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T
Max ¢, X, +C,X, +...+C X MaXx C X
subject to Ax =b
a.X +a,X +...+a,X =Dh v >0
&, X +a,,X, +..+a, X =h,

linear program

in standard form
Ay X + 8, X, +o 3, X, =0,

Xiy X5, 000, X 20
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max c' x linear max ¢' X
program Ax <D
Ax=D in :> B
standard —AX<-b
X=0 form —x<0
linear

max c'X program j> max c'x" —c' x”

Ax<p AX" + AX +Is=b
“polyhedral
fOI‘m" X+, X_, S 2 O
(X=X"=X")
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Work ,oeautiful“ polyehedra

il 2
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= see examples
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Polyhedra-Poster

Work http://www.peda.com/posters/Welcome.html

Polyhedra

Platonic Solids

Archimedean Solids
— W . ST e A=

Prisms and Anti-Prisms

Johnson Solids

ZAIB
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which displays all
convex polyhedra
with regular
polygonal faces
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Adresse | http:/faww.eg-models.def
Work

— EG-Models

EG-Models - a new archive of electronic geometry models
Internal Links:

Home  Models No Applet Search Submit Instructions Links Help/Copyright

Managing Editors:

Michael Joswig, Konrad Polthier
Editorial Board:

Thomas Banchoff, Claude Paul Bruter,
Antenie F. Costa, lvan Dynnikov,

John M. Sullivan, Stefan Turek

|
al" -l _..._____l/,ﬁ/
H.A. Schwarz Ges Math.Abh

Springer Berlin 1890

MNote: Some browser versions do not
display Java applets. Please, press
the ™o Applet’ button in the
navigation bar to aveid using Java.
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Anschauliche Geometrie - A tribute to Hilbert, Cohn-Vossen, Klein and all other geometers.
Electronic Geometry Models

This archive is open for any geometer to publish new geometric models, or to browse this site for material to be used in

education and research. These geometry models cover a broad range of mathematical topics from geometry, topology, and to
some extent from numerics.

Click "Models" to see the full list of published models. See here for details on the submission and review process.

Selection of recently published models

Model 2003 .04 001 by Anders Bjarner and Frank H. Lutz: A 16-Vertex Triangulation of the Poincaré
Homology 3-Sphere and Non-PL Spheres with Few Vertices.
' Section: Discrete Mathematics / Simplicial Manifolds

A ‘We present a 16-vertex triangulation of the Poincaré homology 3-sphere that can be taken as the starting point
for a series of non-PL d-spheres with d+13 vertices in dimensions d225.

Model 2001.11.001 by John M. Sullivan: Tight Clasp.
Section: Curves / Space Curves

This model simulates the shape of a tight clasp, that is, a ropelength-minimizing configuration of two linked arcs
with endpoints fixed in parallel planes.

Model 2002.03.001 by Shimpei Kobayashi: Bubbletons and their parallel surfaces in Euclidean 3-space.
Section: Surfaces / Mean Curvature Surfaces

i We show one of the cylinder bubbletons in Euclidean 3-space which are constant mean curvature surfaces
derived by applying the Backlund-Bianchi transformation to the cylinder. We also show the parallel constant
mean curvature surface of this cylinder bubbleton.

© 2000-2002 Last modified: 11.03.2003 — Nichse| Joswig and Konrad Polthisr — Technical Univessity Berlin, Germany

© Internet
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4 Wechseln zu

Plato's five regular polyhedra

The regular polyhedra are, in the space, the analogues of the polygons in the plane thewfaces are regular and identical polygons, and their vertices, regular and identical,
are regularly distributed on a sphere. Their analogues in dlmensmn four are the equlal
As we do for the polygons, we recognize a convex polyhedron by the very fact that allits dmgonals (segments which join two vertices not joined by an edge) are inside the
polyhedron.
Whereas there exist an infinity of regular convex polygons, the regular convex polyhedra are only five.

