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•a tetrahedron, 
•a cube, 
•an octahedron, 
•a dodecahedron, 
•an icosahedron, 
•a cuboctahedron, 
•an icosidodecahedron, and 
•a rhombitruncated cuboctahedron. 
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see examples
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Poster
which displays all 
convex polyhedra
with regular
polygonal faces

Polyhedra-Poster
http://www.peda.com/posters/Welcome.html
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Polyhedra have fascinated people
during all periods of our history

book illustrations
magic objects
pieces of art
objects of symmetry
models of the universe
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Linear programming lives (for our purposes) in the
n-dimensional real (in practice: rational) vector space. 

convex polyhedral cone: conic combination
(i. e., nonnegative linear combination or conical hull) 
of finitely many points
K = cone(E)

polytope: convex hull of finitely many points: 
P = conv(V)

polyhedron: intersection of finitely many halfspaces

{ | }nP x Ax b= ∈ ≤R
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Important theorems
of polyhedral theory (LP-view)

When is a polyhedron nonempty?
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Important theorems
of polyhedral theory (LP-view)

When is a polyhedron nonempty?

The Farkas-Lemma (1908):

A polyhedron defined by an inequality system

is empty, if and only if there is a vector y such that

Ax b≤

0, 0 , 0T T T Ty y A y b≥ = <

Theorem of the alternative
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Important theorems
of polyhedral theory (LP-view)
Which forms of representation do polyhedra have?
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Important theorems
of polyhedral theory (LP-view)

Minkowski (1896), Weyl (1935), Steinitz (1916) Motzkin (1936)

Theorem: For a subset P of      the following are equivalent:

(1) P is a polyhedron.

(2) P is the intersection of finitely many halfspaces, i.e.,
there exist a matrix A und ein vector b with

(exterior representation)

(3) P is the sum of a convex polytope and a finitely
generated (polyhedral) cone, i.e., there exist
finite sets V and E with

(interior representation)

nR

{ | }.nP x Ax b= ∈ ≤R

conv(V)+cone(E).P =

Which forms of representation do polyhedra have?
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Carathéodory‘s Theorem (1911), 1873 Berlin – 1950 München
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(1)      - x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9

(1)

(2)

(4)

(5)(3
)

The Η-representation
(exterior representation)

Ax b≤
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The ς-representation (interior representation)

conv(V)+cone(E).P =

E

VP
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{ }, | 1,..., n
i iP conv e e i n= − = ⊆ R
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{ }, | 1,..., n
i iP conv e e i n= − = ⊆ R

{ }{ }| 1 1,1 nn TP x a x a= ∈ ≤ ∀ ∈ −R
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{ }, | 1,..., n
i iP conv e e i n= − = ⊆ R
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The solution sets of linear programs are polyhedra.

If a polyhedron is given explicitly
via finite sets V und E, linear programming is trivial.

In linear programming, polyhedra are always given in 
Η-representation. Each solution method has its
„standard form“. 

conv(V)+cone(E)P =
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Fourier, 1847 

Motzkin, 1938

Method: successive projection of a polyhedron in n-
dimensional space into a vector space of dimension n-1 by
elimination of one variable.

Projection on y: (0,y)

Projection on x: (x,0)
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Fourier-Motzkin elimination proves the
Farkas Lemma

When is a polyhedron nonempty?

The Farkas-Lemma (1908):

A polyhedron defined by an inequality system

is empty, if and only if there is a vector y such that

Ax b≤

0, 0 , 0T T T Ty y A y b≥ = <
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Fourier-Motzkin Elimination:
an example

min/max + x1 + 3x2 

(1)      - x2 <= 0
(2) - x1 - x2 <=-1
(3) - x1 +  x2 <= 3
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9

(1)

(2)

(4)

(5)(3
)
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Fourier-Motzkin Elimination:
an example

min/max + x1 + 3x2 

(1)      - x2 <= 0
(2) - x1 - x2 <=-8
(3) - x1 +  x2 <= 3
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9

(1)

(2)

(4)

(5)(3
)

(2)
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Fourier-Motzkin Elimination:
an example, call of PORTA

DIM = 3

INEQUALITIES_SECTION

(1)      - x2      <= 0
(2) - x1 - x2      <=-8
(3) - x1 +  x2      <= 3
(4) + x1            <= 3
(5) + x1 + 2x2      <= 9

