x \leq b\right\} . \quad \text { (exterior representation) }
$$

(3) P is the sum of a convex polytope and a finitely generated (polyhedral) cone, i.e., there exist finite sets V and E with

$$
P=\operatorname{conv}(\mathrm{V})+\operatorname{cone}(\mathrm{E}) . \text { (interior representation) }
$$

work of polyhedral theory (LP-view)
 I mportant theorems

 there exist a matrix A und ein vector b with Oork[^0] (

Carathéodory's Theorem (1911), 1873 Berlin - 1950 München
Let $x \in P=\operatorname{conv}(\mathrm{V})+\operatorname{cone}(\mathrm{E})$, there exist

$$
v_{0}, \ldots, v_{s} \in \mathrm{~V}, \lambda_{0}, \ldots, \lambda_{s} \in \mathbf{R}_{+}, \sum_{i=0}^{s} \lambda_{i}=1
$$

and $\mathrm{e}_{s+1}, \ldots, e_{t} \in \mathrm{E}, \mu_{\mathrm{s}+1}, \ldots, \mu_{\mathrm{t}} \in \mathbf{R}_{+}$with $\mathrm{t} \leq \mathrm{n}$ such that

$$
x=\sum_{i=1}^{s} \lambda_{i} v_{i}+\sum_{\mathrm{i}=s+1}^{\mathrm{t}} \mu_{\mathrm{i}} e_{i}
$$

(1)	$-x 2<=$
$(2)-x 1-x 2$	$<=-1$
$(3)-x 1+x 2$	$<=3$
$(4)+x 1$	$<=3$
$(5)+x 1+2 x 2<=9$	

$$
A x \leq b
$$

The ς-representation (interior representation)

$$
P=\operatorname{conv}(\mathrm{V})+\operatorname{cone}(\mathrm{E}) .
$$

CO at

 work Example: the Tetrahedron
$y \in \operatorname{conv}\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$

$$
\begin{aligned}
y_{1}+y_{2}+y_{3} & \leq 1 \\
y_{1} & \geq 0
\end{aligned}
$$

$$
y_{2} \geq 0
$$

$$
y_{3} \geq 0
$$

CO at work Example: the cross polytope

$$
P=\operatorname{conv}\left\{e_{i},-e_{i} \mid i=1, \ldots, n\right\} \subseteq \mathbf{R}^{n}
$$

$$
P=\operatorname{conv}\left\{e_{i},-e_{i} \mid i=1, \ldots, n\right\} \subseteq \mathbf{R}^{n}
$$

$$
P=\left\{x \in \mathbf{R}^{n} \mid a^{T} x \leq 1 \forall a \in\{-1,1\}^{n}\right\}
$$

CO at

 work Example: the cross polytope$$
\begin{aligned}
& P=\operatorname{conv}\left\{e_{i},-e_{i} \mid i=1, \ldots, n\right\} \subseteq \mathbf{R}^{n} \\
& P=\left\{x \in \mathbf{R}^{n}\left|\sum_{i=1}^{n}\right| x_{i} \mid \leq 1\right\} \\
& P=\left\{x \in \mathbf{R}^{n} \mid a^{T} x \leq 1 \forall a \in\{-1,1\}^{n}\right\}
\end{aligned}
$$

1. Linear programs
2. Polyhedra
3. Algorithms for polyhedra

- Fourier-Motzkin elimination
- some Web resources

4. Semi-algebraic geometry
5. Faces of polyhedra

Polyedra in linear programming

- The solution sets of linear programs are polyhedra.
- If a polyhedron $P=\operatorname{conv}(\mathrm{V})+\operatorname{cone}(\mathrm{E})$ is given explicitly via finite sets V und E, linear programming is trivial.
- In linear programming, polyhedra are always given in H-representation. Each solution method has its ,,standard form".

Fourier-Motzkin Elimination

- Fourier, 1847
- Motzkin, 1938
- Method: successive projection of a polyhedron in ndimensional space into a vector space of dimension $n-1$ by elimination of one variable.