The angle of a regular polygon with n sides is 180°(n-2)/n : 60" {triangle}, 90 (square}, 108" [pentagon], 120° (hexagon)...

proak: On a vertex of a regular polyhedron the sum of the face’s angles (there are at least three) must be smaller than 360°.
Since BxB0° = 4x80% = 3x120° = 3607 < 4x108°, there are only five possibilities: 3, 4, or 5 triangles, 2 squares or 3 pentagons.

SR ANALE!

name cube octahedron tetrahedron icosahedron dodecahedron
faces 6 squares 8 equiltriangles 4 equiltriangles 20 equiltriangles 12 regul.pentagons
vertices 8 6 4 12 20
edges 12 12 6 30 30
faces angle 90" 109°28' 70°32' 138°11" 116°34'

=20 applet by Martin Kraus (University of Stuttgart) allows you to mowve these polyhedra with your mouse.

The regular octahedron's edges are the sides of three
squares with the same centre and orthogonal by pairs.

The regular icosahedron's verfices are the vertices of
three o lles (sides in golden ratio 1.618..)
with the same centre and orthogonal by pairs.

Four vertices of a cube are the vertices of a regular tetrahedron ; so we can
make a regular tetrahedron by cutting four "corners” of a cube.
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. POlyhedra have fascinated people
work during all periods of our history

book illustrations
magic objects

pieces of art

objects of symmetry
models of the universe

A ) e =
ZD From Livre de Perspective by Jean Cousin, 1568.

Martin

Grotschel
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Linear programming lives (for our purposes) in the
n-dimensional real (in practice: rational) vector space.

= convex polyhedral cone: conic combination
(i. e., nonnegative linear combination or conical hull)
of finitely many points
K = cone(E)

= polytope: convex hull of finitely many points:
P = conv(V)

= polyhedron: intersection of finitely many halfspaces

P={xeR"| Ax<Db}

ZAIB

Martin
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. IMportant theorems
work Oof polyhedral theory (LP-view)

When is a polyhedron nonempty?
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work Oof polyhedral theory (LP-view)

When is a polyhedron nonempty?

The Farkas-Lemma (1908):
A polyhedron defined by an inequality system

AX <D

is empty, if and only if there is a vector y such that

v>0,y'A=0", y'b< 0

Theorem of the alternative
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0. IMportant theorems
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Which forms of representation do polyhedra have?
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. IMportant theorems
work Oof polyhedral theory (LP-view)

Which forms of representation do polyhedra have?
Minkowski (1896), Weyl (1935), Steinitz (1916) Motzkin (1936)

Theorem: For a subset P of R" the following are equivalent:

(1) P is a polyhedron.

(2) P is the intersection of finitely many halfspaces, i.e.,
there exist a matrix A und ein vector b with
P={xeR"| AX<b}. (exterior representation)

(3) P is the sum of a convex polytope and a finitely
generated (polyhedral) cone, i.e., there exist
finite sets V and E with
P = conv(V)+cone(E). (interior representation)
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Carathéodory‘s Theorem (1911), 1873 Berlin — 1950 Miinchen

Let x e P =conv(V)+cone(E) , there exist

Vo, Vs €V, Ay, A€R,,D A =1
i=0

ande, ..., €E, u,,...,u €R_witht<nsuch that

X= i}ﬁvi + Zt: i€,
i=1

I=s+1

s+17*"
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1) - X2 <=0

The H-representation

83 - ﬁ - ig ::‘:1% (exterior representation)
(4) + x1 <= 3
(5) + x1 + 2x2 <= 9 Ax <D

~
2 (5)\
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The V-representation (interior representation)

P = conv(V)+cone(E).

S
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u'.ﬂ'
Uk -

!
o ) 1
>

0117 T0]T0
yeconvy [O,/0(,/1],/]0]| ¢
of|o||o]|1
Vi +Y, +Y; <1
y, =0
y, =20
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P=conv{e,—¢ |i=1..n}cR
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work Example: the cross polytope

P=conv{e,—¢ |i=1..n}cR

p={xeR"|Y|x|<1|
1=1

J
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0. All 3-dimensional
work (/1-polytopes 0/1-polytopes

X C {U,l}d, P = conv X

I> combinatorial optimization
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= The solution sets of linear programs are polyhedra.