ELIMINATION_ORDER
1 0  

(1)      - x2 <= 0
(2) - x1 - x2 <=-8
(3) - x1 +  x2 <= 3
(4) + x1       <= 3
(5) + x1 + 2x2 <= 9
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Fourier-Motzkin Elimination:
an example, call of PORTA

DIM = 3

INEQUALITIES_SECTION

(1)      - x2      <= 0
(2) - x1 - x2      <=-8
(3) - x1 +  x2      <= 3
(4) + x1            <= 3
(5) + x1 + 2x2      <= 9

ELIMINATION_ORDER
1 0  

DIM = 3

INEQUALITIES_SECTION

(1)   (1) - x2      <=  0
(2,4) (2) - x2      <=  -5
(2,5) (3) + x2      <=  1
(3,4) (4) + x2      <=  6
(3,5) (5) + x2      <=  4
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Fourier-Motzkin Elimination:
an example, call of PORTA

DIM = 3

INEQUALITIES_SECTION

(2,3) 0 <= -4

DIM = 3

INEQUALITIES_SECTION

(1)   (1) - x2      <=  0
(2,4) (2) - x2      <=  -5
(2,5) (3) + x2      <=  1
(3,4) (4) + x2      <=  6
(3,5) (5) + x2      <=  4

ELIMINATION_ORDER

0 1 
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Fourier-Motzkin elimination proves the
Farkas Lemma

When is a polyhedron nonempty?

The Farkas-Lemma (1908):

A polyhedron defined by an inequality system

is empty, if and only if there is a vector y such that

Ax b≤

0, 0 , 0T T T Ty y A y b≥ = <
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Which LP solvers are
used in practice?

Fourier-Motzkin: hopeless

Ellipsoid Method: total failure

primal Simplex Method: good

dual Simplex Method: better

Barrier Method: for LPs frequently even better

For LP relaxations of IPs: dual Simplex Method
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Fourier-Motzkin works reasonably well 
for polyhedral transformations:

{ | }dP x Ax b= ∈ ≤R

conv(V)+cone(E)P =

Example: Let a polyhedron be given (as usual in 
combinatorial optimization implicitly) via:

Find a non-redundant representation of P in the form:

Solution: Write P as follows

and eliminate y und z.
1

{ | 0, 1, 0, 0}
d

d
i

i
P x Vy Ez x y y z

=

= ∈ + − = = ≥ ≥∑R
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Relations between polyhedra
representations

Given V and E, then one can compute A und b as indicated above.

Similarly (polarity): Given A und b, one can compute V und E.

The Transformation of a ς-representation of a polyhedron P into a Η-
representation and vice versa requires exponential space, and thus, also 
exponential running time.

Examples: Hypercube and cross polytope.

That is why it is OK to employ an exponential algorithm such as Fourier-
Motzkin Elimination (or Double Description) for polyhedral
transformations.

Several codes for such transformations can be found in the Internet, 
e.g.. PORTA at ZIB and in Heidelberg. 
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The Polytope of stable sets of the
Schläfli Graph

input file Schlaefli.poi
dimension :   27 
number of cone-points :    0 
number of conv-points :  208 

sum of inequalities over all iterations : 527962
maximal number of inequalities :  14230

transformation to integer values
sorting system

number of equations :    0 
number of inequalities : 4086 
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The Polytope of stable sets of the
Schläfli Graph
FOURIER - MOTZKIN - ELIMINATION:
| iter- |      upper |     # ineq |   max| long|  non-|   mem |      time |
| ation|     bound |                |    bit-|arith| zeros |    used |      used |
|        |     # ineq |                |length|metic| in %|   in kB |    in sec |
|-------|------------|--------------|------|-----|--------|-----------|-------------|
|  180 |            29 |         29 |    1 |   n |   0.04 |     522 |        1.00 |
|  179 |            30 |         29 |    1 |   n |   0.04 |     522 |        1.00 |