Projection on y : $(0, y)$

CO at

 work A Fourier-Motzkin step

Fourier-Motzkin elimination proves the Farkas Lemma

When is a polyhedron nonempty?

The Farkas-Lemma (1908):

A polyhedron defined by an inequality system

$$
A x \leq b
$$

is empty, if and only if there is a vector y such that

$$
y \geq 0, y^{T} A=0^{T}, y^{T} b<0^{T}
$$

Fourier-Motzkin Elimination:

CO at work an example
$\min / \max +x 1+3 x 2$
(1) $\quad-\quad x 2<=0$
(2) - $x 1$ - $x 2<=-1$
(3) - x1 + $x 2<=3$
(4) $+x 1$
<= 3
(5) $+x 1+2 x 2<=9$

CO at

Fourier-Motzkin Elimination:

 work an example| (1) | $-x 2<=0$ |
| ---: | :--- |
| $(2)-x 1-x 2<=-8$ | |
| $(3)-x 1+x 2<=3$ | |
| $(4)+x 1$ | $<=3$ |
| $(5)+x 1+2 x 2<=9$ | |

Fourier-Motzkin Elimination: work an example, call of PORTA
 \section*{CO at}

INEQUALITIES_SECTION

ELIMINATION_ORDER
10

Fourier-Motzkin Elimination:

 work an example, call of PORTA

ELIMINATION_ORDER
10

CO at

 work an example, call of PORTA

Fourier-Motzkin Elimination:

Fourier-Motzkin elimination proves the Farkas Lemma

When is a polyhedron nonempty?

The Farkas-Lemma (1908):

A polyhedron defined by an inequality system

$$
A x \leq b
$$

is empty, if and only if there is a vector y such that

$$
y \geq 0, y^{T} A=0^{T}, y^{T} b<0^{T}
$$

Which LP solvers are used in practice?

- Fourier-Motzkin: hopeless
- Ellipsoid Method: total failure
- primal Simplex Method: good
- dual Simplex Method: better
- Barrier Method: for LPs frequently even better
- For LP relaxations of IPs: dual Simplex Method

for polyhedral transformations:
Example: Let a polyhedron be given (as usual in
combinatorial optimization implicitly) via:

$$
P=\operatorname{conv}(\mathrm{V})+\operatorname{cone}(\mathrm{E})
$$

Find a non-redundant representation of P in the form:

$$
P=\left\{x \in \mathbf{R}^{d} \mid A x \leq b\right\}
$$

Solution: Write P as follows
for polyhedral transformations:
Example: Let a polyhedron be given (as usual in
combinatorial optimization implicitly) via:

$$
P=\operatorname{conv}(\mathrm{V})+\operatorname{cone}(\mathrm{E})
$$

Find a non-redundant representation of P in the form:

$$
P=\left\{x \in \mathbf{R}^{d} \mid A x \leq b\right\}
$$

Solution: Write P as follows

$$
P=\operatorname{conv}(\mathrm{V})+\operatorname{cone}(\mathrm{E})
$$

for polyhedral transformations:
Example: Let a polyhedron be given (as usual in
combinatorial optimization implicitly) via:

$$
P=\operatorname{conv}(\mathrm{V})+\operatorname{cone}(\mathrm{E})
$$

Find a non-redundant representation of P in the form:

$$
P=\left\{x \in \mathbf{R}^{d} \mid A x \leq b\right\}
$$

Solution: Write P as follows

$$
P=\left\{x \in \mathbf{R}^{d} \mid A x \leq b\right\}
$$

for polyhedral transformations:
Example: Let a polyhedron be given (as usual in
combinatorial optimization implicitly) via:

$$
P=\operatorname{conv}(\mathrm{V})+\operatorname{cone}(\mathrm{E})
$$

Find a non-redundant representation of P in the form:

$$
P=\left\{x \in \mathbf{R}^{d} \mid A x \leq b\right\}
$$

Solution: Write P as follows

Fourier-Motzkin works reasonably well

for polyhedral transformations:
Example: Let a polyhedron be given (as usual in
combinatorial optimization implicitly) via:

$$
P=\operatorname{conv}(\mathrm{V})+\text { cone(E) }
$$

Find a non-redundant representation of P in the form:
$\quad P=\left\{x \in \mathbf{R}^{d} \mid A x \leq b\right\}$
Solution: Write P as follows
$\quad P=\left\{x \in \mathbf{R}^{d} \mid V y+E z-x=0, \sum_{i=1}^{d} y_{i}=1, y \geq 0, z \geq 0\right\}$ $\begin{aligned} & \text { and eliminate } y \text { und } z .\end{aligned}$

$$
\begin{align*}
& \text { Solution: Write } P \text { as follows } \\
& \qquad P=\left\{x \in \mathbf{R}^{d} \mid V y+E z-x=0, \sum_{i=1}^{d} y_{i}=1, y \geq 0, z \geq 0\right\} \\
& \text { and eliminate } y \text { und } z \text {. }
\end{align*}
$$

and

 2

(

Abstract

\qquad

-

Relations between polyhedra representations

- Given V and E, then one can compute A und b as indicated above.
- Similarly (polarity): Given A und b, one can compute V und E.
- The Transformation of a ς-representation of a polyhedron P into a Hrepresentation and vice versa requires exponential space, and thus, also exponential running time.
- Examples: Hypercube and cross polytope.
- That is why it is OK to employ an exponential algorithm such as FourierMotzkin Elimination (or Double Description) for polyhedral transformations.
- Several codes for such transformations can be found in the Internet, e.g.. PORTA at ZIB and in Heidelberg.

work Schläfli Graph
 The Polytope of stable sets of the

```
input file Schlaefli.poi
dimension : 27
number of cone-points : 0
number of conv-points : 208
```

sum of inequalities over all iterations : 527962
maximal number of inequalities : 14230
transformation to integer values sorting system
number of equations : 0
number of inequalities : 4086

The Polytope of stable sets of the Schläfli Graph

The Polytope of stable sets of the Schläfli Graph

INEQUALITIES_SECTION
(1) $-x 1<=0$

$$
\begin{aligned}
(4086) & +2 \times 1+2 \times 2+2 \times 3+x 4+x 5+x 6+x 10+x 11+x 12+x 13+x 14+x 15 \\
& +\times 16+x 17+\times 18+\times 19+2 \times 20+\times 22+2 \times 23+x 25+2 \times 26<=3
\end{aligned}
$$

8 different classes of inequalities found in total, among these, 5 classes have been unknown so far.

Pr

${ }^{46}$ coat
work
Web resources
－A Short Course in Linear Programming by Harvey ．Greenberg
http：／／carbon．cudenver．edu／～hgreenbe／courseware／LPshort／intro．html
－OR／MS Today ： 2003 LI NEAR PROGRAMMI NG SOFTWARE SURVEY（ ~ 50 commercial codes）
－INFORMS OR／MS Resource Collection
http：／／www．informs．org／Resources／
－NEOS Server for Optimization

http：／／www．lionhrtpub．com／orms／surveys／LP／LP－survey．html
／at

\square

\author{ http：／／www－neos．mcs．anl．gov／

hel／wnw neos．mcs．anl．gov／ }

OR／MS Today： 2003 LINEAR PROGRAMMING

 \square \square
\square
ORMS Todar： 2003 LINEAR PROGRAMMI

C
x^{2}

别
e

2
正
\qquad

CO at

 work Web resources (at ZIB)- MIPLIB
- FAPLIB
- STEINLIB
\square

\square \square ．

■ PORAA－Polyhedron Representation Transformation Algorithm
－PORTA－Polyhedron Representation Transformation Algorithm
－SoPlex－The Sequential object－oriented simplex class library
－Zimpl－A mathematical modelling language
－SCI P－Solving constraint integer programs（IP \＆MIP）
\square
\qquad