= If a polyhedron P =conv(V)+cone(E) is given explicitly
via finite sets V und E, linear programming is trivial.

= In linear programming, polyhedra are always given in
H-representation. Each solution method has its

,Standard form".
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= Fourier, 1847
= Motzkin, 1938

= Method: successive projection of a polyhedron in n-
dimensional space into a vector space of dimension n-1 by
elimination of one variable.

—

Projection on x: (x,0)
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0
1 al 4+|T> .
1
-1 al +
0
1 am
0 bl
T - ) Copy
T : 0 bk
241 B
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. Fourier-Motzkin elimination proves the
work Farkas Lemma

When is a polyhedron nonempty?

The Farkas-Lemma (1908):
A polyhedron defined by an inequality system

AX <D

is empty, if and only if there is a vector y such that

v>0,y'A=0", y'b< 0
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0. Fourier-Motzkin Elimination:
work gn example

min/max + x1 + 3x2 ~

N
(@D - X2 <=0
(2 - x1 - x2 <=-1
) -xaroe=s /6 \é\
(4) + x1 <= 3 \& (5
(5) + x1 + 2x2 <= 9 N ) \\\\\\\\\\\
@
2
)
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Fourier-Motzkin Elimination:
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work an example

N
D - X2 <=0
(2) - x1 - x2 <=-8 42/
B - x1 + x2 <=3 A
(4 + x1 <=3 W (5
(5) + x1 + 2x2 <=9 h )
, @)
2
)
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Fourier-Motzkin Elimination:

CO at

work an example, call of PORTA

DIM = 3

INEQUALITIES_SECTION

(@D - X2 <=0 @) - X2 <=0
(2) - x1 - x2 <=-8 2) - x1 - x2 <=-8
B - x1 + x2 <=3 3 - x1 + x2 <= 3
(4) + x1 <= 3 (4) + x1 <= 3
(5) + x1 + 2x2 <= 9 (5) + x1 + 2x2 <=9

ELIMINATION_ORDER
10

ZA0B
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Fourier-Motzkin Elimination:

CO at

work gan example, call of PORTA

DIM = 3 DIM = 3

INEQUALITIES _SECTION INEQUALITIES SECTION
(&N (1) - x2 <= 0 (O - X2

(2,4 (2) - x2 <= -5(2) - x1 - x2

(2,5 (3) + x2 <=1 (3) - x1 + x2

3,4 (4 + x2 <= 6 (4) + x1

(3,5 (b)) + x2 <= 4 (5) + x1 + 2x2

(T

ELIMINATION_ORDER
10

ZA0B
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Fourier-Motzkin Elimination:

CO at

work gan example, call of PORTA

DIM = 3 DIM = 3
INEQUALITIES SECTION INEQUALITIES SECTION
1 (@) -x2 <= 0 (2,3) 0 <= -4
(2,4 (2) - x2 <= -5
(2,5) () + x2 <= 1
3,4 (4 + x2 <= 6
(3,5 (b)) + x2 <= 4
4 ELIMINATION_ORDER ‘
01

ZA0B
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. Fourier-Motzkin elimination proves the
work Farkas Lemma

When is a polyhedron nonempty?

The Farkas-Lemma (1908):
A polyhedron defined by an inequality system

AX <D

is empty, if and only if there is a vector y such that

v>0,y'A=0", y'b< 0
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Which LP solvers are

CO at

work tysed In practice?

= Fourier-Motzkin: hopeless

= Ellipsoid Method: total failure

= primal Simplex Method: good

= dual Simplex Method: better

= Barrier Method: for LPs frequently even better

k| = For LP relaxations of IPs: dual Simplex Method
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. Fourier-Motzkin works reasonably well
work for polyhedral transformations:

Example: Let a polyhedron be given (as usual in
combinatorial optimization implicitly) via:

P = conv(V)+cone(E)
Find a non-redundant representation of P in the form:
P={xeR"| Ax<b}
Solution: Write P as follows d
P={xeR’|Vy+Ez-x=0,> y,=1y>0,2>0}
i=1

and eliminate y und z.
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. Relations between polyhedra
work Fepresentations

= Given V and E, then one can compute A und b as indicated above.