|    10 |    8748283 |    13408 |    3 |   n |   0.93 |    6376 |    349.00 |
|     9 |   13879262 |    12662 |    3 |   n |   0.93 |    6376 |    368.00 |
|     8 |   12576986 |    11877 |    3 |   n |   0.93 |    6376 |    385.00 |
|     7 |   11816187 |    11556 |    3 |   n |   0.93 |    6376 |    404.00 |
|     6 |   11337192 |    10431 |    3 |   n |   0.93 |    6376 |    417.00 |
|     5 |    9642291 |      9295 |    3 |   n |   0.93 |    6376 |    429.00 |
|     4 |   10238785 |     5848 |    3 |   n |   0.92 |    6376 |    441.00 |
|     3 |    3700762 |      4967 |    3 |   n |   0.92 |    6376 |    445.00 |
|     2 |    2924601 |      4087 |    2 |   n |   0.92 |    6376 |    448.00 |
|     1 |         8073 |      4086 |    2 |   n |   0.92 |    6376 |    448.00 |
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The Polytope of stable sets of the
Schläfli Graph
INEQUALITIES_SECTION

(  1)     - x1 <= 0

(4086) +2x1+2x2+2x3+ x4+ x5+ x6  + x10+ x11+ x12+ x13+ x14+ x15 
+x16+ x17+ x18+ x19+2x20 + x22+2x23 + x25+2x26      <= 3

8 different classes of inequalities found in total, among these, 5 classes
have been unknown so far. 
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Linear Programming: Frequently Asked Questions
http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html

Q1. "What is Linear Programming?" 

Q2. "Where is there good software to solve LP problems?" 
"Free" codes

Commercial codes and modeling systems

Free demos of commercial codes

Q3. "Oh, and we also want to solve it as an integer program." 

Q4. "I wrote an optimization code. Where are some test models?" 

Q5. "What is MPS format?" 

http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html
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A Short Course in Linear Programming 

by Harvey J. Greenberg
http://carbon.cudenver.edu/~hgreenbe/courseware/LPshort/intro.html

OR/MS Today : 2003 LINEAR PROGRAMMING
SOFTWARE SURVEY (~50 commercial codes)
http://www.lionhrtpub.com/orms/surveys/LP/LP-survey.html

INFORMS OR/MS Resource Collection 
http://www.informs.org/Resources/

NEOS Server for Optimization 
http://www-neos.mcs.anl.gov/

http://carbon.cudenver.edu/~hgreenbe/myadr.html
http://carbon.cudenver.edu/~hgreenbe/courseware/LPshort/intro.html
http://www.lionhrtpub.com/orms/surveys/LP/LP-survey.html
http://www.informs.org/Resources/
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MIPLIB

FAPLIB

STEINLIB
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PORTA - POlyhedron Representation Transformation Algorithm

SoPlex - The Sequential object-oriented simplex class library

Zimpl - A mathematical modelling language

SCIP - Solving constraint integer programs (IP & MIP)
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Semi-algebraic Geometry
Real-algebraic Geometry

1

1

1

: { : ( ) 0,..., ( ) 0}

: { : ( ) 0,..., ( ) 0}

: { : ( ) 0,..., ( ) 0}

d
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S x x x

S x g x g x

S x h x h x

≥

>

=

= ∈ ≥ ≥

= ∈ > >
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d
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R

R

R

l

m

n

f f basic closed

basic open

:S S S S≥ > == U U is a semi-algebraic set

( ), ( ), ( )i j kx g x h xf are polynomials in d real variables
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Every basic closed semi-algebraic set of the form

where are polynomials,

can be represented by at most

polynomials, i.e., there exist polynomials
such that

1{ : ( ) 0,..., ( ) 0},dS x x x= ∈ ≥ ≥
dR lf f

1[ ,..., ],1 ,dx x i l∈ ≤ ≤Rif
( 1) / 2d d +

( 1) / 2 1,..., [ ,..., ]d d dx x+ ∈R1p p

1 ( 1) / 2{ : ( ) 0,..., ( ) 0}.d
d dS x x x+= ∈ ≥ ≥R p p

Theorem of Bröcker(1991) & Scheiderer(1989) 
basic closed case
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Every basic open semi-algebraic set of the form

where are polynomials,

can be represented by at most

polynomials, i.e., there exist polynomials
such that

1{ : ( ) 0,..., ( ) 0},dS x x x= ∈ > >
dR lf f

1[ ,..., ],1 ,dx x i l∈ ≤ ≤Rif
d

1,..., [ ,..., ]d dx x∈R1p p

1{ : ( ) 0,..., ( ) 0}.d
dS x x x= ∈ > >R p p

Theorem of Bröcker(1991) & Scheiderer(1989) 
basic open case
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Bernig [1998] proved that, for d=2, every convex
polygon can be represented by two polynomial
inequalities. 