O

亿 D OIIEr－IES

亿 D OIIEr－IES

2
－Zimpl－A mathematical modelling language

\qquad
 －

\square


```（
```

\square


```

```

（

Abstract

\square

\qquad正 \square

Contents
1．Linear programs
2．Polyhedra
3．Algorithms for polyhedra
－\quad Fourier－Motzkin elimination
－\quad some Web resources
4．Semi－algebraic geometry
5．Faces of polyhedra
1．Linear programs
2．Polyhedra
3．Algorithms for polyhedra
$-\quad$ Fourier－Motzkin elimination
$-\quad$ some Web resources
4．\quad Semi－algebraic geometry
5．
1．Linear programs
2．Polyhedra
3．Algorithms for polyhedra
$-\quad$ Fourier－Motzkin elimination
$-\quad$ some Web resources
4．\quad Semi－algebraic geometry
5．
Contents
1．Linear programs
2．Polyhedra
3．Algorithms for polyhedra
－\quad Fourier－Motzkin elimination
－\quad some Web resources
4．Semi－algebraic geometry
5．Faces of polyhedra
1．Linear programs
2．Polyhedra
3．Algorithms for polyhedra
－Fourier－Motzkin elimination
－\quad some Web resources
4．Semi－algebraic geometry
5．Faces of polyhedra
Contents
1．Linear programs
2．Polyhedra
3．Algorithms for polyhedra
－\quad Fourier－Motzkin elimination
－\quad some Web resources
4．Semi－algebraic geometry
5．Faces of polyhedra
Contents
1．Linear programs
2．Polyhedra
3．Algorithms for polyhedra
－\quad Fourier－Motzkin elimination
－\quad some Web resources
4．Semi－algebraic geometry
5．Faces of polyhedra
 1．Anear

1．Linear programs
2．Polyhedra
3．Algorithms for polyhedra
－Fourier－Motzkin elimination
－some Web resources
4．Semi－algebraic geometry
5．Faces of polyhedra
1．Linear programs
2．Polyhedra
3．Algorithms for polyhedra
－Fourier－Motzkin elimination
－some Web resources
4．Semi－algebraic geometry
5．Faces of polyhedra
2．\quad Linear propranns
1．Linear programs
2．Polyhedra
3．Algorithms for polyhedra
－\quad Fourier－Motzkin elimination
－\quad some Web resources
4．Semi－algebraic geometry
5．Faces of polyhedra
1．Linear programs
2．Polyhedra
3．Algorithms for polyhedra
－\quad Fourier－Motzkin elimination
－\quad some Web resources
4．Semi－algebraic geometry
5．Faces of polyhedra
1．Linear programs
2．Polyhedra
3．Algorithms for polyhedra
－Fourier－Motzkin elimination
－some Web resources
4．Semi－algebraic geometry
5．Faces of polyhedra

Contents
1．Linear programs
2．Polyhedra
3．Algorithms for polyhedra
－\quad Fourier－Motzkin elimination
－\quad some Web resources
4．Semi－algebraic geometry
5．Faces of polyhedra
1．Linear programs
2．Polyhedra
3．Algorithms for polyhedra

－\quad Fourier－Motzkin elimination
4．Semi－algebraic geometry
5．Faces of polyhedra L． \square \square T \square
 \qquad
\qquad
震 \square
都

\title{

\square

 \qquad

 $$
\begin{gathered}
\text { - some Web resources } \\
\text { 4. senni-algeoraic geonnetny }
\end{gathered}
$$

 $\begin{array}{ll}\text { 1．Linear programs } \\ \text { 2．} & \text { Polyhedra } \\ \text { 3．} & \text { Algorithms for polyhedra } \\ \text {－} \quad \text { Fourier－Motzkin elimination } \\ \text {－} \quad \text { some Web resources } \\ \text { 4．} & \text { Semi－algebraic geometry }\end{array}$
 Li POIyICOIG
}