= Similarly (polarity): Given A und b, one can compute V und E.

= The Transformation of a V-representation of a polyhedron P into a -
representation and vice versa requires exponential space, and thus, also
exponential running time.

= Examples: Hypercube and cross polytope.

= That is why it is OK to employ an exponential algorithm such as Fourier-
Motzkin Elimination (or Double Description) for polyhedral
transformations.

= Several codes for such transformations can be found in the Internet,
e.g.. PORTA at ZIB and in Heidelberg.

ZAIB

Martin
Grotschel
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. 1he Polytope of stable sets of the
work Schlafli Graph

input file Schlaefli.poi
dimension . 27
number of cone-points : 0
number of conv-points : 208

sum of inequalities over all iterations : 527962
maximal number of inequalities : 14230

@ transformation to integer values
sorting system

4 number of equations : 0
Zipl number of inequalities : 4086

Martin
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. 1he Polytope of stable sets of the
work Schlafli Graph

FOURIER - MOTZKIN - ELIMINATION:

| iter- | upper | #ineq | max| long| non-| mem | time |
| ation|  bound | | bit-]arith| zeros | used | used |
| | #ineq | |length|metic| in %]| inkB| insec|
R R R e e R |
| 180 | 29 | 29| 1| n| 0.04| 522 | 1.00 |
| 179 | 30 | 29| 1| n| 0.04| 522 | 1.00 |

| 10| 8748283 | 13408| 3| n| 0.93| 6376| 349.00 |
| 9| 13879262 | 12662| 3| n| 0.93| 6376| 368.00 |
| 8| 12576986 | 11877| 3| n| 0.93| 6376| 385.00 |
| 7| 11816187| 11556| 3| n| 0.93| 6376| 404.00 |
| 6| 11337192| 10431| 3| n| 0.93| 6376| 417.00 |
| 5| 9642291| 9295| 3| n| 0.93| 6376| 429.00 |
| 4| 10238785| 5848| 3| n| 0.92| 6376| 441.00 |
| 3| 3700762 4967| 3| n| 0.92| 6376| 445.00 |
| 2| 2924601 | 4087| 2| n| 0.92| 6376| 448.00 |
| 1] 8073| 4086| 2| n| 0.92| 6376| 448.00 |

ZAIB

Martin
Grotschel
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. 1he Polytope of stable sets of the
work Schlafli Graph

INEQUALITIES_SECTION
(1) -x1<=0

(4086) +2x1+2x2+2x3+ x4+ x5+ x6 + x10+ x11+ x12+ x13+ x14+ x15
+x16+ X174+ x18+ x19+2x20 + x22+2x23 + x25+2x26 <=3

8 different classes of inequalities found in total, among these, 5 classes
have been unknown so far.

1B
Martin
Grotschel
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Linear Programming: Frequently Asked Questions

http://www-unix.mcs.anl.gov/otc/Guide/fag/linear-programming-fag.html

= Q1. "What is Linear Programming?"

= Q2. "Where is there good software to solve LP problems?"
= "Free" codes

= Commercial codes and modeling systems

= Free demos of commercial codes

= Q3. "Oh, and we also want to solve it as an integer program."

= Q4. "I wrote an optimization code. Where are some test models?"
= Q5. "What is MPS format?"