p(1)= product of all
linear inequalities

p(2)= ellipse
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Bernig [1998] proved that, for d=2, every convex
polygon can be represented by two polynomial
inequalities. 

p(1)= product of all
linear inequalities

p(2)= ellipse
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Theorem Let be a n-dimensional 

polytope given by an inequality representation. Then

k nn polynomials

can be constructed such that

Martin Grötschel, Martin Henk:
The Representation of Polyhedra by Polynomial
Inequalities

Discrete & Computational Geometry, 29:4 (2003) 485-504

nP ⊂ R

1[ ,..., ]i nx x∈Rp

( ,..., ).kP = P 1p p

Our first theorem
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Theorem Let be a n-dimensional 

polytope given by an inequality representation. Then

2n polynomials

can be constructed such that

Hartwig Bosse, Martin Grötschel, Martin Henk:
Polynomial inequalities representing polyhedra
Mathematical Programming 103 (2005)35-44

http://www.springerlink.com/index/10.1007/s10107-004-0563-2

nP ⊂ R

1[ ,..., ]i nx x∈Rp

2( ,..., ).nP = 1p pP

Our main theorem

http://www.springerlink.com/index/10.1007/s10107-004-0563-2
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The construction in the
2-dimensional case
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The construction in the
2-dimensional case
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Important concept: dimension

face

vertex

edge

(neighbourly polytopes)

ridge = subfacet

facet



Martin Grötschel Institut für Mathematik, Technische Universität Berlin (TUB)
DFG-Forschungszentrum “Mathematik für Schlüsseltechnologien” (MATHEON)
Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) 

groetschel@zib.de http://www.zib.de/groetschel

01M2 Lecture
Basics of Polyhedral Theory

Martin Grötschel 
Block Course at TU Berlin 

"Combinatorial Optimization at Work“

October 4 – 15, 2005 
The End


	01M2 Lecture �Basics of Polyhedral Theory
	Contents
	Contents
	Linear Programming
	Linear Programming
	Contents
	A  Polytope in the Plane
	A  Polytope in 3-dimensional space
	„beautiful“ polyehedra
	Polytopes in nature
	Polyhedra-Poster�http://www.peda.com/posters/Welcome.html
	Polyhedra have fascinated people during all periods of our history
	Definitions
	Important theorems �of polyhedral theory (LP-view)
	Important theorems �of polyhedral theory (LP-view)
	Important theorems �of polyhedral theory (LP-view)
	Important theorems �of polyhedral theory (LP-view)
	Representations of polyhedra
	Representations of polyhedra
	Representations of polyhedra
	Example: the Tetrahedron
	Example: the cross polytope
	Example: the cross polytope
	Example: the cross polytope
	Contents
	Polyedra in linear programming
	Fourier-Motzkin Elimination 
	A Fourier-Motzkin step
	Fourier-Motzkin elimination proves the Farkas Lemma
	Fourier-Motzkin Elimination:�an example
	Fourier-Motzkin Elimination:�an example
	Fourier-Motzkin Elimination:�an example, call of PORTA
	Fourier-Motzkin Elimination:�an example, call of PORTA
	Fourier-Motzkin Elimination:�an example, call of PORTA
	Fourier-Motzkin elimination proves the Farkas Lemma
	Which LP solvers are �used in practice?
	Fourier-Motzkin works reasonably well for polyhedral transformations:
	Relations between polyhedra representations
	The Polytope of stable sets of the Schläfli Graph
	The Polytope of stable sets of the Schläfli Graph
	The Polytope of stable sets of the Schläfli Graph
	Web resources
	Web resources
	Web resources (at ZIB)
	ZIB offerings
	Contents
	Semi-algebraic Geometry�Real-algebraic Geometry
	A first constructive result
	A first Constructive Result
	The construction in the �2-dimensional case
	The construction in the �2-dimensional case
	Contents
	Faces etc.
	01M2 Lecture �Basics of Polyhedral Theory