2．\quad Linear propranns
2．\quad Linear propranns
1．Linear programs
2．Polyhedra
3．Algorithms for polyhedra
－Fourier－Motzkin elimination
－\quad some Web resources
4．Semi－algebraic geometry
5．Faces of polyhedra
2．\quad Linear propranns \square
2．\quad Linear propranns

1.
$3:$
$3:$
?
R

?
?
R
?
?
R

$$
5
$$

．Faces of polyhedra
Faces of polyhedral

\qquad
\square

$$
>
$$

 N

（2）
[

$$
8
$$

$$
\square
$$

$$
1
$$

$$
8
$$

P
P
P
P

$$
2
$$

P

\bigcirc

\qquad
\qquad

Semi-algebraic Geometry Real-algebraic Geometry

$\mathrm{f}_{i}(x), g_{j}(x), h_{k}(x)$ are polynomials in d real variables
$S_{\geq}:=\left\{x \in \mathbf{R}^{d^{d}}: \mathrm{f}_{1}(x) \geq 0, \ldots, \mathrm{f}_{\mid}(x) \geq 0\right\} \quad$ basic closed

$$
\begin{aligned}
& S_{\geq}:=\left\{x \in \mathbf{R}^{d^{d}}: f_{1}(x) \geq 0, \ldots, f_{l}(x) \geq 0\right\} \quad \text { basic closed } \\
& S_{>}:=\left\{x \in \mathbf{R}^{d^{\mathrm{d}}}: g_{1}(x)>0, \ldots, g_{\mathrm{m}}(x)>0\right\} \text { basic open }
\end{aligned}
$$ $S_{>}:=\left\{x \in \mathbf{R}^{d^{\mathbf{d}}}: g_{1}(x)>0, \ldots, g_{\mathrm{m}}(x)>0\right\}$ basic open

$S_{=}:=\left\{x \in \mathbf{R}^{d^{\mathbf{d}}}: h_{1}(x)=0, \ldots, h_{\mathrm{n}}(x)=0\right\}$
$S:=S_{\geq} \mathrm{U} S_{>} \cup S_{=}$is a semi-algebraic set
$f_{i}(x), g_{j}(x), h_{k}(x)$ are polynomials in d real variables $S_{>}:=\left\{x \in \mathbf{R}^{d^{\mathbf{d}}}: g_{1}(x)>0, \ldots, g_{\mathrm{m}}(x)>0\right\}$ basic open
$S_{=}:=\left\{x \in \mathbf{R}^{d^{\mathbf{d}}}: h_{1}(x)=0, \ldots, h_{\mathrm{n}}(x)=0\right\}$
$S:=S_{\geq} \mathrm{U} S_{>} \cup S_{=}$is a semi-algebraic set

$$
S_{=}:=\left\{x \in \mathbf{R}^{d^{\mathbf{d}}}: h_{1}(x)=0, \ldots, h_{n}(x)=0\right\}
$$

$$
S:=S_{\geq} \cup S_{>} \cup S_{=} \quad \text { is a semi-algebraic set }
$$

CO at
路

 I

Theorem of Bröcker(1991) \& Scheiderer(1989) basic closed case

Every basic closed semi-algebraic set of the form

$$
S=\left\{x \in \mathbf{R}^{d^{\mathbf{d}}}: \mathrm{f}_{1}(x) \geq 0, \ldots, \mathrm{f}_{1}(x) \geq 0\right\}
$$

where $\mathrm{f}_{\mathrm{i}} \in \mathbf{R}\left[x_{1}, \ldots, x_{d}\right], 1 \leq i \leq l$, are polynomials, can be represented by at most $d(d+1) / 2$ polynomials, i.e., there exist polynomials such that
$\mathrm{p}_{1}, \ldots, \mathrm{p}_{d(d+1) / 2} \in \mathbf{R}\left[x_{1}, \ldots, x_{d}\right]$
$S=\left\{x \in \mathbf{R}^{d}: \mathrm{p}_{1}(x) \geq 0, \ldots, \mathrm{p}_{d(d+1) / 2}(x) \geq 0\right\}$.