ZA0B

Martin
Grotschel



http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html
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= A Short Course in Linear Programming

by Harvey J. Greenberg

http://carbon.cudenver.edu/~hgreenbe/courseware/LPshort/intro.html

= OR/MS Togay : 2005 LINEAR PROGRAMMING
SOFTWARE SURVEY (~60 commercial codes)

http://www.lionhrtpub.com/orms/surveys/LP/LP-survey.html

= INFORMS OR/MS Resource Collection

http://www.informs.org/Resources/

= NEOS Server for Optimization

http://www-neos.mcs.anl.gov/

ZA0B

Martin
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http://carbon.cudenver.edu/~hgreenbe/myadr.html
http://carbon.cudenver.edu/~hgreenbe/courseware/LPshort/intro.html
http://www.lionhrtpub.com/ORMS.shtml
http://www.lionhrtpub.com/orms/surveys/LP/LP-survey.html
http://www.informs.org/Resources/
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= MIPLIB
= FAPLIB
= STEINLIB
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= PORTA - POlyhedron Representation Transformation Algorithm

= SoOPlex - The Sequential object-oriented simplex class library
= ZiImpl - A mathematical modelling language

= SCIP - Solving constraint integer programs (IP & MIP)

ZA0B

Martin
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o Semi-algebraic Geometry
Work Real-algebraic Geometry

i (x),9;(x),h (x) are polynomials in d real variables
S, ={xeR" (%) 20,... () >0} pasic closed

S, ={xeR’:0,(x)>0,...,9,,(X) >0} basic open
o S ={xe R :h(x)=0,....,h (X) =0}

S:=S. US.US_ isasemi-algebraic set
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0o 1heorem of Brocker(1991) & Scheiderer(1989)
Work basic closed case

Every basic closed semi-algebraic set of the form

S={xeR":§(x)>0,...,5(x) >0},

where f € R[X,...,X;],1<1 <1, are polynomials,
can be represented by at most d(d +1)/2

polynomials, i.e., there exist polynomials
such that

PyseaPaasniz € RIX, ey Xy ]
@’ S = {X eR®:p,(x)=0,.. .+ Paasny2(X) 2 0}

Z[Il

Martin
Grotschel
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0o 1heorem of Brocker(1991) & Scheiderer(1989)
Work basic open case

Every basic open semi-algebraic set of the form

S={xeR" :§(x)>0,..,5(x) >0},

where f € R[x,...,X;],1<1 <1, are polynomials,
can be represented by at most @

polynomials, i.e., there exist polynomials
such that

P Py € R[X, e Xy ]

fﬁ’ S —{X R py () > 0,.oupy () > O}

Z[Il

Martin
Grotschel
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Bernig [1998] proved that, for d=2, every convex
polygon can be represented by two polynomial
inequalities.

p(1)= product of all
linear inequalities

p(2)= ellipse
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Bernig [1998] proved that, for d=2, every convex
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linear inequalities
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Theorem Let P — R" be a n-dimensional
polytope given by an inequality representation. Then
k<n" polynomials p, e R[x,,...,x,]

can be constructed such that

P — 7D(pl""’pk)'

\ 5 Martin Grotschel, Martin Henk:
The Representation of Polyhedra by Polynomial

Inequalities
i Discrete & Computational Geometry, 29:4 (2003) 485-504
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Theorem Let P — R" be a n-dimensional
polytope given by an inequality representation. Then
2n polynomials p; € R[X,...,X,]

can be constructed such that

P — P(pl""’pZH)'

E Hartwig Bosse, Martin Grotschel, Martin Henk:
Polynomial inequalities representing polyhedra
Mathematical Programming 103 (2005)35-44

;i http://www.springerlink.com/index/10.1007/s10107-004-0563-2



http://www.springerlink.com/index/10.1007/s10107-004-0563-2
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Imensiona

Work 2—d

po(z) = 0}

\._"...,.-..a...,....,..

{z c R?

p1(x) > 0}

{2 ¢ RY

e e

..__...__...__...__...__...__...__..._“.H

[0}
=
(&)
(2}
e}
‘0
—
)
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. The construction In the
work 2-dimensional case

{z e R : py(x) > Oandpo(x) > 0}
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= Important concept: dimension

= face

= vertex

= edge

. = (neighbourly polytopes)
d - ridge = subfacet

= facet
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