Theorem of Bröcker(1991) \& Scheiderer(1989) basic open case

Every basic open semi-algebraic set of the form

$$
S=\left\{x \in \mathbf{R}^{d^{\mathbf{d}}}: \mathrm{f}_{1}(x)>0, \ldots, \mathrm{f}_{1}(x)>0\right\},
$$

where $\mathrm{f}_{\mathrm{i}} \in \mathbf{R}\left[x_{1}, \ldots, x_{d}\right], 1 \leq i \leq l$, are polynomials,
can be represented by at most d
polynomials, i.e., there exist polynomials
such that

$$
\begin{aligned}
& \mathrm{p}_{1}, \ldots, \mathrm{p}_{d} \in \mathbf{R}\left[x_{1}, \ldots, x_{d}\right] \\
& S=\left\{x \in \mathbf{R}^{d}: \mathrm{p}_{1}(x)>0, \ldots, \mathrm{p}_{d}(x)>0\right\} .
\end{aligned}
$$

Bernig [1998] proved that, for $d=2$, every convex polygon can be represented by two polynomial inequalities.

$\mathrm{p}(1)=$ product of all
linear inequalities
$p(2)=$ ellipse

A first Constructive Result

Bernig [1998] proved that, for $d=2$, every convex polygon can be represented by two polynomial inequalities.

$\mathrm{p}(1)=$ product of all
linear inequalities
$p(2)=$ ellipse

CO at Work
 Our first theorem

Theorem Let $P \subset \mathbf{R}^{n}$ be a n-dimensional polytope given by an inequality representation. Then k, n^{n} polynomials $\quad \mathrm{p}_{i} \in \mathbf{R}\left[x_{1}, \ldots, x_{n}\right]$
can be constructed such that

$$
P=P\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{k}\right)
$$

Martin Grötschel, Martin Henk:
The Representation of Polyhedra by Polynomial
Inequalities
Discrete \& Computational Geometry, 29:4 (2003) 485-504

$\underset{\substack{\text { coat } \\ \text { woot }}}{ }$ Our main theorem

Theorem Let $P \subset \mathbf{R}^{n}$ be a n-dimensional polytope given by an inequality representation. Then 2 n polynomials $\mathrm{p}_{i} \in \mathbf{R}\left[x_{1}, \ldots, x_{n}\right]$
can be constructed such that

$$
P=\mathrm{P}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{2 n}\right)
$$

Hartwig Bosse, Martin Grötschel, Martin Henk:
Polynomial inequalities representing polyhedra
Mathematical Programming 103 (2005)35-44
http://www.springerlink.com/index/10.1007/s10107-004-0563-2

$$
\left\{x \in \mathbb{R}^{d}: \mathfrak{p}_{1}(x) \geq 0\right\}
$$

$$
\left\{x \in \mathbb{R}^{d}: \mathfrak{p}_{0}(x) \geq 0\right\}
$$

work 2-dimensional case
 The construction in the

x_{2}
$\left[\begin{array}{ll}2 \\ \hline\end{array}\right.$. .百 2 Γ

 $+$

$$
\mid
$$ E

. .

(
 \square
\square
 -

\square
\square

(2)

都

1. Linear programs
2. Polyhedra
3. Algorithms for polyhedra

- Fourier-Motzkin elimination
- some Web resources

4. Semi-algebraic geometry
5. Faces of polyhedra

- Important concept: dimension
- face
- vertex
- edge
- (neighbourly polytopes)
- ridge = subfacet
- facet

Grötschel

01M2 Lecture Basics of Polyhedral Theory

The End

Martin Grötschel

- Institut für Mathematik, Technische Universität Berlin (TUB)
- DFG-Forschungszentrum "Mathematik für Schlüsseltechnologien" (MATHEON)
- Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

[^0]: 路

